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Abstract 

Background Over the last decades, it was subject of many studies to investigate the genomic connection of milk 
production and health traits in dairy cattle. Thereby, incorporating functional information in genomic analyses 
has been shown to improve the understanding of biological and molecular mechanisms shaping complex traits 
and the accuracies of genomic prediction, especially in small populations and across‑breed settings. Still, little 
is known about the contribution of different functional and evolutionary genome partitioning subsets to milk 
production and dairy health. Thus, we performed a uni‑ and a bivariate analysis of milk yield (MY) and eight health 
traits using a set of ~34,497 German Holstein cows with 50K chip genotypes and ~17 million imputed sequence 
variants divided into 27 subsets depending on their functional and evolutionary annotation. In the bivariate analysis, 
eight trait‑combinations were observed that contrasted MY with each health trait. Two genomic relationship matri‑
ces (GRM) were included, one consisting of the 50K chip variants and one consisting of each set of subset variants, 
to obtain subset heritabilities and genetic correlations. In addition, 50K chip heritabilities and genetic correlations 
were estimated applying merely the 50K GRM.

Results In general, 50K chip heritabilities were larger than the subset heritabilities. The largest heritabilities were 
found for MY, which was 0.4358 for the 50K and 0.2757 for the subset heritabilities. Whereas all 50K genetic correla‑
tions were negative, subset genetic correlations were both, positive and negative (ranging from ‑0.9324 between MY 
and mastitis to 0.6662 between MY and digital dermatitis). The subsets containing variants which were annotated 
as noncoding related, splice sites, untranslated regions, metabolic quantitative trait loci, and young variants ranked 
highest in terms of their contribution to the traits’ genetic variance. We were able to show that linkage disequilibrium 
between subset variants and adjacent variants did not cause these subsets’ high effect.

Conclusion Our results confirm the connection of milk production and health traits in dairy cattle via the animals’ 
metabolic state. In addition, they highlight the potential of including functional information in genomic analyses, 
which helps to dissect the extent and direction of the observed traits’ connection in more detail.
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Background
Milk yields in dairy cattle have steadily risen during the 
last decades, which had been accelerated by genomic 
selection [1]. On the downside, claw diseases, infertility 
problems, and mastitis represent the most frequent rea-
sons for culling [2] and it is undoubtedly that the cow’s 
health is negatively correlated to its production level [3]. 
This implies several issues for the dairy cattle industry, 
facing economical loss, ecological concerns, and a rising 
awareness about animal welfare in the professionals and 
the general society [4–6]. These concerns will become 
even more important with ongoing climate change 
and the continuously growing human population size. 
To reduce the environmental footprint of ruminants, 
researchers proposed several strategies like breeding for 
an improved herd efficiency and animal health or reduced 
greenhouse gas emissions [7–9]. Hereby, genomic predic-
tion (GP) might play a major role, hence it is inevitable to 
continuously improve GP by dissecting the genetic basis 
of breeding traits [10].

At the moment, GP exploits mainly the long linkage 
disequilibrium (LD) blocks present in most livestock spe-
cies. In GP, the effects of unknown quantitative trait loci 
(QTL) are estimated indirectly via genotypic markers 
that are in LD with the QTL, using a reference popula-
tion [11]. For that reason, current multi-step GP is not 
robust to changes in the LD structure, making a con-
tinuous recalibration of marker effects indispensable 
[12]. Another limitation is that the accuracy of estimated 
genomic breeding values is below 1. Thereby, especially 
breeds that are genetically distant from the one where 
marker effects have been estimated experience a reduced 
accuracy [13–15].

To alleviate this problem at least partly, one can esti-
mate QTL effects via markers in higher LD by increas-
ing the marker density or by applying whole genome 
sequence (WGS) data, where causal variants are directly 
among the genotyped variants [15]. However, the latter 
is very cost intensive. As well, it has been shown that GP 
accuracies do not benefit from the application of WGS 
data (e.g., [16]). Thus, instead of merely increasing the 
marker density it is preferable to increase the amount of 
causal variants on the applied genotyping array [17].

However, even though many genome-wide associa-
tion studies (GWAS) were performed with the aim to 
dissect the genetic architecture of complex traits, it is 
still challenging to identify causal variants [15, 18]. This 
is, because variants with a large and often deleterious 

effect are rather easy to detect, whereas variants with 
small effect sizes, typically found in complex traits due 
to their polygenic architecture, are not. In addition, by 
performing a GWAS one often yields a set of potential 
trait-associated variants being in high LD. Here, diffi-
culties arise while selecting the causal variant among 
these potential variants [14], which would also require 
e.g., external validation sets. Although sequencing can 
be used to assess QTL more precisely [19], GWAS 
using sequence data still result in a set of trait-asso-
ciated variants, which makes the final choice almost 
impossible [13, 20].

A vast majority of trait-associated variants are 
located in non-transcribed regions and most likely act 
functional, i.e., via changes in gene expression [13, 18, 
20, 21]. Many studies highlight the importance of vari-
ants affecting transcription and translation for complex 
trait variation [21–24]. Recently, it had been shown 
that GP can be improved by applying functional infor-
mation of variants either by using it as prior infor-
mation for biological priors or by removing variants 
without functional importance [14, 25–28]. Thereby, 
it has been found that populations, which are already 
having high prediction accuracies using the common 
50K chip, show only little or no advantage at all (e.g., 
[29]). Conversely, small breeds and across-breed set-
tings, where prediction accuracies are usually low, 
benefit from including functional information in GP 
(e.g., [14, 26]). So far, Xiang et al. [20] analyzed 34 cat-
tle traits, predominantly stature and milk production 
traits, using functional and evolutionary information of 
sequence variants. In detail, they used various sources 
of external information to define subsets based on the 
variants’ role in transcriptional and translational pro-
cesses as well as their evolutionary background. Then, 
by estimating the variance each subset explained for the 
observed traits, they intended to detect subsets which 
would perform best in predicting causal mutations 
for complex cattle traits [20]. To our best knowledge, 
estimating variance components using a comparable 
amount of external information about sequence vari-
ants had neither been transferred to a bivariate setting 
nor to a set of various health traits. Thus, we aimed to 
study the contribution of 27 genome partitioning sub-
sets, taken from Xiang et  al. [20] to milk production 
and health traits as well as their genomic connection. 
We applied a set of 34,497 German Holstein cows, for 
which 50K genotypes, imputed WGS data containing ~ 
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17 million variants, and de-regressed proofs (DRP) of 
milk yield and eight health traits were available. The lat-
ter consisted of mastitis, four diseases belonging to the 
complex of claw diseases, and three diseases belonging 
to the complex of reproduction diseases.

The study is split into two parts. First, we performed 
a uni- and a bivariate variance component estimation 
within each subset. The bivariate analysis contrasted each 
health trait with milk yield, but the number of subsets 
was reduced to five to focus on the subsets, which con-
tain sufficient genetic variance. In addition, we analyzed 
the subsets’ LD structure, MAF, and distribution over the 
genome. This latter step was meant to provide informa-
tion whether a high effect of a subset is indeed because 
it contains causal variants or merely because of extensive 
LD, the subset variants’ MAF or their distribution over 
the genome. We expect to identify subsets with a sig-
nificant contribution to the heritability and genetic cor-
relation between milk production and health traits. This 
knowledge might help to enhance the understanding of 
biological mechanisms linking these traits.

Methods
Material
The phenotypic data was provided by the national com-
puting center (Vereinigte Informationssysteme Tier-
haltung w.V., Verden, Germany). We analyzed 34,497 
German Holstein cows with DRPs for milk yield (MY) 
and eight health traits, whose first lactation was between 
2015 and 2020. A detailed description of the filtering can 
be taken from Schneider et al. [30]. The DRPs were based 
on on-farm recordings of disease cases, recorded by the 
farmer as well as veterinarians and claw trimmers. We 
analyzed the following claw diseases: claw ulcers (CU), 
digital dermatitis (DD), interdigital hyperplasia (IH), and 
digital phlegmon (PH). Additionally, mastitis (MAS) and 
the three reproduction diseases metritis (MET), retained 

placenta (RP), and cyclus disturbances (CD) were exam-
ined. Table  1 provides an overview over the amount of 
individuals that were available for the analysis of each 
trait. To avoid confusion, it has to be noted that the DRP 
for the health traits were transformed such that a higher 
value is favorable in terms of animal health.

Genotypes
50 K chip genotypes, provided by the vit, and imputed 
WGS data was available for our analyses. The imputa-
tion is described in Krizanac et  al. [31]. For the 50K 
chip, 44,126 variants remained after filtering out vari-
ants on sex chromosomes and those with a minor allele 
frequency (MAF) below 0.01. We applied the same fil-
ter steps but increased the MAF threshold to 0.05 for 
the imputed WGS variants. Additionally, the quality of 
the imputed WGS dataset was assessed using the dos-
age R-squared parameter (DR2). The DR2 parameter 
serves as a quality control of imputed datasets since 
it estimates the squared correlation between the esti-
mated and true allele dosage [32]. Variants with a DR2 
< 0.75 were removed [31]. Finally, a total of 16,882,734 
variants were left for the analysis. The imputed WGS 
dataset was divided into 27 subsets of genome parti-
tioning categories, which were defined following the 
approach from Xiang et  al. [20]. Below, we will briefly 
describe the definition and detection of each category. 
The number of variants per subset can be taken from 
Table 2. First, 11 subsets were defined using the output 
of the LD score calculation with the GCTA software 
version 1.92.3 beta3 [33]. We set the window size to 
50 kbp and received the LD score of each variant. As a 
byproduct, the output also provides the MAF and the 
number of variants within the window of 50 kbp (vari-
ant density, VD) for each variant in a separate column 
(“snp_num”). Using these three columns, we split the 
variants into quartiles to define the LD, VD, and MAF 

Table 1 Number of individuals with deregressed proofs and 50K chip heritabilities and genetic correlations

Shown are the heritabilities ( h2 , from model M1), genetic correlations ( rg , from model M2) and the corresponding standard errors (se). Genetic correlations were 
estimated between each health trait and milk yield

Trait Trait abbreviation Individuals No. h2(se) rg(se)

Milk yield MY 34,497 0.4358 (0.0078) X

Interdigital hyperplasia IH 30,968 0.1530 (0.0069) ‑0.1059 (0.0271)

Digital phlegmon PH 26,437 0.0980 (0.0062) ‑0.1816 (0.0319)

Claw ulcers CU 27,012 0.1530 (0.0072) ‑0.0685 (0.0280)

Digital dermatitis DD 30,056 0.1747 (0.0072) ‑0.0187 (0.0262)

Mastitis MAS 33,298 0.1326 (0.0063) ‑0.3030 (0.0261)

Metritis MET 27,283 0.0558 (0.0048) ‑0.0111 (0.0387)

Retained placenta RP 28,182 0.0738 (0.0053) ‑0.0878 (0.0349)

Cyclus disturbances CD 26,884 0.0771 (0.0055) ‑0.1970 (0.0341)
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quartiles, where the lowest quartile (e.g., LD1) has the 
lowest LD, VD or MAF. Since the variance explained 
by the MAF1 quartile was only very minor in the study 
from Xiang et  al. [20], we decided not to include this 
subset in our analysis.

Next, seven subsets were defined based on their cat-
egory of functional annotation, taken from Ensembl vari-
ant effect predictor [34] and NGS variant [35]. In detail, 
those were the subsets comprising noncoding-related 
variants (noncoding related), coding-related variants (cod-
ing related), intergenic and gene end variants (gene end), 
as well as variants located in untranslated regions (UTR), 
splice sites, and introns. Some annotation categories had 
to be merged in order to achieve subsets with a sufficient 
number of variants. As an example, this means that vari-
ants annotated as “noncoding_transcript_exon_variant”, 

“noncoding_transcript_variant”, and “mature_miRNA_var-
iant” were merged to the noncoding related subset [20].

Another nine subsets were based on preliminary dis-
covery analyses. We thankfully received the information 
about which variants belong to these subsets from Xiang 
et  al. [20]. Further details about these subsets and their 
definition can be taken from their publication. The sub-
sets’ definition and discovery is briefly explained in the 
following. Five subsets fall into the category of interme-
diate QTL, namely the gene expression QTL (geQTL), 
exon expression QTL (eeQTL), splicing QTL (sQTL), 
allele specific expression QTL (aseQTL), and polar lipid 
metabolite QTL (mQTL). The geQTL, eeQTL, and sQTL 
were detected in a previous study [24] and further pro-
cessed in a meta-analysis [20]. Variants falling into the 
category of aseQTL were found using RNAseq data from 
Bouwman et  al. [23] and the methodology of Khanse-
fid et  al. [36]. The discovery of mQTL applied metabo-
lite data extracted by Liu et al. [37]. Next, variants were 
chosen that were located under ChIPseq peaks in pre-
vious studies on bovine muscle and liver tissue [38, 39]. 
Together with variants found in a ChIPseq analysis of 
bovine tissue from the mammary gland that was per-
formed by Xiang et  al. [20], they were merged into the 
ChIPseq subset, which reflects variants affecting DNA-
protein interactions.

When it comes to the evolutionary history of variants, 
three sources of external information were chosen to 
split the variants into different categories. Firstly, it had 
been demonstrated in humans that, compared to neutral 
selection, recent selection evokes an increased frequency 
of favorable alleles [40]. Thus, Xiang et al. [20] assumed 
that variants, which have been under recent selection, 
are enriched in regions where the positive correlation 
with rare variants is low. Following this assumption, they 
defined a subset of young variants based on their positive 
correlation with rare variants. Next, variants annotated 
as selection signatures were defined as the ones show-
ing a significant (p <0.0001) association with the cattles’ 
beef or dairy phenotype [20]. The last subset (conserved 
across 100 species, CONS100) consisted of variants 
that showed a high degree of phylogenetic conservation 
across 100 species according their PhastCons Score [41]. 
The PhastCons Score was calculated across these 100 
species [20].

Statistical analysis
First, we performed a univariate variance component 
estimation for each trait with the following mixed linear 
model (M1) using GCTA software version 1.92.3 beta3 
[33].

(1)y = µ1+ Z50K g50K + e

Table 2 Across trait per variant h2 from model M3 and number of 
variants for each subset

Subset across-trait per variant h2 Variants No.

50K 3.409 ∗ 10−6 44,126

splice sites 2.766 ∗ 10−6 7,308

mQTL 2.304 ∗ 10−6 5,179

untranslated regions 1.206 ∗ 10−6 28,039

noncoding related 8.537 ∗ 10−7 3,189

young 9.663 ∗ 10−8 88,195

selection signatures 6.171 ∗ 10−8 1,138

VD1 1.930 ∗ 10−8 4,205,241

LD2 1.732 ∗ 10−8 4,220,653

LD1 1.589 ∗ 10−8 4,220,680

VD2 9.576 ∗ 10−9 4,225,644

MAF3 8.440 ∗ 10−9 4,220,866

LD3 7.779 ∗ 10−9 4,220,703

coding related 7.303 ∗ 10−9 68,787

MAF2 6.260 ∗ 10−9 4,220,702

MAF4 5.584 ∗ 10−9 4,220,595

VD3 4.606 ∗ 10−9 4,211,960

geQTL 4.552 ∗ 10−9 87,955

intergenic 2.347 ∗ 10−9 8,037,337

VD4 2.134 ∗ 10−9 4,237,933

Conserved 100 1.984 ∗ 10−9 240,145

LD4 1.551 ∗ 10−9 4,220,696

gene end 5.099 ∗ 10−10 676,873

ChIPseq 4.121 ∗ 10−10 783,523

sQTL 3.068 ∗ 10−10 907,930

eeQTL 2.268 ∗ 10−10 787,213

aseQTL 2.027 ∗ 10−10 826,089

intron 1.666 ∗ 10−10 3,071,141
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Here, the vector y contains the DRP of each ani-
mal, µ denotes the mean, and 1 is a vector of 1s. Vec-
tor e is the residual and vector g50K  the polygenic 
term with Z50K  as the design matrix. It was assumed 
that both terms follow a normal distribution with 
g50K ∼ N (0,G50Kσ

2
g ,50K ) and e ∼ N (0, Iσ 2

e ) , whereby 
σ 2
g ,50K  is the additive genetic and σ 2

e  the residual vari-
ance. I  denotes the identity matrix and G50K  the addi-
tive genetic relationship matrix (GRM) of the 50K chip, 
which was computed using GCTA [42]. While con-
structing the GRM, all 34,497 animals were used.

Then, we applied model M2

to estimate variance components for eight trait-combina-
tions, each contrasting MY with one of the eight health 
traits. y1 and y2 are the vectors containing the DRPs of 
trait 1 (MY) and trait 2 (one of the eight health traits) 
with their means µ1 and µ2 . Vectors g50K ,1 ( g50K ,2 ) and e1 
( e2 ) are the corresponding polygenic and residual terms. 
Z50K ,1 and Z50K ,2 denote the design matrices. The vari-
ance-covariance-matrix was modeled as

Here, σ 2
g ,50K ,1

 and σ 2
g ,50K ,2

 ( σ 2
e,1 and σ 2

e,2 ) are the addi-
tive genetic (residual) variance and σg ,50K ,12 and σg ,50K ,21 
( σe,12 and σe,21 ) the respective covariance. Heritabilities 
( h2 ) and genetic correlations ( rg ) were calculated using 
standard notations.

Afterwards, our aim was to estimate variance com-
ponents for each subset. Thus, we conducted a set of 
uni- and bivariate analyses of the same traits and trait-
combinations as with models M1 and M2 but included 
two polygenic terms, one for the respective subset and 
one for the 50K chip. We applied both terms follow-
ing the approach of Xiang et  al. [20]. The underlying 
idea is that every large set of variants might explain a 
lot of genetic (co-)variance if these variants are in high 
LD with surrounding variants. Therefore, by apply-
ing two polygenic terms, we seek for a set of sequence 
variants explaining additional (co-)variance to the one 
explained by the common variants on the 50K chip. If 

(2)
[
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]
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µ11
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+
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a set explains additional (co-)variance, we expect that 
this points to a set containing a potential causal muta-
tion. Here, either the causal mutation itself is among 
the subset variants or they are in higher LD with it than 
the variants on the 50K chip.

In the univariate analysis, the following model (M3)

was applied. Here, vector gi represents the poly-
genic and vector ei the residual term of the i-th subset, 
whereby Zi is the design matrix. Vector g50K  denotes 
the corresponding polygenic term of the 50K chip. 
Again, we assumed that they follow a normal distri-
bution with ei ∼ N

(

0, Iσ 2
e,i

)

 , gi ∼ N (0,Giσ
2
g ,i
) , and 

g50K ∼ N (0,G50Kσ
2
g ,50K ) . The GRM of the i-th subset, 

Gi , was computed using GCTA. Heritabilities for the i-th 
subset were calculated with the as

and the corresponding heritabilities for the 50K chip 
while analyzing the i-th subset as

We performed the univariate analysis for each trait (9) 
within each subset (27), yielding 243 estimates for h2set . In 
order to differentiate between subsets that have a high 
effect because they contain a lot of variants, and those 
with a high effect because they contain causal variants, 
we computed the across trait per variant h2 of each sub-
set. To do so, the sum of the h2set estimates for each trait 
within the respective subset was divided by the number 
of traits (9) and the number of variants within this sub-
set. Additionally, this was done for each trait at a time, 
resulting in the trait-specific per variant h2 . This calcula-
tion divided the h2set estimates by the number of variants 
within the respective subset. Both parameters were also 
calculated for the heritability estimates from model M1.

In the bivariate setting, we reduced the number of sub-
sets to five by choosing those having the highest across 
trait per variant h2 (UTR, noncoding related, splice sites, 
mQTL, and young). This was done to focus on the sub-
sets with a noteworthy amount of genetic variance. Vari-
ance components were here estimated with the following 
mixed linear model (M4).

(4)y = µ1+ Zigi + Z50K g50K + ei

(5)h2set,i =
σ 2
g ,i

σ 2
g ,50K + σ 2

g ,i + σ 2
e,i

,

(6)h250K =

σ 2
g ,50K

σ 2
g ,50K + σ 2

g ,i + σ 2
e,i

.

(7)y1
y2

=

µ11

µ21
+

Zi,1 0

0 Zi,2

gi,1
gi,2

+

Z50K ,1 0

0 Z50K ,2

g50K ,1

g50K ,2

+

ei,1
ei,2
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For traits 1 (MY) and 2 (each of the eight health traits), 
gi,1 ( gi,2) and g50K ,1 ( g50K ,2 ) denote the polygenic terms 
for the i-th subset and the 50K chip, respectively, with 
Zi,1 ( Zi,2 ) and Z50K ,1 ( Z50K ,2 ) as the corresponding inci-
dence matrices. ei,1 ( ei,2 ) is the respective residual term. 
The variance-covariance structure between these three 
terms was

σ 2
g ,50K ,1

 and σ 2
g ,50K ,2

 ( σ 2
g ,i,1 and σ 2

g ,i,2 ) contain the additive 
genetic variance of traits 1 and 2, explained by the 50K 
chip ( i-th subset). σg ,50K ,12 ( σg ,i,12) and σg ,50K ,21 ( σg ,i,21) 
denote the genetic covariance and σ 2

e,1 ( σ 2
e,2) and σe,12 

( σe,21 ) the residual variance (covariance). Hereinafter, 
we refer to the subset genetic correlations with the term 
rg ,set , which is calculated as

for the i-th subset. Corresponding genetic correlations 
for the 50K chip, rg ,50K  were computed with a similar for-
mula that contained the (co-)variance terms of the 50K 
chip.

In line with the univariate analysis, we obtained the 
trait-specific per variant rg by dividing each rg ,set as well 
as each rg estimate by the number of variants within the 
respective subset for the rg ,set estimates or the 50K chip 
for the rg estimates. We did not calculate the across trait 
per variant rg since genetic correlations can be both, pos-
itive and negative, and summing them up as it is done for 
the across trait per variant h2 is not straightforward.

Since genetic correlations do not provide information 
about the contribution of each covariance term to the 
total covariance, we defined three additional parameters 
to obtain information about this extent. Those were the 
relcovset , the relcov50K  , and the relcove . For the i-th sub-
set, relcovset was calculated as

relcov50K  as

and relcove as
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LD analysis
It might occur that some subsets explain more genetic 
variance because of extensive LD in the genome rather 

than harboring causal variants. As mentioned above, 
the 50K GRM was incorporated in models M3 and M4 
to account for the variance of common variants in high 
LD. However, differences in the MAF properties of 50K 
and sequence variants might evoke that this procedure 
did not account for all LD biased variance of the par-
titionings. Therefore, we examined the LD structure, 
MAF, and distribution over the genome of each sub-
set. Six parameters were defined and will be explained 
in the following. Concerning the LD structure, we dif-
ferentiate between the LD of subset variants with other 
surrounding subset variants (subset-intern) and sur-
rounding sequence variants that do not belong to the 
respective subset (subset-extern). Then, we calculated 
the Pearson correlations between each of these param-
eters and the across trait per variant h2 using the cor 
function of R version 4.0.4 [43].

For every subset, we calculated the LD of each subset 
variant with every other sequence variant within a win-
dow of 500 kilobasepairs (kbp) using PLINK version 1.9 
[44]. Within this window, sequence variants are either 
also part of this subset (subset variants) or not part of 
this subset (adjacent sequence variants). The output of 
the LD calculation reports inter-variant correlations for 
all subset variants with both.

For the first and second parameter, the output was 
filtered in the way that we removed inter-variant cor-
relations between each subset variant and other subset 
variants. Then, the first parameter, mean ld extern, was 
calculated as the mean r2 of the remaining variant pair-
ings. The corresponding decay of LD (decay extern) was 
defined as the proportion of the mean r2 between 120 
and 500 kbp to the mean r2 up to a distance of 25 kbp. 
A lower value of decay extern indicates a rapid decay 
whereas a higher value points to a slow one. The third 
and fourth parameter, mean ld intern and decay intern, 
were obtained in the same way as the mean ld extern 
and decay extern. The difference was that we removed 
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inter-variant correlations between each subset variant 
and adjacent sequence variants from the output. For all 
four parameters, a positive correlation with the across 
trait per variant h2 indicates that the subset’s effect is 
increasing with rising LD between the subset variants 
and between subset variants and adjacent sequence 
variants.

Next, the parameter distribution was defined as the 
proportion of variant pairs that remained after remov-
ing all variant pairs between subset variants and adjacent 
sequence variants from the output to the number of vari-
ants pairs in the unfiltered output. This parameter aims 
to provide information about the distribution of the sub-
set variants over the genome. A lower value means that 
more variant pairs were removed, which indicates that 
this subset’s variants appear more accumulated than in 
subsets with a higher value. If the correlation with the 
across trait per variant h2 is positive, we assume that 
subsets, whose variants’ distribution over the genome 
is more equal, explain more genetic variance. The last 
parameter was the mean MAF of the subset variants 
(mean MAF), which was a by-product of the LD calcu-
lation. Here, a positive correlation with the across trait 
per variant h2 indicates that subsets with a higher MAF 
explain more genetic variance.

Results
Variance component estimation
Heritabilities from model M1 were low to moderate for 
the health traits and high for MY, ranging from 0.0558 for 
MET to 0.4358 for MY (Table 1). In contrast, the mini-
mum h2set was very low with <0.0001 for some traits and 
subsets. The highest h2set estimates were for MY in the 
subsets VD1 (0.2757), MAF3 (0.1358), LD2 (0.1216), 
and UTR (0.1094) (Table S1). Concerning the health 
traits, we found moderate subset heritabilities in the LD1 
subset for CU (0.1044) and IH (0.1211) (Table S1). We 
observed that the subsets containing fewer variants had a 
slightly higher across trait per variant h2 . Next to the 50K 
chip with an across trait per variant h2 of 3.409 ∗ 10−6 , 
the splice sites subset ranked highest with a value of 
2.766 ∗ 10−6 , followed by mQTL, UTR, noncoding 
related, and young variants. Least across trait per vari-
ant h2 was explained by the intron subset ( 1.666 ∗ 10−10 ) 
(Table 2).

For MY, the trait-specific per variant h2 was high-
est for the 50K chip (model M1) and all subsets except 
of the splice sites and young variants. In these sub-
sets DD showed a higher trait-specific per variant h2 
(Fig. 1, Table S2).

All genetic correlations of the 50K chip from model M2 
were negative, ranging from -0.0111 between MY and 
MET to -0.3030 between MY and MAS (Table 1). For the 

subsets, we found that most rg ,set estimates were nega-
tive. For DD, all subset genetic correlations except of the 
one for the mQTL were positive. For the mQTL subset, 
all estimates were negative. The strongest rg ,set was found 
in the young subset (-0.9324, MY-MAS) and the weak-
est one between MY and CD in the noncoding related 
subset (0.0101). In general, the standard errors of the 
genetic correlations were considerable for the subsets, 
i.e., between 0.0841 (MY-DD) in the UTR subset and 
0.8495 (MY-DD) in the noncoding related subset (Table 
S3). Conversely, they ranged from 0.0261 (MY-MET) 
to 0.0387 (MY-MET) for the 50K chip (Table 1). In this 
study, we defined rg ,set estimates to be significant if they 
were at least two times higher than the corresponding 
standard error. Following this definition, two estimates in 
the subsets and all estimates for the 50K chip were sig-
nificant. Both significant correlations were found in the 
UTR subset. They were between MY and PH (-0.2885, se 
= 0.1186) as well as MAS (-0.4558, se = 0.1070) (Fig. 2, 
Table S3).

The highest trait-specific per variant rg was observed 
between MY and DD ( 2.089 ∗ 10−4 ) in the noncod-
ing related subset. In contrast to the univariate analysis, 
where the 50K chip ranked highest in terms of the across 
trait and trait-specific per variant h2 , we found that it 
had the lowest trait-specific per variant rg ( 2.516 ∗ 10−7 
between MY and MET) (Table S4). While estimating the 
genetic correlations, not all trait combinations in all sub-
sets converged. For the 50K chip, the UTR, and splice 
sites subset, all models did. However, for the noncoding 
related and young variants only five and for the mQTL 
subset only three models did converge (Tables S3 and S4).

Moreover, we found the lowest relcov50K  (0.0405) 
between MY and MET in the subset containing young 
variants, which was strongest between MY and CD in the 
noncoding related subset (-0.8406). Here, also relcovset 
was lowest with -0.0014. The young variants had the high-
est value of relcovset (0.2215) between MY and DD. The 
values of both parameters were positive as well as nega-
tive. Concerning the residual term, all values were posi-
tive and between 0.8127 for the young subset (between 
MY and MET) and 0.1580 for the noncoding related 
variants (between MY and CD). In general, relcov50K  was 
stronger than relcovset . However, relcovset was even larger 
or almost as large as relcov50K  between MY and CU in 
the UTR subset and between MY and MET in the sub-
set containing young variants. In most cases, the residual 
term explained most covariance (Figs. 3 and 4, Tables S5 
to S12).

The overall genetic covariance explained by both 
polygenic terms, calculated as the sum of relcov50K  and 
relcovset , differed from the genetic covariance that was 
estimated using model M2. In contrast, for each trait 
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the overall genetic variance ( h2set + h2
50K  ) was equivalent 

to the heritability estimate from model M1 (results not 
shown). An overview over the absolute and relative val-
ues for the covariances and covariance parameters can be 
taken from the supplementary data (Tables S5 to S12).

LD analysis
The mean mean ld extern was 0.2257, ranging from 
0.1103 (LD1) to 0.3827 (LD3). Apart from the LD quar-
tiles, the lowest mean ld extern was 0.1700 in the mQTL 
and 0.2738 in the VD4 subset. The mean decay extern 
was 0.4388, indicating that on average 43.88% of the LD 
between 0 and 25 kbp distance from a variant is still pre-
sent between 120 and 500 kbp. Here the minimum was at 
0.3066 (LD4) or 0.3659 (VD2) and the maximum 0.7651 
(LD1) or 0.6486 (mQTL).

The mean mean ld intern was 0.2450, ranging from 
0.0867 (conserved sites) to 0.8458 (selection signatures). 
Concerning the decay intern, the mean was 0.3791. Here, 
the minimum was 0.0741 in the LD4 subset, followed by 
0.1253 in the noncoding related variants. The maximum 
decay intern was at 2.0580 in the LD1 subset, which indi-
cates that an increasing physical distance between two 

variants in this very small window evokes an increased 
LD. However, the mean LD intern for the LD1 subset was 
low with 0.0958. The next highest subset was the LD2 
subset (0.9651) followed by the MAF4 subset (0.5273). 
A detailed overview over all LD parameters can be taken 
from the supplementary data (Table S13).

Both, the mean ld extern (-0.1670) and the mean ld 
intern (-0.0484) were negatively correlated with the 
across trait per variant h2 in a low to moderate range. 
This means that a lower LD inside and outside the subset 
variants induces that a subset explains more variance of 
the observed traits. However, the correlation between the 
across trait per variant h2 and the decay extern was posi-
tive with 0.1143, which leads to the assumption that a less 
sharp decay outside the subset results in a higher across 
trait per variant h2 . The correlation to the decay intern is 
negative and low with -0.0231.

On average, the mean MAF was 0.2076, ranging from 
0.1185 in the selection signatures subset to 0.3927 in 
the MAF4 subset. Here, the correlation to the across 
trait per variant h2 was low and positive (0.1163), which 
means that a higher MAF results in a higher across trait 
per variant h2.

Fig. 1 Trait-specific per variant h2 of the subsets applied to the bivariate analysis and the 50K chip. The traits are cyclus disturbances (CD), retained 
placenta (RP), metritis (MET), mastitis (MAS), digital dermatitis (DD), interdigital hyperplasia (IH), digital phlegmon (PH), claw ulcers (CU), and milk 
yield (MY). Results from model M3
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The last parameter is the distribution with a mean of 
0.9917, ranging from 0.9651 (mQTL) to 0.9980 (splice 
sites). A higher value indicates a rather equal distribution 
of the subset variants across the genome. This param-
eter’s correlation to the across trait per variant h2 was 
moderate and negative with -0.1181, indicating that vari-
ants in rather accumulated regions explain more variance 
than variants in unique spots on the genome.

Discussion
Current estimates of heritabilities and genetic correla-
tion of milk production and disease traits in cattle are 
mostly derived from variance component estimations 
using either pedigrees or 50K chip genotypes. However, 
recent studies incorporating functional information 
about sequence variants in genomic analyses enhanced 
the understanding of molecular and biological mecha-
nisms underlying complex traits and their genetic con-
nection in cattle [18, 20, 25]. Further, they demonstrated 
benefits for the power to detect causal mutations and 
the accuracy of GP [14, 20, 28, 45]. At this, accura-
cies are enhanced especially for small populations and 
across-breed predictions, generally suffering from low 

accuracies [14, 26]. Conversely, populations that are 
already having high prediction accuracies using the 
common 50K chip show only little or no advantage when 
functional information is included in GP [29]. Up to 
date, a bivariate analysis of economically important cat-
tle traits incorporating functional information has not 
been performed, to our best knowledge. Thus, we aimed 
at filling this gap with this study. Our results identify 
subsets of variants with a noticeable contribution to the 
genetic connection between milk yield and health traits 
in German Holstein cattle. In addition, they revealed 
that the subset genetic correlations were not only nega-
tive but also positive and that the high-ranking subsets’ 
effect does not seem to be induced by the LD structure 
between the subset variants or their LD with adjacent 
sequence variants. Nevertheless, the results of this study 
should be considered with caution since most of the sub-
sets’ estimates standard errors are remarkable.

Variance component estimation
The subsets’ across trait per variant h2 in our study 
(Table 2) are similar to the results of Xiang et al. [20] and 
the heritabilities of the 50K chip from model M1 (Table 1) 

Fig. 2 Genetic correlations between milk yield and the respective health traits. The health traits are cyclus disturbances (CD), retained placenta 
(RP), metritis (MET), mastitis (MAS), digital dermatitis (DD), interdigital hyperplasia (IH), digital phlegmon (PH), and claw ulcers (CU). Subset 
genetic correlations from model M4 were shown for the subsets (mQTL noncoding related, splice sites, untranslated regions, young) and genetic 
correlations from model M2 for the 50K chip
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Fig. 3 Relative covariance between milk yield and four claw health traits. Shown are the covariance terms of the 50K chip (grey bar), the residuum 
(lightblue bar), and the respective subset (darkblue bar) from model M4 for the subsets containing mQTL, noncoding related (ncr), splice sites (sps), 
untranslated regions (UTR), and young variants. Subsets for which the model did not converged are not shown. The relative covariance of each term 
was calculated as the respective covariance divided by the phenotypic covariance ( 

∑

(|cov50K | + |covset | + |cove|))

Fig. 4 Relative covariance between milk yield and mastitis as well as three reproduction health traits. Shown are the covariance terms 
of the 50K chip (grey bar), the residuum (lightblue bar), and the respective subset (darkblue bar) from model M4 for the subsets containing 
mQTL, noncoding related (ncr), splice sites (sps), untranslated regions (UTR), and young variants. Subsets for which the model did not converged 
are not shown. The relative covariance of each term was calculated as the respective covariance divided by the phenotypic covariance 
( 
∑

(|cov50K | + |covset | + |cove|))
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are in agreement with other studies based on pedigree 
data [30, 46]. Also, the negative genetic correlations from 
model M2 (Fig. 2, Table 1) in this study are in agreement 
with previous studies [30, 47, 48]. Whereas we applied 
the 50 K chip in this study, Xiang et al. [20] applied the 
denser HD chip. We justified our choice with the fact that 
the study of Xiang et al. [20] analyzed a multibreed data-
set, which evokes a reduced LD and requires a denser 
marker panel to account for the reduced LD. Since we 
examine only one breed in this study, German Holstein, 
we assume that the 50K chip was sufficient to account for 
LD among the common and not causal variants.

Concerning the results from models M3 and M4, it is 
important to keep in mind that we applied two GRMs. 
This means that the subset heritabilities were meant to 
indicate which subsets explain additional variance to the 
one that is already explained by the 50K GRM. In fact, 
we found that the overall genetic variance ( h2set+ h2

50K  ) 
(Table S1) did not differ from the heritabilities that were 
estimated using only the 50K chip (Table  1). This was 
somewhat surprising since Haile-Mariam et al. [49] sup-
posed that the 50K chip underestimates the genetic vari-
ance of complex traits. When switching to the genetic 
covariance between milk yield and health traits, we found 
that the genetic covariance from model M2 solely based 
on chip data did not match the overall genetic covariance 
explained by both polygenic terms from model M4. Even 
though the genetic covariance explained by the 50K chip 
exceeds the one explained by the subsets in almost each 
case (Figs. 3 and 4, Tables S5 to S12), the subsets seem to 
provide additional information about the direction of the 
shared effect between traits (Fig.  2). However, it has to 
be kept in mind that most standard errors of the subsets’ 
estimates were considerable (Tables S3, S5 to S12).

The higher trait-specific per variant rg of the subsets in 
relation to the one from the 50K chip (Table S4) and the 
novel information they revealed in terms of the genetic 
covariance are probably related to the lack of causal 
variants on the 50K chip. Causal variants are most likely 
pleiotropic [14], and pleiotropy is one of the mecha-
nisms underlying genetic correlations. Thus, applying the 
sequence variants that are very likely to be either causal 
themselves or in higher LD with a causal variant reveals 
more information, e.g., about the extent of the shared 
effect. This is because they capture the causal effect more 
precisely than via LD as the 50K chip does.

The findings of this study indicate a noteworthy 
amount of genetic covariance between milk yield and 
health traits in cattle that can be assigned to various sub-
sets of functionally and evolutionary relevant genome 
partitions. Previous studies [14, 25–27] reported the 
advantages of models including functional information 
in GP to improve prediction accuracy by outperforming 

LD between causal and genotyped variants. Thus, our 
results address the potential to include causal variants in 
genomic prediction with the aim to capture the genetic 
correlation between milk production and disease traits 
more precisely. What makes it particularly attractive, is 
the fact that Cai et al. [50] introduced a different weight-
ing of variants based on their pleiotropic effect which 
for example increases milk yield but decreases mastitis 
resistance. By weighting these variants differently in GP, 
it might be possible to minimize the unfavorable effect of 
high production on animal health and welfare. Since our 
results reveal subsets, whose covariance between milk 
yield and dairy health is positive, we assume that incor-
porating these variants with a different weight would 
enhance current cattle breeding.

Xiang et  al. [14] increased the number of causal vari-
ants for GP by incorporating variants with a pleiotropic 
effect and functional significance, which lead to an 
increased prediction accuracy. They developed a new 
65K genotyping array consisting of around 40% non-
intergenic variants such as UTR, splice sites, and noncod-
ing related variants, around 30% regulatory variants such 
as mQTL and sQTL and 5% variants that are involved in 
evolutionary processes, within or across species, includ-
ing selection signatures and young variants. Thereby, all 
high-ranking subsets in our study are represented on the 
new 65K chip, which performed as good in prediction 
accuracy as much denser genotyping chips [14].

However, some standard errors were noteworthy, espe-
cially those of the subset genetic correlations. Here, also 
not all models did converge (Table S3). We attribute this 
to the small number of variants in some subsets. It would 
be interesting to perform follow-up analyses mapping the 
signals of genomic connection between milk production 
and health traits in more detail, for instance by applying 
tools to detect shared genomic regions as done in Schnei-
der et al. [30]. This can be combined with functional and 
evolutionary information to scrutinize the role of these 
regions in transcriptional and translational processes and 
their evolutionary background.

Biological and molecular mechanisms
The importance of UTR variants in our study can be 
supported by findings in human studies that attribute 
a strong association with various and especially disease 
traits to the 3´ UTR [51]. UTR, as well as noncoding 
related and gene end variants, are part of the cis-regu-
latory variants [52] altering translation efficiency, which 
leads to a differential gene expression.

Other regulatory elements are intermediate QTL, 
namely geQTL, eeQTL, aseQTL, and sQTL. Their impor-
tance for complex trait variation has repeatedly been 
shown [18, 24, 36, 53]. Moreover, it is generally assumed 
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that differential gene expression is one of the main driv-
ers of variation in quantitative traits [53–55]. However, 
whereas the rank of intermediate QTL was high in the 
study of Xiang et  al. [20], their contribution to the trait 
variation in our study was negligible. On one side, we 
attribute this discrepancy to differences in the popula-
tion structures between the populations used for the dis-
covery analysis of intermediate QTL and the population 
used for the variance component estimation in our study. 
While the discovery analysis was carried out on Austral-
ian Holstein, Jersey, and Angus, our study is based on 
German Holstein. Several authors have reported different 
LD structures of Holstein Friesian populations around 
the world [56–58]. Moreover, LD varies between breeds 
as found by Gibbs et al. [59]. Thus, some QTL chosen in 
the discovery analyses [20, 24] might not be the causal 
variants but capture their effect via LD. In this case, QTL 
are not informative anymore in our study because of the 
different LD structure. Further, there are several factors 
that induce a lack of power in the detection of interme-
diate QTL, which might be the reason for the negligible 
effect of these QTL in this study. One factor is that, even 
though their effect is very consistent across tissues [18, 
24], their activity might follow physiological and devel-
opmental changes of the animal. Hence, it is inevitable 
to sample the right tissue at the right time for a precise 
inference [36]. In this study, we applied intermediate 
QTL taken from discovery analyses based on liver and 
muscle tissue from Angus steers or white blood and milk 
cells from lactating cows [23, 24, 37]. Thus, it is possible 
that these intermediate QTL are different from those 
affecting the health traits in this study, which would 
explain the low effect that we observed. It is also impor-
tant to mention that the overlap between variants in the 
dataset of Xiang et al. [20] and our analysis is only about 
13 million variants. Therefore, highly important QTL 
without an overlap with our dataset might have been lost.

As mentioned above, intermediate QTL play an impor-
tant role in the genetic variation of complex traits. They 
are said to be enriched in UTR [24]. As well, sQTL, 
belonging to the group of intermediate QTL, have a high 
overlap with splice variants [18]. Hence, we believe that 
these findings support the high rank of UTR and splice 
site variants in our study. In a study on cattle data, Xiang 
et  al. [53] found that sQTL alone explain as much vari-
ance as other regulatory QTL jointly, which highlights 
the importance of alternative splicing for phenotypic var-
iation. This can be supported by the results from Wang 
et  al. [60], who found that around 50% of differentially 
expressed genes for mastitis resistance showed alterna-
tive splicing. Interestingly, we found that the trait-specific 
per variant h2 was highest for MY in all subsets but the 

splice sites, where DD ranked highest (Table S2). In gen-
eral, the trait-specific per variant h2 values were more 
alike in the splice sites subset than it was in others like 
the mQTL subset (Table S2). This supports the impor-
tance of alternative splicing for various complex traits.

The high rank of noncoding related variants in the uni-
variate analysis is in agreement with Xiang et  al. [20]. 
They can be split into two different categories, the small 
noncoding RNAs (sncRNA) and long noncoding RNAs 
(lncRNA). sncRNAs play an important role in the regu-
lation of gene expression via post-transcriptional modi-
fication and splicing [61]. A subgroup of the sncRNAs 
are micro RNAs (miRNA), which have been found to be 
central for oncogenesis in humans [61] and to affect the 
bovine physiology and development [62, 63]. Just like 
the sncRNAs, lncRNAs affect RNA splicing as well [64]. 
In addition, they were identified as key regulators of the 
energy metabolism and lipogenesis in mammals [65–67]. 
Also in humans, they have been shown to be related to 
metabolic disorders like obesity [68–70]. This confirms 
the connection of milk production and health in dairy 
cattle via the animals’ metabolic burden.

mQTL are defined as QTL altering the concentration 
of 19 bovine milk fat polar lipids [20], which strongly 
depends on the total amount of milk fat [71]. The lat-
ter increases during times where the animal experiences 
a negative energy balance (NEB) [72]. Thus, mQTLs 
might reflect, to some extent, the animals’ body fat 
mobilization, which is highest in the early lactational 
NEB when the cow is most susceptible to diseases 
[73]. Xiang et al. [20] reported a high impact of mQTL 
as well. Many of the traits they analysed in their study 
are milk production traits, which are very likely to be 
affected by the mQTL. By calculating the trait-specific 
per variant h2 we were able to investigate the effect of 
this subset in more detail and found that it was in fact 
highest for MY ( 1.871 ∗ 10−5 ). Nevertheless, the trait-
specific per variant h2 for MAS was with 1.178 ∗ 10−6 
almost as high as the one for MY (Table S2). Variants of 
the mQTL subset are enriched in and around DGAT1 
[20], a major QTL for milk production [74, 75]. Another 
highly important QTL for milk production is the gene 
MGST1, which is located on chromosome 5. However, 
no variant in the mQTL subset is located on chromo-
some 5. Thus, it seems like mQTL do not only have an 
effect on milk fat synthesis. Moreover, they might affect 
body functions in tissues other than the mammary 
gland as well, putatively related to general processes 
of the lipid mobilization and synthesis [20]. It has to 
be noted, that previous studies already mentioned the 
effect of DGAT1 on milk yield, udder health, and fertil-
ity in inverse directions [30, 50, 76].
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LD analysis
While analyzing the subsets’ across trait per variant h2 
and the correlation with their internal and external LD 
structure, their distribution over the genome and their 
MAF, we aimed to dissect whether high ranking subsets 
might indeed harbor potential causal mutations or if 
their effect is merely based on linkage between variants, 
their MAF or their accumulated effect.

The LD decay in our study is in line with other stud-
ies, observing decreasing LD with increasing physical 
distance using both, medium density and sequence data 
[57, 77, 78]. We did not aim to deeply scrutinize the LD 
structure, phase consistency and other LD properties of 
the observed population. Thus, we will not go into more 
detail about those population specific parameters.

Our first hypothesis was that a positive correlation 
between the mean ld extern and the across trait per 
variant h2 gives a hint that the 50K chip did not account 
properly for extensive LD in the surrounding variants. 
However, the actual correlation was moderate and nega-
tive with -0.1670, which indicates that by incorporating 
the 50K chip, extensive LD upward biasing the variance 
explained by the subset variants was diminished. This is 
supported by the results of Xiang et  al. [20], where the 
higher LD variants did not have a higher across trait per 
variant h2.

Next, we investigated the LD structure within the sub-
set variants. This was done to observe, whether a subset’s 
high effect is induced by the accumulated and LD based 
effect rather than by some causal variants having a strong 
effect. In fact, the correlation with the mean ld intern was 
low and negative (-0.0484) as well as the one to the decay 
intern (-0.0231). Hence, LD within the subsets does not 
induce an elevated across trait per variant h2 of a subset.

However, the negative correlation between the across 
trait per variant h2 and the distribution indicates that 
subset variants, which are more accumulated, explain 
more variance of the observed traits. Thus, we assume 
that variants in subsets explaining more variance are all 
having an impact, which does not arise because they are 
in high LD.

A possible explanation for this is the assumption that 
the marker effects follow a normal distribution in our 
model. This assumption, its limitation and solutions like 
the application of Bayesian models have been discussed 
in the literature (e.g., [28, 79, 80]). Our choice of nor-
mally distributed marker effects was nevertheless based 
on the increasing complexity coming along with Bayes-
ian models. Even though our genotypic data contained 
~17 million variants, some subsets consisted of only few 
thousands of variants (Table  2). This might hamper the 
accurate estimation of their effects while applying more 
complex models.

While observing the LD structure inside and outside 
the subset variants, we found some differences. Whereas 
the correlation between the across trait per variant 
h2 and the mean LD extern is negative, the one to the 
decay extern is positive. This indicates that a high mean 
r2 but also a rapid decay evokes a reduced across trait 
per variant h2 of a subset. In contrast, there is no effect 
of decay intern on the across trait per variant h2 . Inter-
estingly, others [81, 82] have previously reported differ-
ences between LD properties of intergenic and intragenic 
regions. The mean LD in intergenic regions is slightly 
higher and decays significantly more rapid than LD in 
intragenic regions [82].

Finally, there is a positive but low correlation between 
the across trait per variant h2 and the subsets’ mean MAF 
(0.1163). This is in line with Xiang et al. [20] who did not 
find a strong influence of allele frequencies on the sub-
sets’ across trait per variant h2 . Additionally, we found a 
high rank of the young variants in the uni- as well as the 
bivariate analysis, whose mean MAF is also high (0.2770). 
These variants are expected to be favorable in terms of 
recent selection, which is characterized by their low cor-
relation with rare variants [20].

For some traits (CU and DD), the genetic correlations 
where positive, which is at least partly in agreement with 
the shift in breeding towards healthier cows during the 
last years. The latter findings are somewhat surpris-
ing since recent studies showed the importance of rare 
variants for health and fertility traits in cattle [83, 84]. 
However, it has to be noticed that rare variants have not 
been included in this study to prevent biased results due 
to inaccuracies in the imputation of rare variants [84]. 
Therefore, the importance of young variants and the cor-
relation of the subsets’ mean MAF with the across trait 
per variant h2 might change while including these vari-
ants in the analyses.

Conclusion
In this study, the large sample size was utilized to elucidate 
the contribution of 27 genome partitioning subsets with 
functional and evolutionary information about ~17 million 
sequence variants to the genetic (co-)variance of milk yield 
and health traits in dairy cattle. Thereby, the aim was to 
identify subsets of sequence variants explaining additional 
genetic (co-)variance to the one explained by the 50K chip. 
In fact, the 50K chip was sufficient to explain the genetic 
variance and no subset provided new insights. However, 
the opposite was found in terms of the genetic covariance. 
Here, subsets were found that revealed new information 
about the extent and direction of the genetic connection 
between milk yield and the health traits. Their biological 
function and molecular mechanisms confirm the connec-
tion of the animal’s production and its health status via the 



Page 14 of 16Schneider et al. BMC Genomics  (2024) 25:265

negative energy balance and the importance of alterna-
tive splicing for complex trait variation. Both aspects have 
already been shown previously. Nevertheless, it has to be 
noted that most standard errors of the subsets estimates 
were remarkable. Further, our results show that these 
subsets’ high effect is very likely not erroneously upward 
biased by extensive LD in the cattle genome. This study 
indicates the potential of integrating functional informa-
tion in GP to account for the covariance between economi-
cally important traits more precisely. Aiming at continuous 
improvements in cattle breeding, follow up studies are 
necessary that combine the detection of shared genomic 
regions with these regions’ functional annotation.
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