
Lu et al. BMC Genomics          (2024) 25:401  
https://doi.org/10.1186/s12864-024-10251-z

RESEARCH Open Access

© The Author(s) 2024. Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

BMC Genomics

Analysis and prediction 
of interactions between transmembrane 
and non‑transmembrane proteins
Chang Lu1   , Jiuhong Jiang1, Qiufen Chen1, Huanhuan Liu1, Xingda Ju1* and Han Wang1* 

From 2020 IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM 2020) 
Virtual. 16-19 November 2020. https://ieeebibm.org/BIBM2020/

Abstract 

Background  Most of the important biological mechanisms and functions of transmembrane proteins (TMPs) are 
realized through their interactions with non-transmembrane proteins(nonTMPs). The interactions between TMPs 
and nonTMPs in cells play vital roles in intracellular signaling, energy metabolism, investigating membrane-crossing 
mechanisms, correlations between disease and drugs.

Results  Despite the importance of TMP-nonTMP interactions, the study of them remains in the wet experimental 
stage, lacking specific and comprehensive studies in the field of bioinformatics. To fill this gap, we performed a com-
prehensive statistical analysis of known TMP-nonTMP interactions and constructed a deep learning-based predictor 
to identify potential interactions. The statistical analysis describes known TMP-nonTMP interactions from various per-
spectives, such as distributions of species and protein families, enrichment of GO and KEGG pathways, as well as hub 
proteins and subnetwork modules in the PPI network. The predictor implemented by an end-to-end deep learn-
ing model can identify potential interactions from protein primary sequence information. The experimental results 
over the independent validation demonstrated considerable prediction performance with an MCC of 0.541.

Conclusions  To our knowledge, we were the first to focus on TMP-nonTMP interactions. We comprehensively 
analyzed them using bioinformatics methods and predicted them via deep learning-based solely on their sequence. 
This research completes a key link in the protein network, benefits the understanding of protein functions, and helps 
in pathogenesis studies of diseases and associated drug development.

Keywords  Transmembrane protein, Protein-protein interaction, Convolutional neural network, Enrichment analysis, 
Subcellular locations

Background
Protein-protein interactions (PPIs) provide a system-
atic point of view for understanding the life process 
including DNA replication, protein modification, and 
signal transduction [1, 2]. The interactions between 
transmembrane proteins and non-transmembrane pro-
teins (TMP-nonTMP interaction) are a special kind of 
PPIs that realize intracellular and extracellular signaling, 
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regulate energy metabolism, and many other functions 
throughout the cell life cycle [3]. The pathogenesis of 
many serious diseases associated with TMPs, such as 
Alzheimer’s disease [4–6], Parkinson’s disease [7, 8], 
Metabolic abnormalities [9], immune system diseases 
[10], and many other kinds of diseases. Since TMPs are 
major drug targets, TMP-nonTMP interactions directly 
affect drug metabolism and usually occupy the position 
of hub nodes in related pathways [11]. The study of TMP-
nonTMP Interactions will promisingly contribute to the 
understanding of protein functions, completing the PPI 
network, exploring the pathogenesis of diseases, and dis-
covering the potential drug targets [3, 11, 12].

Biological experiments are the most reliable approach 
to determinate molecular interactions that provide accu-
rate PPIs [13, 14]. Popular experimental methods for 
PPIs are the yeast-two-hybrid (Y2H) system [15], affin-
ity purification followed by mass spectrometry (AP-MS) 
[16], and literature-derived low-throughput experiments 
[17]. Y2H is a powerful method to detect PPIs occurring 
in the nucleus but is not suitable for detecting TMP-TMP 
or TMP-nonTMP interactions. Influenced by the mem-
brane, TMPs differ greatly from water-soluble proteins 
in terms of microenvironment, structure, and functions, 
resulting in different docking locations and mechanisms 
with molecules (including ligands and proteins) [14, 18, 
19]. The split-ubiquitin system provides a method for 
examining the interactions of membrane proteins in 
their native environment [20]. In 2014, Petschnigg et al. 
developed the mammalian-membrane two-hybrid assay 
(MaMTH), a split-ubiquitin-based two-hybrid system 
developed to assess PPIs of membrane proteins [21]. In 
2017, Saraon et al detected the integral membrane PPIs 
in the context of living mammalian cells [22]. With the 
development of experimental techniques, more and 
more TMP-TMP and TMP-nonTMP interactions have 
been detected [23–25]. However, these experimental 
techniques are labor-intensive and time-consuming. The 
amphipathic structure makes it complicated to determine 
the interactions between TMPs and nonTMPs through 
biological experiments on a large scale [26]. When per-
forming transduce signals, TMP PPIs are transient where 
protein partners associate and dissociate temporally. It is 
difficult to detect those kinds of PPIs since they are less 
likely to be colocalized [17]. Furthermore, the detection 
results are frequently observed in high ratios of false 
positives and false negatives [27]. To overcome these dis-
advantages, computational models can provide auxiliary 
validation and predict new PPIs.

Computational methods enable the screening of large-
scale molecular interactions and are effective adjunct 
strategies for biological experiments. Since both sides of 
most known PPIs are water-soluble proteins, many PPI 

prediction models simply exclude or ignore TMP-asso-
ciated interactions (TMP and water-soluble protein are 
not distinguished) [28]. Although these models were not 
developed for TMP-nonTMP interactions, the impressive 
works facilitate the development of molecular interaction 
prediction and enlighten our work. Computational meth-
ods for predicting PPIs can be divided into sequence-
based, structure-based, and template-based methods. 
Sequence-based algorithms only apply the primary 
sequence of proteins as input, without the secondary or 
tertiary structure information obtained experimentally. 
Compared with structural information, protein primary 
sequence is more accurate, stable, and easier to obtain. 
Theoretically, the primary sequence of a protein contains 
all the information about its structure and function, and 
sequence-based predictors have been proved to achieve 
great performance [29, 30]. According to the algorithm, 
PPI prediction methods can be divided into traditional 
machine learning-based methods and deep learning-
based methods. Shen et al. provide a Conjoint Triad (CT) 
method to describe protein sequence for predicting PPIs 
with SVM [31]. LDA-RF obtains low dimensional latent 
topic features from protein sequences and then adopts 
the scalable random forest to predict human PPIs [32]. 
iPPI-PseAAC (CGR) incorporates the information of 
“chaos game representation” into the Pseudo Amino Acid 
Composition (PseAAC) and then adopts a random for-
est to classify PPIs [33]. GTB-PPI predicts PPIs based 
on Gradient Tree Boosting (GTB) by fusing PseAAC, 
pseudo-position-specific scoring matrix (PsePSSM), 
reduced sequence, and index-vectors (RSIV), and auto-
correlation descriptor (AD) [2]. Those methods rely on 
a large number of manual features like Position Specific 
Score Matrix (PSSM) profiles, domain information, and 
predicted secondary structures. Those features require 
plenty of expert knowledge and redundant data processes 
[34]. The characteristics of deep learning algorithms 
determine that they can abandon complicated feature 
engineering, but directly make more accurate predic-
tions based on original information. Sun et al. combined 
Stacked AutoEncoder (SAE) with protein sequence to 
predict PPIs [35]. Zhang et  al. used the DNNs model 
that takes Auto Covariance (AC) descriptor as the input 
to predict PPIs [36]. Li et al designed a CNN and LSTM-
based deep learning model to predict PPIs from one-hot 
encoding [37]. DNN-PPI used an Auto Covariance (AC) 
descriptor and a Conjoint Triad (CT) descriptor for the 
prediction of PPI [38]. Wang et al. embed amino acids in 
diverse vector spaces to predict PPIs [39]. PIPR, an end-
to-end framework that embeds sequence by the vector 
obtained from a pre-trained model, relieves the data pre-
processing efforts to predict PPIs and obtains the start of 
art result [40].
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The above prediction models have achieved consider-
able results in the prediction of water-soluble protein 
interactions, but there are great particularities in the 
TMP-related dockings. The dockings of TMPs with other 
molecules are more complex: they may occur on lipid-
soluble surfaces in transmembrane regions, water-sol-
uble surfaces in non-transmembrane regions, interfaces 
on membrane surfaces, and channels within TMPs. This 
poses a great challenge to TMP-molecular interaction 
prediction, and modeling based on molecular types is a 
feasible solution. Some studies have been started to pay 
attention to probing TMP-TMP interactions. Duart et al 
made a systematic review of methodological approaches 
for the analysis of transmembrane domain interactions 
[41]. Khazen et  al proposed PPIMem, a novel approach 
for predicting transmembrane protein-protein complexes 
[28]. The important biological significance of TMP-
nonTMP interaction cannot be ignored. However, the 
research on them is still limited in the wet experimental 
stage, lacking analysis and modeling from computational 
perspectives.

In this study, we firstly performed statistical analyses 
of the known TMP-nonTMP interactions from differ-
ent perspectives: a) The distribution of species, protein 
families, and subcellular locations were calculated; b) 
The enrichment items of Gene Ontology (GO) and Kyoto 
Encyclopedia of Genes and GenomesKEGG pathway 
were analyzed, c) The TMP-nonTMP interaction net-
work was constructed, the hub proteins and critical sub-
networks models of the network were found. After the 
comprehensive analysis, We proposed an end-to-end 
prediction model to identify potential TMP-nonTMP 
interaction, which is convenient and efficient. Within 
our framework, two proteins in an interacting pair were 
connected head to tail and encoded by a one-hot code. 
Then, a CNN model was applied to extract features from 
sequence pairs automatically and fed into a fully con-
nected layer for sorting. The experimental results over 
the independent validation demonstrated consider-
able prediction performance with an MCC of 0.541. This 
research completes a key link in the PPI network and is 
beneficial for exploring the drug target. Materials and 
code related are available at https://​github.​com/​NENUB​
ioCom​pute/​SeqTM​PPI/.

Methods
Benchmark datasets
We used the TMP-nonTMP interactions recorded in 
the IntAct [42] as the positive samples. After construct-
ing negative samples, removing similar protein pair 
sequences and irregulated proteins, we obtained 64,939 
positive samples and 64,939 negative samples to build 

our benchmark datasets. To optimize a model, we built 
MINI to explore the best composition of parameters.

Protein annotations were extracted from UniProt [43], 
including keywords, subcellular location, species, and so 
on. TMPs are annotated with ‘KW-0812’ in the keywords 
field while nonTMPs are not. With the suppose that pro-
teins from different subcellular locations do not interact 
with each other [32], we randomly composed TMPs and 
nonTMPs in UniProt/SwissProt as negative protein sam-
ples. Pairs with proteins annotated with the same subcel-
lular location terms were removed. Protein sequences 
consisting of < 50 or > 2,000 (details illustrated in Addi-
tional file 1) amino acid residues, or containing unknown 
residues were removed. Pairs showing pair-wise sequence 
identity ≥ 40% via CD-HIT algorithm [44] were removed. 
Details are as follows: (1) We put sequence informa-
tion of TMPs and nonTMPs in all the samples (positive 
samples and negative samples) to CD-HIT tools [44]. (2) 
proteins were clustered in a group if their amino acid res-
idues showed sequence identity ≥ 40% via the CD-HIT 
algorithm. (3) Check any two protein pairs A-B, A’-B’. If A 
and A’ are in the same cluster (sequence identity ≥ 40%), 
meanwhile B and B’ are in the same clusters, we deleted 
A’-B’.

After pretreatment, we collected a total number of 
64,939 TMP-nonTMP pairs as positive samples (POSI) 
and 84,726 negative samples. POSI was used in statistical 
analysis to investigate the mechanisms of TMP-nonTMP 
interactions.

A balanced dataset will be beneficial to train a deep 
learning model. To build a balanced dataset, we mixed 
64,939 positive samples and 64,939 negative samples 
(NEGA) to get a balanced dataset (BENCH) and then 
divided them into 5 subsets. Each subset was divided into 
a training set, validating set, and independent testing set 
according to the ratio of 8:1:1. Detailed statistic of the 
samples in BENCH was illustrated in Additional file 1. To 
avoid contingency, we trained and tested the model with 
each group of datasets separately, using the average value 
of 5 experiments as the final performance.

We construct a small dataset (MINI) to explore the best 
composition of parameters. We collected a total number 
of 2,049 TMP-nonTMP pairs as positive samples from 
the IMEx Consortium mutations data set (released on 
May 2, 2019). Then, we obtained 2,049 negative samples 
by randomly pairing the TMP and nonTMP in Swiss-
Prot (released on Jan 9, 2020). All the data processes of 
MINI are the same as BENCH except for removing the 
pairs showing pair-wise sequence identity≥ 40% because 
MINI did not have enough scale to eliminate redundancy. 
To avoid the contingency of negative sample selection, 
we repeated the above processes 5 times to form 5 data-
sets. We trained and tested the model with each dataset 
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separately that all the experimental results in this paper 
were the average value of 5 experiments.

Statistical analysis
We analyzed the protein in POSI according to their anno-
tations. Their annotations were extracted from UniProt 
[43], including protein family, subcellular location, spe-
cies, and so on. Gene Ontology (GO) [45] annotations 
and pathway annotations were extracted from the GO 
database and KEGG PATHWAY database.

Protein families
The Protein family (Pfam) [46] is a collection of related 
protein regions, providing insights into protein function. 
Functional regions are termed domains and in nature, 
proteins are diverse with various combinations of them. 
Proteins in the same family also share a common evo-
lutionary, reflected by their related functions and simi-
larities in sequence or structure. Furthermore, protein 
families are often arranged into hierarchies, with proteins 
that share a common ancestor subdivided into smaller, 
more closely related groups. The Pfam database (http://​
pfam.​xfam.​org/, version 34.0) [47] annotates proteins 
with protein families information, which is referenced in 
UniProt. In this paper, Pfam information of each protein 
was extracted from the UniProt field ‘dbReference’, the 
type of this field attribute was set as ‘Pfam’. All the protein 
family appears in this field were collected for analysis.

Enrichment analysis
Enrichment analysis was done to compare the genes in 
TMP-nonTMP interactions with annotated gene sets in 
the GO and Encyclopedia of Gene and Genome (KEGG) 
[48] http://​www.​kegg.​jp/, aiming to obtain biological 
information. Several databases are managed by KEGG, 
among them, genes in KEGG GENE were used as back-
ground genes in the enrichment analysis procedure. And 
GO items annotations and pathway annotations of query 
genes were extracted from it. All the GO items were 
defined in the GO database and pathways were defined in 
KEGG PATHWAY.

GO enrichment analysis is a very important bioinfor-
matics analysis, through which researchers can observe 
the enrichment of genes encoding of TMPs or nonT-
MPs, and make out gene products in molecular function 
(MC), biological process (BP), and Cellular Component 
(CC) of GO enriched terms. KEGG Pathways provide a 
systematic way to understand the functions of individual 
genes and proteins that contribute to normal physiology 
and disease [49], each enriched item means a pathway in 
KEGG PATHWAY database. P-value is used to measure 
the enrichment of each type of GO. When the p-value is 
less than 0.05, this term is considered to have statistical 

significance. However, the P-value requires proper 
adjustment since the probability of committing false 
statistical inferences would considerably increase when 
more than one hypothesis is simultaneously tested. We 
use the P.adjust, calculated by Benjamini-Hochberg (BH) 
adjustment algorithm [50], to adjust the origin P-value.

Profiler R package [51] was used to perform GO 
enrichment analysis and KEGG pathway enrichment 
analysis. Firstly, we mapped the TMPs and nonTMPs in 
POSI to the gene list by UniProt annotations. Then took 
this gene list as input and set the cut-off criterion as an 
adjusted P-value <0.05, background gene list is from the 
KEGG GENE database. Finally, we obtained enrichment 
results separately for the genes of TMPs and nonTMPs. 
The significantly go enriched terms for biological process 
(BP), cellular component (CC), and molecular function 
(MF) were further ranked by p-value and visualized. Each 
category contains 10 analysis terms with the smallest 
P-value. A similar procedure was performed for KEGG 
pathway analysis with the same background gene list as 
GO enrichment analysis.

Predictor construction
Encoding of protein pair
The amino acids in the protein sequence need to be 
encoded as numbers since deep learning models can 
interpret only numeric data. In this work, One-Hot [52–
54] strategy was adopted to encode amino acids in the 
protein sequence. After that, an M × N binary matrix was 
obtained, where the M equals the max protein sequence 
length of 2,000 (cover more than 99% of sequences in 
UniProt) and the N equals the number of amino acid 
types 21 (20 for the natural amino acids types and one 
for the padding mark as a special type). Each amino acid 
was represented as a 1 × 21 vector: one the element cor-
responding to itself while zero for the remaining ele-
ments. Finally, concatenated the N-segment of nonTMP 
linearly to the C-terminal of TMP, a matric of 4,000 × 21 
was obtained.

Model details
Deep learning models can learn advanced abstract fea-
tures from raw inputs, showing a good performance by 
reducing the noise effect embedded in the original fea-
tures. The convolutional neural network (CNN) [55], 
typical architecture of deep learning, has been used in 
biology for protein prediction recently [39, 56], proving 
that CNN can be successfully applied in a sequence prob-
lem. Proposed in 2014, Global Average Pooling (GAP) 
[57] replaces the traditional fully connected layers in 
CNN and is widely used for sequential work. Here, we 
applied a one-layer CNN architecture for our machine 
learning classifier. As illustrated in Fig. 1, we padded each 

http://pfam.xfam.org/
http://pfam.xfam.org/
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protein sequence to the same length (2,000), encoded the 
protein sequence as a vector by the One-Hot strategy, 
concatenated the proteins in a pair linearly, then sequen-
tially added a CNN layer as the input layer, a GPA as the 
hidden layer, a fully connected layer as the output layer.

All the methods were developed in the Python3.6 pro-
gram language. Using TensorFlow [58] as a backend, 
deep learning algorithms were implemented by Keras 
[59], Scikit-learn [60] libraries of python were used for 
evaluating algorithms. For all protein sequences, the 
model input the same shape of a matrix, which have been 
elaborated in section Encoding of Protein Pair.

According to the tuning and exploring in the model 
(details illustrated in Additional file  1), we settled the 

hyper-params and dataset for our model. Final hyper-
params for kernel size, filters number, and batch size is 
90, 300, 90 separately. In this work, we randomly divided 
the benchmark data set (BENCH) into five subsets 
(details illustrated in Additional file 1). Each subset was 
divided into a training set, validating set, and independ-
ent testing set according to the ratio of 8:1:1.After tun-
ing the params, we set the kernel size as 90, filter num as 
300, and batch size as 70. That means, for each complete 
training, 70 pieces of data (length is 4,000 and channel is 
21) were fed into the model. With 300 filters in which the 
kernel size is 90, the CNN layer extracted a series of fea-
ture maps. Function ‘Rectified Linear Unit (ReLU)’ was 
applied in this layer. The GAP layers calculate the average 

Fig. 1  Workflow of SeqTMPPI. a Sequence of the transmembrane protein and non-transmembrane protein. b The first step is to pad each protein 
sequence to the same length (2,000), then, encode the protein sequence as a vector by the One-Hot strategy and concatenate the proteins in a pair 
linearly. c Finally, a CNN model with a GAP layer was applied to learn the pair-wise pattern of the concatenated sequence to predict interactions 
betweenTMP and nonTMP
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of all the feature maps and pass the result into the output 
layer, we applied a ‘Sigmoid’ function for getting the clas-
sification result. Finally, iterated the procedure 80 times. 
The early stop strategy was used to end the training pro-
cedure ahead when the absolute change of the loss value 
was < 0.0003.

Results
Species distribution
We counted the frequency of interactions when both 
participants of the interactions belong to the same 
species. As is shown in Fig.  2, the top 10 of them are 
human-human, yeast-yeast, mouse-mouse, arath-arath 
(Arabidopsis thaliana), ecoli-ecoli (Escherichia coli), 
human-mouse, mouse-human, drome-drome (Dros-
ophila melanogaster), rat-rat, human-rat. Among them, 
TMP-nonTMP interactions of human-human occupied 
a big part, which means our datasets contain numerous 
human protein interaction patterns.

Distribution of protein families
Interaction between two proteins is a special function in 
biology. As is illustrated in the section Protein Families, 
protein functions can be inferred by the protein family. 
Here, By analyzing the statistical distribution of families 
of proteins, we investigated which families are the inter-
actions between TMP (Fig.  3a) and nonTMP (Fig.  3b) 
closely related. Figure  3 shows the top 10 frequently 
occurring items for protein family in POSI.

Subcellular locations of the proteins
To understand where TMP-nonTMP interactions often 
occur, we counted the subcellular locations of the TMPs 
since the nonTMPs can freely move. Figure  4a shows 
the top 10 subcellular locations of the TMPs are the cell 
membrane, endoplasmic reticulum membrane, cyto-
plasm, nucleus, golgi apparatus, and related membrane, 
mitochondrion inner membrane, cell junction, secreted. 
Most interactions are taking place at the cell boundary 
and they perform vital functions to transform informa-
tion between environment and cell. Among them, cell 
membrane, endoplasmic reticulum membrane, cyto-
plasm accounting respectively for 15.900%, 9.800%, and 
8.700% of all the transmembrane protein subcellular 
locations.

Furthermore, to explore where the signal was coming 
from and where it was going, we counted the subcellular 
locations of the nonTMPs that could carry the signal and 
move around. Figure  4b shows that the top 10 subcel-
lular locations of the nonTMPs are cytoplasm, nucleus, 
secreted, cell membrane, cell inner membrane, cytoskele-
ton, mitochondrion, plastid, host nucleus, virion. Most of 
the signals are stay in the cytoplasm while some of them 
are transferred into the nucleus or secreted outside the 
environment. Among them, cytoplasm, nucleus, secreted 
account respectively for 47.000%, 10.700%, and 5.800% of 
all the nonTransmembrane protein subcellular locations.

GO enrichment analysis
Here, we found that 1005 BP, 230 CC, and 313 MF were 
statistically significant in TMPs while 1633 BP, 289 CC, 

Fig. 2  Distribution of the top 10 pairwise species of protein interactions. In this figure, the vertical axis represents the top ten species pairs, 
and the horizontal axis represents the number of interactions contained in each pairwise species. The top three of them are intraspecific 
interactions of humans, yeast, and mouse, accounting respectively for 61.800%, 12.200%, and 5.100% of all the situations



Page 7 of 18Lu et al. BMC Genomics          (2024) 25:401 	

and 269 MF were statistically significant in nonTMPs. 
Each category contains 10 analysis terms with the small-
est P.adjust.

GO analysis of TMPs shown in Fig.  5 demonstrated 
that (1) for BP, anion transmembrane transport, gly-
coprotein biosynthetic process, glycoprotein meta-
bolic process, protein glycosylation, macromolecule 
glycosylation, glycosylation, carboxylic acid transport, 
organic acid transport, cellular divalent inorganic cat-
ion homeostasis, and calcium ion homeostasis were the 
biological process in which TMPs are most involved. 
Proteins enriched in serveral top BP items are PSN1_
HUMAN, S39A8_HUMAN, OSTB_HUMAN, and so 
on; (2) for CC, identified proteins were significantly 
enriched in integral component of organelle mem-
brane, an intrinsic component of organelle membrane, 
an intrinsic component of endoplasmic reticulum 

membrane, an integral component of endoplasmic 
reticulum membrane, transmembrane transporter 
complex, transporter complex, an integral component 
of synaptic membrane, external side of the plasma 
membrane, basolateral plasma membrane and intrinsic 
component of synaptic membrane. Proteins enriched 
in serveral top CC items are such as PKD2_HUMAN, 
STX1A_HUMAN, PORCN_HUMAN and so on; (3) 
for molecular function MF, anion transmembrane 
transporter activity, active transmembrane transporter 
activity, passive transmembrane transporter activity, 
channel activity, metal ion transmembrane transporter 
activity, organic anion transmembrane transporter 
activity, ion channel activity, monovalent inorganic 
cation transmembrane transporter activity, second-
ary active transmembrane transporter activity were 
statistically significant. Proteins enriched in serveral 

Fig. 3  Distribution of the top 10 protein families. In this figure, the vertical axis represents the top ten protein family types, and the horizontal 
axis represents the number of proteins contained in each protein family. The top three protein families of transmembrane protein are 
7tm_1, PK_Tyr_Ser-Thr, LRR_8, accounting respectively for 2.200%, 1.600%, and 1.200% of the transmembrane proteins; the top three protein 
families of non-transmembrane protein distribution are Pkinase, zf-C2H2, WD40, and accounting respectively for 2.000%, 1.100%, and 1.000% 
of the non-transmembrane proteins
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top MF items are VGLU1_HUMAN, S4A11_HUMAN, 
CLCN3_HUMAN and so on.

GO analysis of nonTMPs in Fig.  6 demonstrated that 
(1) for BP, ten terms with the most significant enrich-
ment in this class are listed. They are ribonucleoprotein 
complex biogenesis, RNA catabolic process, mRNA cata-
bolic process, ribosome biogenesis, ncRNA metabolic 
process, regulation of mRNA metabolic process, ncRNA 
processing, RNA splicing, mitochondrial gene expres-
sion, and rRNA processing. Proteins enriched in several 
top BP items are MET16_HUMAN, EXOS8_HUMAN, 
IF4A3_HUMAN, and so on; (2) for CC, identified pro-
teins were significantly enriched in the mitochondrial 
matrix, nuclear speck, ribosomal subunit, chromosomal 
region, secretory granule lumen, cytoplasmic vesicle 
lumen, vesicle lumen, spindle, and spliceosomal complex. 
Proteins enriched in serveral top CC items are MK14_
HUMAN, PPIE_HUMAN, DDX3X_HUMAN, and so on; 
(3) for MF, cadherin binding, transcription coregulator 
activity, catalytic activity, acting on RNA, DNA-binding 
transcription factor binding, ubiquitin-like protein ligase 

binding, protein serine/threonine kinase activity, tran-
scription coactivator activity, ubiquitin-protein ligase 
binding, RNA polymerase II-specific DNA-binding tran-
scription factor binding, Ras GTPase binding was highly 
associated with nonTMPs. Proteins enriched in serveral 
top MF items are BCL10_HUMAN, PKN1_HUMAN, 
ARRB1_HUMAN, and so on.

KEGG pathway enrichment analysis
By analyzing the KEGG pathway enrichment of the pro-
teins, we found that 84 pathways were statistically sig-
nificant for TMPs and 163 pathways were statistically 
significant for nonTMPs. All the protein mentioned are 
listed in Table 1, which shows protein name and simple 
discriptions in UniProt. KEGG pathway analysis dem-
onstrated that TMPs (shown in Fig. 7) were particularly 
enriched in cell adhesion molecules, signaling pathways, 
biosynthesis, transport, and receptor pathways.

The nonTMPs (shown in Fig.  8) were particularly 
enriched in infection, disease, and protein-making-
related pathways. Some nonTMPs such as O00329, 

Fig. 4  Distribution of the top 10 subcellular locations of the proteins. In this figure, the vertical axis represents the subcellular locations of proteins, 
and the horizontal axis represents the number of proteins contained in each subcellular location. a The top 10 subcellular locations of the TMPs. b 
The top 10 subcellular locations of the nonTMPs
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Q9Y4K3, P61586, P60953, P42338, P42336, O15511, 
Q9P1U1, and Q9Y6K9 simultaneously appeared in 
shigellosis and salmonella infection pathways. Espe-
cially, nonTMPs such as O00329, Q9Y4K3, P42338, 
P42336, Q9Y6K9, Q92569 simultaneously appeared in 
coronavirus disease - COVID-19 pathways.

PPI network construction and analysis
The PPIs in the POSI were visualized by Cytoscape soft-
ware [61]. From the whole network shown in Fig. 9, we 
can see most of the drug targets are distributed in the 
center of the whole network and they are very sparse 
existed. There remains space for researchers to find a 
new target from existing PPI interactions.

Furthermore, to accurately identify the hub proteins 
of the PPI network, cytoHubba, a plugin of Cytoscape, 
was adopted to identify the important nodes in the net-
work [62]. The top 10 important proteins were kept. As is 
shown in Fig. 10, the size of the nodes was determined by 
the value of importance which was calculated by Close-
ness. It ranks the nodes based on the shortest paths. All 
the important proteins were interacting with each other 
except Q9C0B5. Among the top 10 important proteins, 
there existed a nonTMP drug target P18031 (Tyrosine-
protein phosphatase non-receptor type 1). There are 4 
TMP drug targets (P00533, P03372, P13569, P05067) 
among the top 10 important.

To find protein complexes and criterial parts of bio-
logical pathways in large protein interaction networks, 

Fig. 5  GO annotation of transmembrane proteins. This figure is used to characterize the top 10 results of the functional enrichment analysis 
of transmembrane proteins for each group. Dots represent term enrichment with color coding: red indicates high enrichment, blue indicates 
low enrichment. The sizes of the dots represent the gene ratio of each term. The larger the dot, the larger percentage of genes. For example, 
in the Cellular Component (CC) category, the blue point has a small gene ratio and has the least significant P-value compared to other terms 
in the figures
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we identified protein modules in the PPI network with 
Molecular Complex Detection (MCODE) algorithm [63]. 
It detects densely connected regions based on topol-
ogy from a given network PPI networks. Those densely 
connected regions, also known as clusters and protein 
modules, may represent protein complexes or part of 
biological pathways. Protein modules in the PPI network 
were identified by the MCODE app (a plugin that imple-
ments the MCODE algorithm) in Cytoscape. Totally 
36 clusters were identified as the most significant by 
MCODE with degree cutoff = 2, node score cutoff = 0.2, 
k-core = 2, and Max depth = 100. Figure 11 displays the 
two most important clusters, and nodes are colored to 
denote TMP, nonTMP, and drug target. The size of the 
node is decided by the value of the node score calculated 

by MCODE. In the first cluster, Q9ULX7 (Carbonic 
anhydrase 14), a TMP drug target, is the most important 
protein in the subnetwork. In the second cluster, there is 
no protein was labeled as a drug target, exploring drug 
targets from this group of proteins may achieve a good 
result.

Performance of the predictor
To avoid contingency, we trained and tested the model 
with each group of datasets separately, using the aver-
age value of five models as the final performance. Images 
of six evaluation indexes varied with epoch increasing 
were plotted in (details illustrated in Additional file  1) 
to show the models were trained to converge on each 
index. Table 2 shows that the values of the five evaluation 

Fig. 6  GO of non-transmembrane proteins. This figure is used to characterize the top 10 results of the functional enrichment analysis 
of non-transmembrane proteins for each group. Dots represent term enrichment with color coding: red indicates high enrichment, blue indicates 
low enrichment. The sizes of the dots represent the gene ratio of each term. The larger the dot, the larger percentage of genes. For example, 
Ras GTPase binding of the MF (Molecular Function) category is of least significant with the highest P-value compared to other terms. While 
ribonucleoprotein complex biogenesis in the BP(Biological Process) category accounts for more genes than others
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indexes have only a small range of changes, and the aver-
age Recall is 0.804, MCC 0.541, which means that the 
prediction results of the neural network model con-
structed in this study have achieved good results.

Discussion
We performed a comprehensive statistical analysis of 
known TMP-nonTMP interactions and constructed 
a deep learning-based predictor to identify potential 

Table 1  Protein details in enriched KEGG PATHWAY​

Accession ID Name Description

P01730 CD4_HUMAN T-cell surface glycoprotein CD4

P28068 DMB_HUMAN HLA class II histocompatibility antigen, DM beta chain

P04440 DPB1_HUMAN HLA class II histocompatibility antigen, DP beta 1 chain

P23229 ITA6_HUMAN Integrin alpha-6

Q30154 DRB5_HUMAN HLA class II histocompatibility antigen, DR beta 5 chain

P20036 DPA1_HUMAN HLA class II histocompatibility antigen, DP alpha 1 chain

P20273 CD22_HUMAN B-cell receptor CD22

P01732 CD8A_HUMAN T-cell surface glycoprotein CD8 alpha chain

P11215 ITAM_HUMAN Integrin alpha-M

P06340 DOA_HUMAN HLA class II histocompatibility antigen, DO alpha chain

O00329 PK3CD_HUMAN Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform

Q9Y4K3 TRAF6_HUMAN TNF receptor-associated factor 6

P61586 RHOA_HUMAN Transforming protein RhoA

P60953 CDC42_HUMAN Cell division control protein 42 homolog

P42338 PK3CB_HUMAN Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform

P42336 PK3CA_HUMAN Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform

O15511 ARPC5_HUMAN Actin-related protein 2/3 complex subunit 5

Q9P1U1 ARP3B_HUMAN Actin-related protein 3B · Homo sapiens (Human)

Q9Y6K9 NEMO_HUMAN NF-kappa-B essential modulator

Q92569 P55G_HUMAN Phosphatidylinositol 3-kinase regulatory subunit gamma

Fig. 7  KEGG pathway enrichment of transmembrane proteins. This figure shows the top 10 results of the KEGG pathway enrichment analysis 
of transmembrane proteins. Dots represent term enrichment with color coding: red indicates high enrichment, blue indicates low enrichment. The 
sizes of the dots represent the gene ratio of each term. The larger the dot, the larger percentage of genes
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interactions. The study accomplishes key links in the 
protein network, which facilitates the understanding of 
protein function and contributes to the study of disease 
pathogenesis and the development of related drugs. Anal-
ysis of the distribution of proteins provides a new per-
spective to understand the TMP-nonTMP interactions 
which were experimentally identified pairs and collected 
from a wide range of literature by IntAct. Counting the 
top 10 frequently occurring items for protein species and 
protein families, we found that the TMPs and nonTMPs 
share three identical high-frequency species, like Human, 
Yeast, and Mouse. That means, most of the proteins were 
belonging to the human category followed by yeast and 
mouse while the rest species occupied a very low part. 
Interactions established in the same species urgently 
need attention. Researches care more about what inter-
actions is occurred in living organisms, especially in the 
human body.

In TMPs, as is shown in Fig.  3a, frequently occur-
ring families were 7tm_1 (7 transmembrane recep-
tors), PK_Tyr_Ser-Thr (Protein tyrosine and serine/
threonine kinase), LRR_8 (Leucine rich repeat), and 
so on. 7tm_1 known as G-protein-coupled receptors, 
or GPCRs, are integral membrane proteins that con-
tain seven membrane-spanning helices, and 7tm_1 
are the target of around half of all modern medici-
nal drugs. Their expression on the cell surface makes 
them readily accessible to hydrophilic drugs and their 

non-uniform expression provides selectivity in acti-
vating or blocking physiological events. PK_Tyr_Ser-
Thr which are the high-affinity cell surface receptors 
for many polypeptide growth factors, cytokines, and 
hormones catalyzes the transfer of a phosphoryl. 
PK_Tyr_Ser-Thr have been shown not only to be key 
regulators of normal cellular processes but also to have 
a critical role in the development and progression of 
many types of cancer. LRR_8 having been identified in 
a large number of functionally unrelated proteins con-
tains a set of horseshoe fold proteins, closely related to 
protein’s structures. And they are frequently involved 
in the formation of PPI. In nonTMPs, as is shown in 
Fig.  3b, frequently occurred families were Pkinase 
(Protein kinase domain), zf-C2H2 (Zinc finger, C2H2 
type), WD40 (WD40 repeat). Pkinase is a structur-
ally conserved protein domain bringing a conforma-
tional change to affect the catalytic function of protein 
kinases. This functions as an on/off switch for many 
cellular processes, including metabolism, transcrip-
tion, cell cycle progression, cytoskeletal rearrangement 
and cell movement, apoptosis, and differentiation. 
They also function in embryonic development, physi-
ological responses, and the nervous and immune sys-
tem. The zinc finger is the coordination of zinc ions 
and the C2H2 type is the best-characterized class of 
zinc fingers and they play important roles in cellular 
processes such as development, differentiation, and 

Fig. 8  KEGG pathway enrichment of non-transmembrane proteins. This figure shows the top 10 results of the KEGG pathway enrichment analysis 
of non-transmembrane proteins. The y-axis was the name of signaling pathways and the x-axis was the gene ratio. Dots represent term enrichment 
with color coding: red indicates high enrichment, blue indicates low enrichment. The sizes of the dots represent the gene ratio of each term. The 
larger the dot, the larger percentage of genes



Page 13 of 18Lu et al. BMC Genomics          (2024) 25:401 	

oncosuppression. WD40 is a short structural motif 
of approximately 40 amino acids being implicated in 
a variety of functions ranging from signal transduc-
tion and transcription regulation to cell cycle control, 
autophagy, and apoptosis. The subcellular locations of 
proteins are closely related to their function and con-
stitute an essential aspect of understanding the com-
plex machinery of living cells [64].

Pathways closely related to the interaction 
between TMP‑non TMP
KEGG pathway analysis demonstrated that TMPs were 
particularly enriched in cell adhesion molecules, sign-
aling pathways, biosynthesis, transport, and receptor 
pathways. TMP P01730 simultaneously appeared in cell 
adhesion molecules, hematopoietic cell lineage, and 
cytokine-cytokine receptor interaction. Some TMPs such 

Fig. 9  Network visualized on TMP-nonTMP interactions in POSI. Proteins were presented by nodes and the interactions between them were 
presented by edges. The nodes in orange were TMPs while the nodes in green were nonTMPs. Besides, Proteins recorded in the DrugBank were 
represented by dark orange or dark green nodes separately for TMP or nonTMPs. The number of lines connected to the nodes represented 
the degree of the node



Page 14 of 18Lu et al. BMC Genomics          (2024) 25:401 

as P28068 , P04440, P23229, Q30154, P20036, P20273, 
P01732, P11215, and P06340 simultaneously appeared in 
cell adhesion molecules and hematopoietic cell lineage 
pathways. Cell adhesion molecules (CAMs) are a group 
of transmembrane proteins that are associated with neu-
rite formation and axon pathfinding during circuitry 
development [65]. There are a lot of diseases associated 
with it, such as epidermolysis bullosa [66], ectodermal 
dysplasia [67], macular dystrophy [68], and neonatal ich-
thyosis-sclerosing cholangitis (NISCH) syndrome [69]. 
Hematopoietic stem cells (HSCs) are multipotent, self-
renewing progenitor cells from which all differentiated 
blood cell types arise during the process of hematopoie-
sis. Cells undergoing the differentiation process express 
a stage- and lineage-specific set of surface markers. And 
These cells become diseased and can lead to Hemophilia 
[70], Bernard-Soulier syndrome [71], Castleman [72] 
and such disease like that. Via pathways, proteins can 
act as a biomarker to help diagnosed diseases, signifi-
cantly help increase the chances of cure [73]. The nonT-
MPs were particularly enriched in infection, disease, and 
protein-making-related pathways. Some nonTMPs such 
as O00329, Q9Y4K3, P61586, P60953, P42338, P42336, 
O15511, Q9P1U1, and Q9Y6K9 simultaneously appeared 
in shigellosis and salmonella infection pathways. Espe-
cially, nonTMPs such as O00329, Q9Y4K3, P42338, 
P42336, Q9Y6K9, Q92569 simultaneously appeared in 
coronavirus disease - COVID-19 pathways. These anno-
tations will be immediately useful for identifying addi-
tional relevant interacting proteins, assessing possible 

effects of variation in the host or viral proteins on specific 
steps of viral infection, and identifying possible drug tar-
gets. Thus, nonTMP that interact with TMPs are closely 
related to disease-related pathways and we can explore 
potential drugs from those candidates in the future.

Hub genes in protein‑protein interaction network
The PPIs in the POSI were visualized by Cytoscape soft-
ware [61]. From the whole network, we can see that some 
proteins, forming a dense network, were fully researched 
because there are so many interactions documented in 
the literature. However, some proteins are lonely exists 
due to their interaction only with specific proteins or 
being ignored by the researchers. Most of the drug tar-
gets are distributed in the center of the whole network 
and they are very sparse existed. There remains space 
for researchers to find a new target from existing PPI 
interactions.

To accurately identify the hub proteins of the PPI net-
work, cytoHubba, a plugin of Cytoscape, was adopted to 
identify the important nodes in the network. We found 
all the important proteins were interacting with each 
other except Q9C0B5. Among the top 10 important 
proteins, there existed a nonTMP drug target P18031 
(Tyrosine-protein phosphatase non-receptor type 1). 
It may regulate the EFNA5-EPHA3 signaling path-
way which modulates cell reorganization and cell-cell 
repulsion, and it also regulates the hepatocyte growth 
factor receptor signaling pathway through dephospho-
rylation of MET [74]. We also found there are 4 TMP 

Fig. 10  Top 10 hub proteins from POSI calculated by Closeness algorithm. Proteins are presented by nodes and the interactions between them 
are presented by edges. A bigger node indicates a more important protein in the dataset of POSI. The nodes in orange were TMPs while the nodes 
in green were nonTMPs. Besides, Proteins recorded in the DrugBank were represented by dark orange or darg green nodes separately for TMP 
or nonTMPs. The number of lines connected to the nodes represented the degree of the node
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drug targets (P00533, P03372, P13569, P05067) among 
the top 10 important. P00533 (epidermal growth factor 
receptor, EGFR), a human TMP with the Pkinase_Tyri 

family, is not only the hub of the POSI but also linked 
to lung cancer. This kind of protein is overexpressed in 
many human tumors, being recognized as a potential 
drug target in oncology. During SARS infections, it was 
found that inhibiting EGFR signaling prevents excessive 
fibrotic responses and, thus, lung damage. Drugs, like 
brigatinib, afatinib, osimertinib, and so on, were possi-
ble EGFR inhibitors. P03372 (Estrogen receptor, ESR1), 
a human TMP with the ESR1 family, is closely related 
to the disease of estrogen resistance (ESTRR) which 
was caused by the variants of this gene. In the case of 
elevated serum levels of estrogen, the disease is char-
acterized by partial or complete resistance to estrogen. 
Clinical features such as osteoporosis, reduced bone 
mineral density, may be present.

Fig. 11  Top 2 subnetwork topologies from POSI calculated by MCODE algorithm. a The first cluster found by MCODE, reflected the recycling 
effect of the proteins. b The second cluster fund by MCODE reflected a bridge to connect two sub-clusters. Proteins are presented by nodes 
and the interactions between them are presented by edges. A bigger node indicates a more important protein in the topology of the cluster. The 
nodes in orange were TMPs while the nodes in green were nonTMPs. Besides, Proteins recorded in the DrugBank were represented by dark orange 
or darg green nodes separately for TMP or nonTMPs. The number of lines connected to the nodes represented the degree of the node

Table 2  Performance on the testing set of BENCH datasets

Subset Acc Precision Recall F1score MCC

0 0.790 0.770 0.813 0.789 0.581
1 0.788 0.828 0.721 0.769 0.578

2 0.758 0.705 0.894 0.786 0.537

3 0.752 0.733 0.781 0.755 0.503

4 0.750 0.729 0.811 0.766 0.503

mean 0.768 0.753 0.804 0.773 0.541
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This kind of topology of the subnetwork indicates that 
those groups of proteins tend to form complexes [63]. We 
noticed that the interaction between P40035 and P53278 
are very important to bridge the two groups of proteins, 
this kind of interaction is documented by Krishnan et al 
[74].

Conclusions
In this work, we firstly focused on TMP-nonTMP inter-
actions and comprehensively analyzed them using sta-
tistical methods based on biological knowledge. By 
analyzing the distribution of the interaction pairs from 
several views, we found that 25.7% of the interactions 
took place at the cell membrane, endoplasmic reticulum 
membrane. The top three protein families of TMPs were 
7tm_1, PK_Tyr_Ser-Thr, LRR_8 while the top three pro-
tein families of nonTMPs were Pkinase, C2H2, WD40. 
73.5% of all the drug targets were closely related to the 
candidates of the interaction pairs. By analyzing the GO 
enrichment of the proteins, we found that 1005 BP, 230 
CC, and 313 MF were statistically significant in TMPs 
while 1633 BP, 289 CC, and 269 MF were statistically sig-
nificant in nonTMPs. By analyzing the KEGG pathway 
enrichment of the proteins, we found that 84 pathways 
were statistically significant for TMPs. Here, P01730 
simultaneously appeared in cell adhesion molecules, 
hematopoietic cell lineage, and cytokine-cytokine recep-
tor interaction. 163 pathways were found to be statisti-
cally significant for nonTMPs. Finally, characteristics of 
the network constructed by the interaction pairs were 
fully explored, showing that 10 proteins such as P00533, 
P03372, and P13569 are hub proteins. Five of them are 
drug targets, and P18031 is the most critical drug target 
of Ertiprotafib and Trodusquemine. And it is known to 
be a signaling molecule that regulates a variety of cellular 
processes including cell growth, differentiation, mitotic 
cycle, and oncogenic transformation. Furthermore, 
we also found the top 7 critical sub-networks. General 
protein-protein interaction predictors that depend on a 
large proportion of soluble protein pairs are not suitable 
to predict the sparse TMP-nonTMP interactions. Finally, 
characteristics of the network constructed by the inter-
action pairs were fully explored, finding the top 10 hub 
proteins and top 7 critical sub-networks.

General protein-protein interaction predictors that 
depend on a large proportion of soluble protein pairs 
are not suitable to predict the sparse TMP-nonTMP 
interactions. We proposed a deep learning-based 
prediction method called SeqTMPPI to solve the 
problem which is not suitable to predict the sparse 
TMP-nonTMP interactions. Our prediction method 
achieved an MCC of 0.541 over the testing set of the 

benchmark dataset. We were the first to provide the 
predictor of TMP-nonTMP interacting pairs. The 
study of TMP PPIs will be promisingly beneficial to 
understanding TMPs’ functions, completing the PPI 
network, and discovering potential drug targets.
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