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Abstract
Background  Disulfidptosis is a novel form of programmed cell death induced by high SLC7A11 expression under 
glucose starvation conditions, unlike other known forms of cell death. However, the roles of disulfidptosis in cancers 
have yet to be comprehensively well-studied, particularly in ccRCC.

Methods  The expression profiles and somatic mutation of DGs from the TCGA database were investigated. Two 
DGs clusters were identified by unsupervised consensus clustering analysis, and a disulfidptosis-related prognostic 
signature (DR score) was constructed. Furthermore, the predictive capacity of the DR score in prognosis was 
validated by several clinical cohorts. We also developed a nomogram based on the DR score and clinical features. 
Then, we investigated the differences in the clinicopathological information, TMB, tumor immune landscapes, and 
biological characteristics between the high- and low-risk groups. We evaluated whether the DR score is a robust tool 
for predicting immunotherapy response by the TIDE algorithm, immune checkpoint genes, submap analysis, and 
CheckMate immunotherapy cohort.

Results  We identified two DGs clusters with significant differences in prognosis, tumor immune landscapes, and 
clinical features. The DR score has been demonstrated as an independent risk factor by several clinical cohorts. The 
high-risk group patients had a more complicated tumor immune microenvironment and suffered from more tumor 
immune evasion in immunotherapy. Moreover, patients in the low-risk group had better prognosis and response 
to immunotherapy, particularly in anti-PD1 and anti-CTLA-4 inhibitors, which were verified in the CheckMate 
immunotherapy cohort.
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Introduction
Renal cell carcinoma (RCC) is the most prominent type 
of kidney malignancies, comprising almost 4% of all types 
of cancers and 2% of cancer-related fatalities globally 
[1], which can be broadly classified into clear cell renal 
cell carcinoma (ccRCC), chromophobe RCC, and papil-
lary RCC [2]. ccRCC is the most widespread histological 
form, constituting approximately 75% of entire RCC sam-
ples [2, 3]. Over the past two decades, it has been widely 
acknowledged that the tumor stage with a TNM staging 
system has been recognized as one of the most signifi-
cant prognostic factors of RCC in clinical practice guide-
line [4]. For patients with localized tumors (stage I-III), 
the standard treatment is partial or radical nephrectomy, 
which can yield a significantly more favorable prognosis 
[5]. However, 25-30% of RCC patient manifest metasta-
ses at the time of diagnosis (mccRCC), which indicates 
a poor prognosis with 5-year cancer-specific survival 
rate of 26.7% [5, 6]. Over the past few years, tyrosine 
kinase inhibitors (TKIs) and immune checkpoint inhibi-
tors (ICIs) combination have been recommended as the 
first-line treatment for advanced RCC, including pem-
brolizumab plus axitinib, nivolumab plus cabozantinib, 
and pembrolizumab plus lenvatinib [7]. Moreover, the 
immunotherapy combinations present a great benefit in 
the survival outcomes compared to monotherapy [7, 8]. 
Because of the heterogeneous nature of tumor micro-
environment (TME) in ccRCC, approximately 30% of 
mccRCC patients are unable to take advantage of from 
the immunotherapy combinations and ultimately develop 
resistance [7–9]. Numerous models, including the IMDC 
model and the UCLA Integrated Staging System (UISS) 
model, have demonstrated good prognostic potential, yet 
their capacity to forecast response to immunotherapy 
is still limited [8]. Consequently, the identification of a 
dependable predictive model for evaluating response to 
immunotherapy is indispensable to offer personalized 
treatment and improve the prognosis for ccRCC patients.

In a recent study, Liu et al. observed that the cystine 
uptake mediated by the overexpressed SLC7A11 can sup-
press ferroptosis under glucose starvation conditions; 
meanwhile, it also promotes a novel form of programmed 
cell death, termed disulfidptosis [10]. The disulfide stress 
induced by glucose starvation in SLC7A11-high cells can 
promote aberrant disulfide bonding of the actin cyto-
skeleton, triggering disulfidptosis. It was also found that 
glucose transporter inhibitors could induce cell death in 
SLC7A11-high cancer cells via disulfidptosis and inhibit 

SLC7A11-high tumor proliferation. In recent years, 
more and more studies have demonstrated that ccRCC 
is essentially a metabolic disease with genetic abnor-
malities involved in metabolic reprogramming, such as 
the tricarboxylic acid (TCA) cycle, glutamine or pentose 
phosphate (PPP) pathways [11–15]. Moreover, energy 
metabolism was abnormally regulated by the glycoly-
sis [16–18], mitochondrial bioenergetics [19], and lipid 
metabolism [20], which may activate the oncogenic 
signaling pathways to promote ccRCC. In this review, 
Zheng et al. concluded that disulfidptosis may play an 
important role in cancer metabolic therapy and serve as 
a novel target of cancer treatment [21]. Therefore, target-
ing disulfidptosis may provide novel therapeutic strate-
gies in cancer treatment.

In this study, we first undertook a thorough examina-
tion of the potential effects of the disulfidptosis-related 
genes (DGs) in the somatic mutations, prognosis, clini-
cal features, and tumor microenvironment landscapes 
of ccRCC patients. Then, we developed a disulfidptosis-
related prognostic signature (DR score) through the 
consensus clustering algorithm, LASSO, and multivari-
ate Cox regression analysis. Our study revealed that the 
DR score was a pivotal independent prognostic factor 
and showed excellent predictive capacity of prognosis in 
ccRCC patients. We also found that patients with high 
DR scores had more complicated tumor microenviron-
ment (TME) landscapes. In addition, patients with low 
DR scores respond better to immunotherapy. Finally, we 
verified the mRNA expression levels of disulfidptosis-
related genes in RCC cell lines by qRT-PCR experiment.

Methods and materials
Sample data collection and procession
The original RNA-seq transcriptome data and clini-
copathological information of the KIRC patients were 
downloaded from The Cancer Genome Atlas (TCGA) 
database (https://tcga-data.nci.nih.gov/tgca/ accessed 
October 2023) and the ArrayExpress database of the 
E-MTAB-1980 cohort (https://www.ebi.ac.uk/arrayex-
press/) [22]. The RNA-seq data of the GSE40435 were 
obtained from the Gene Expression Omnibus (GEO) 
database (https://www.ncbi.nlm.nih.gov/geo/). The RNA-
seq data and clinical information of the Braun and JAVE-
LIN trial cohorts, including ccRCC patients who received 
immune checkpoint inhibitors (ICIs) treatments, were 
obtained from previous literature [23, 24]. We extracted 
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RNA-seq data in the transcripts per million (TPM) for-
mat and count data from the TCGA database. The log 
transformation was applied to normalize the RNA-
seq. To minimize the possibility of bias, we removed any 
patients from these cohorts who had inadequate clinico-
pathological data or overall survival time (OS)/progres-
sion-free survival (PFS) of less than 30 days. Ultimately, 
our study included 581 patients (509 ccRCC samples and 
72 normal tissues) from the TCGA database, 202 pat-
ents (101 RCC patients and 101 normal tissues) from the 
GSE40435, 99 ccRCC patients from the E-MTAB-1980 
cohort, 167 ccRCC patients from the Braun cohort 
(CheckMate 010, 025), and 221 RCC patients from the 

JAVELIN trial cohort. Due to differences in the treat-
ment strategies, which may limit the applicability of the 
prognostic signature, we included four databases of vari-
ous treatment strategies. The most ccRCC patients in 
the TCGA and E-MTAB-1980 cohorts underwent radi-
cal nephrectomy, and a few patients received neoadju-
vant treatment and postoperative adjuvant therapy. The 
Braun cohort patients with advanced ccRCC received 
Nivolumab immunotherapy (anti-PD-1), and the JAVE-
LIN trial patients received Avelumab + Axitinib immuno-
therapy (anti-PD-L1 + TKIs). The details of these cohorts 
in clinical information were summarized in Additional 
file 2: Table S1.

Fig. 1  The flowchart of this study
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Due to the significance of suppressor genes of disul-
fidptosis, we selected SLC7A11 and SLC3A2 which were 
identified as the top two suppressor genes of disulfidpto-
sis for further analysis. NDUFS1, an important gene of 
mitochondrial oxidative phosphorylation, was also iden-
tified as top synergistic hits, and its inactivation could 
induce disulfidptosis. Peroxiredoxin-1 (PRDX1), which 
is an important disulfide-bonded protein, plays a sig-
nificant role in redox maintenance and is also included 
in the study. MYH9, MYH10, and MYL6 are all myosin 
heavy and light chains; these proteins, filamin-A and -B 
(FLNA/FLNB), actin (ACTB), and talin-1 (TLN1) were 
the top proteins under glucose starvation conditions with 
increased disulfide bonds. In the process of disulfidpto-
sis, alpha-actnin-4 (ACTN4) and destrin (DSTN) were 
important proteins to form the actin cytoskeleton orga-
nization. Therefore, we selected these important protein 
genes in the disulfidptosis to conduct the further analy-
sis (Additional file 3:Table S2) [10]. The protein-protein 
interaction networks (PPI) of 13 DGs were constructed 
by the online tool GeneMANIA (https://genemania.
org/). Immunohistochemical (IHC) staining files of DGs 
of ccRCC tissues and normal samples were retrieved 
from the Human Protein Atlas database (https://www.
proteinatlas.org/).

Identification of disulfidptosis-related subtypes
Unsupervised consensus clustering analysis of 509 
ccRCC patients from the TCGA database was performed 
based on the expression profiles of 13 DGs by the “Con-
sensusClusterPlus” R package with K-means inner loop 
algorithm [25]. When the clustering index k = 2, the link-
age between the clusters is tenuous, and the association 
within the cluster is strong. Therefore, two disulfidptosis-
related gene clusters (DGs clusters) were identified in the 
TCGA cohort. We also calculated the principal compo-
nent analysis (PCA) scores based on 13 DGs of the two 
DGs clusters, and the “ggplot2” and “factoextra” R pack-
ages were used to plot the PCA chart. Kaplan–Meier 
(K-M) survival method was implemented to differentiate 
the OS between the two DGs clusters via the “survival” 
package in R.

Differentially expressed genes (DEGs) between two 
DGs clusters (cluster 1 vs. cluster 2) were identified by 
the “Deseq2” R package with the standards of p. adj. 
<0.05 and|log2Fold Change (FC)| >1 for the next analy-
ses [26]. We identified 1383 DEGs between two DGs 
clusters, shown in the volcano plot (Additional file 1: 
Fig. S2A, Additional file 3: Table S2). Based on the 
“clusterProfiler” and “enrichplot” R packages, we subse-
quently implemented GO and KEGG functional enrich-
ment analyses to discover associated enriched signaling 
pathways.

Immune analysis
Based on the expression profiles and the “estimate” pack-
age in R, the TME scores, including the immune, stromal, 
and estimate scores (immune scores + stromal scores), 
were calculated by the ESTIMATE algorithm. The 
immune cell levels were evaluated using CIBERSORT 
algorithm. Then, the single-sample gene set enrichment 
analysis (ssGSEA) algorithm was conducted to deter-
mine the subsets of immune infiltrating cell levels by the 
“CSVA” R package. All these results were plotted as vio-
lin or box plots by the “ggpubr” and “ggplot2” packages 
in R. The “corrplot” R package was used to plot the cor-
relations between the infiltration levels of immune cell 
subsets.

Development and validation of disulfidptosis-related 
prognostic signature
Firstly, the TCGA cohort was used as the training set, 
while the E-MTAB-1980, Braun, and JAVEKIN trial 
cohorts were used as the testing set. Drawing from the 
overall survival time in the training set, univariate Cox 
analysis was executed to ascertain the OS-related DEGs 
(OS-genes) (Additional file 3:Table S2). To order to 
minimize the potential of overfitting, we implemented 
LASSO Cox regression analysis in the training set 
with 1,000 cycles by the “survival” and “glmnet” pack-
ages in R. Ultimately, we discovered appropriate opti-
mal OS-genes and established a disulfidptosis-related 
prognostic signature (DR score) by multivariate Cox 
regression analysis. The DR score (risk score) for each 
patient was calculated using the formula: risk score = ∑n

i=1(coefi (OS − genei) ∗ exp(OS − genei )). Where 
coefi is the regression coefficient derived by multivari-
ate Cox regression, and exp is the normalized expression 
levels of each OS-genes. Based on the formula, the risk 
scores of all patients in these cohorts were obtained and 
normalized. Then, we divided all patients into the low-
risk and high-risk groups using the median risk score as 
the cut-off [27]. K–M survival analysis was performed 
to compare the OS or PFS between the two risk groups 
using the “survival” R package. Besides, the time-depen-
dent ROC curve was leveraged to measure the effective-
ness of the DR score in forecasting prognosis of ccRCC 
patients with the “survminer”, “survival”, and “timeROC” 
R packages. Based on the clinical information and DR 
score subgroups, the heatmaps of the expression profiles 
of eight optimal OS-genes were plotted by the “pheat-
map” R package.

Clinical characteristic of disulfidptosis-related prognostic 
signature and nomogram
Univariate and multivariate Cox regression analyses 
were performed to determine whether the risk score 
was an independent OS prognostic indicator in ccRCC 
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patients among clinicopathologic features in the TCGA, 
E-MTAB-1980, and Braun cohorts. The results were 
shown in the forest plots by the “forestplot” R package. 
A nomogram integrating the DR score and clinical char-
acteristics (age, tumor stage, and T stage) was estab-
lished to further augment the clinical implementation 
of the DR score by the “rms”, “foerign”, and “survival” R 
packages. The calibration curve and concordance index 
(C-index) were utilized to evaluate the prognostic perfor-
mance of the nomogram. Decision curve analysis (DCA) 
was applied to evaluate the clinical benefits between the 
nomogram, risk score, and different clinical features by 
the “rmda” package in R.

Tumor mutation burden analysis
We retrieved copy number variation (CNV) files and 
the somatic mutation data of ccRCC patients from the 
TCGA database. Based on the “maftools” R package, 
the mutations of 13 DGs were analyzed, and the CNV 
changes of these genes were also analyzed, shown in the 
bar plots. The locations of 13 DGs in chromosomes were 
obtained from the Ensembl (https://feb2104.archive.
ensembl.org/). The “RCircos” package in R was utilized 
to plot the circle diagram of genes’ locations and CNV in 
chromosomes. Then, we calculated tumor mutation bur-
den (TMB) scores of each patient and assessed the cor-
relations between the TMB score and the DR score using 
the “maftools” package in R. According to the median 
value of TMB score, patients in the TCGA cohort were 
divided into the low- and high-TMB groups, and K-M 
survival analysis was used to compare the differences in 
the OS between two TMB groups. Additionally, we split 
all patients into four categories using the DR and TMB 
scores combination, and K-M survival analysis was also 
performed.

Prediction and verification of immunotherapy responses
To assess immunotherapy outcomes and responses of 
ccRCC persons in the TIDE website (https://tide.dfci.
harvard.edu/), we retrieved the tumor immune dysfunc-
tion and exclusion (TIDE) scoring, determined the TIDE, 
immune dysfunction, immune exclusion scores, as well as 
CD274 levels, and evaluated responses to immunother-
apy. Then, we forecasted responses to anti-CTLA4 and 
anti-PD1 immunotherapy between two DR score groups 
through the R package “submap”. Additionally, we investi-
gated underlying differences in immune checkpoint genes 
(ICGs) expression levels between two DR score groups. 
The underlying relationships between DR score, 13 DGs 
and ICGs expression levels were assessed, which were 
effective makers of immunotherapy responses. The cor-
relation analysis p value between the ICGs and DR score, 
13 DGs were adjusted by the Bonferroni multiple testing 
correction. In the Braun (CheckMate) cohort, patients 

with complete response (CR) and partial response (PR) 
were classified as responders to immunotherapy, whereas 
patients with progressive disease were classified as non-
responders to immunotherapy. To investigate differences 
between responder and non-responder groups, the chi-
square test was applied.

Prediction of chemotherapy
The cancer-associated fibroblast (CAF), tumor drug 
resistance-related cell tumor-associated macrophage 
(TAM.M2), and myeloid-derived suppressor cell (MDSC) 
were calculated to assess the relationship between the 
risk score and chemotherapy responses. Based on the 
“oncoPredict” R package, we predicted the half-maxi-
mal inhibitory concentration (IC50) values of the widely 
recognized anti-RCC drugs for the low- and high-risk 
groups on the Genomics of Drug Sensitivity in Cancer 
(GDSC; https://www.cancerrxgene.org/) database. The 
correlations between the IC50 of chemotherapy drugs 
and the risk score were evaluated.

Cell culture
Human ccRCC cancer cells ACHN, CAKI-1, and 786-O 
and human renal proximal convoluted tubule cell line 
HK-2 were purchased from Procell (Procell Life Science 
& Technology Co., Ltd). Cells were cultured in RPMI-
1640 medium (Invitrogen) mixed with 10% FBS. The 
incubator was set in a water-saturated atmosphere with 
5% CO2 at 37 °C.

Quantitative real-time PCR (qRT-PCR)
The TRIzol Reagent (Invitrogen, USA) was applied to 
extract total cellular RNA according to the protocol. 
RNA was reverse transcribed to cDNA by the Prime-
Script RT reagent kit (EZBioscience, China). EZBiosci-
ence 2 × SYBR Green qPCR Master Mix (EZBioscience, 
China) conducted the procedure. Primers for mRNAs 
were provided by TSINGKE (Beijing TSINGKE Biotech 
Co., Ltd., China) and shown in Additional file 5:Table S4. 
GAPDH was chosen as internal reference. Expression 
levels of mRNAs were measured as 2−ΔΔCT.

Statistical analysis
R software (ver.4.3.1) was used to analyze data and visu-
alize the results. Gene set enrichment analysis (GSEA) 
was conducted to analyze potentially enriched pathways 
of two risk groups using GSEA software (version 4.3.2, 
https://www.gsea-msigdb.org); meanwhile, p. adj. < 0.05 
and simulated value = 1,000 were considered statistically 
significant. Spearman correlation analysis was utilized 
to ascertain the correlation coefficient among variables. 
Statistically significant differences between K-M survival 
curves was determined by the log-rank test [28]. Wilcox 
t-test was utilized to compare the differences of variables 
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between the two groups. A p-value of less than 0.05 was 
determined to be the benchmark for statistical signifi-
cance in the absence of any further explanation.

Results
Expression profiles and transcriptional mutation of 
disulfidptosis-related genes in ccRCC
The flowchart of our study is illustrated in Fig. 1.

First, we analyzed mRNA expression levels of 13 DGs 
between ccRCC and normal tissues in the TCGA and 
GSE40435 databases (Fig.  2A, B). Our study revealed 
considerable downregulation of ACTN4, DSTN, FLNB, 

Fig. 2  The expression profiles and mutational characteristics of disulfidptosis-related genes. A-B Expression profiles of 13 DGs between ccRCC tissues 
and normal samples in the TCGA and GSE40435 cohorts, respectively. C The PPI network of 13 DGs by GeneMANIA. D Somatic mutation of 13 DGs in 
ccRCC patients. E The frequency of copy number variations in 13 DGs. F The circus plot of CNV on chromosome location in 13 DGs. *P < 0.05, **P < 0.01, 
***P < 0.001, ns: no significance
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SLC3A2, MYH10, PRDX1, and NDUFS1 in ccRCC tis-
sues. Conversely, ACTB, MYH9, TLN1, FLNA, MYL6, 
and SLC7A11 were significantly overexpressed in ccRCC 
tissues. We also investigated the protein levels of these 
genes in ccRCC and normal tissues by IHC staining, 
which revealed the same results with the mRNA expres-
sion levels (Additional file 1: Fig. S1A). These findings 
suggest that disulfidptosis may play a vital role in the 
development of ccRCC. Through the protein-protein 
interaction (PPI) network analyzed by the online tool 
GeneMANIA, we found that ACTB, MYH9, FLNA, 
and MYH10 were the hub-genes in this PPI network 
(Fig.  2C). Then, we evaluated the incidence rate of the 
somatic mutation and CNV alterations in 13 DGs in 
ccRCC patients. As shown in Fig. 2D, only 20 (4.98%) of 
402 ccRCC patients had somatic mutation, and ACTN4, 
SLC3A2, NDUFS1, and TLN1 had a 1% incidence of mis-
sense mutation. The results of CNV alterations in 13 DGs 
were shown in Fig.  2E, which indicates that the CNVs 
of ACTB, MYH10, MYL6, DSTN, FLNB, and NDUFS1 
were markedly increased, whereas the CNV of FLNA was 
significantly decreased. The location of the CNV in 13 
DGs on chromosomes was displayed in a circle diagram 
(Fig. 2F).

Identification of disulfidptosis-related subtypes and tumor 
microenvironment analysis in ccRCC
To investigate the relationships among disulfidptosis reg-
ulators and ccRCC, we performed the consensus cluster-
ing algorithm analysis based on the expression profiles 
of 13 DGs. According to the lower slope of the Cumu-
lative Distribution Function (CDF) curve, we divided 
all patients from the TCGA cohort into two clusters 
(Fig.  3A-C). As displayed in Fig.  3D, the result of PCA 
revealed the remarkable otherness of the distribution of 
two DGs clusters. The K-M curves showed that patients 
in the DGs cluster 2 had a worse prognosis than those 
in cluster 1 (Fig. 3E). Then, the gene expressions of DGs 
and clinicopathological features between two DGs clus-
ters were also evaluated. As shown in Fig.  3F, the two 
DGs clusters presented a significant difference in DGs 
expression levels; based on the chi-squared test or Fish-
er’s test, we found that the tumor stage, T stage, and M 
stage showed significant difference (p < 0.05) between the 
two DGs clusters and the DGs cluster 2 had higher tumor 
stage, T stage, and M stage, which may account for the 
worse prognosis.

Based on the CIBERSORT, ssGSEA, and ESTIMATE 
algorithms, we examined the associations between TME 
and 13 DGs. We found that DGs cluster 1 had more 
macrophages and B cells naïve fractions in TME, while 
cluster 2 had more T cells CD8+ and NK cells fractions 

(Additional file 1: Fig. S1B, C). As presented in Fig. 3G, 
higher levels of central memory CD8+ T cell, effector 
memory CD8+ T cell, mast cell, and regulatory T cell 
infiltrated in the DGs cluster 1, whereas cluster 2 had 
more infiltration of activated CD8+ T cell, activated 
CD4+ T cell, CD56dim natural killer cell, and type 17 T 
helper cell. Additional file 1: Fig. S1D showed the cor-
relations of the infiltration between 28 human immune 
cell subtypes. In addition, the results of ESTIMATE algo-
rithm revealed that the DGs cluster 1 had a higher Stro-
mal and ESTIMATE scores than cluster 2, indicating the 
more complicated TME in the DGs cluster 1 (Fig. 3H).

To investigate further the biological mechanisms 
behind apparent discrepancies between the two DGs 
clusters, we performed a functional enrichment analy-
sis based on the DEGs between the two clusters. KEGG 
analysis revealed that these DEGs were mainly enriched 
in calcium signaling pathway, cAMP signaling pathway, 
oxidative phosphorylation, and complement and coagu-
lation cascades (Fig. 3I). GO analysis indicated that DEGs 
exhibited significant enrichment mostly in humoral 
immune response (Additional file 1: Fig. S1E).

Establishment and verification of disulfidptosis-related 
prognostic signature
The TCGA cohort was regarded as the training set, while 
the E-MTAB-1980, Braun, and JAVELIN trial cohorts 
were regarded as the testing sets. Based on the OS-genes, 
LASSO, and multivariate Cox regression analysis (Addi-
tional file 1: Fig. S2B, C), we established a disulfidptosis-
related prognostic signature to improve prognosis and 
immunotherapy responses of ccRCC patients, which 
included eight prognosis-related genes. Then, we calcu-
lated the risk scores (DR score) of each patient with the 
equation below: DR Score = (-0.14807 * TEK) + (0.108541 
* TNFSF14) + (0.266526 * POPDC3) + (0.153862 * 
ITPKA) + (0.121762 * CRABP2) + (0.228253 * UCN) + 
(0.225723 * KISS1) + (0.048607 * SAA1). On the basis of 
the median DR score threshold, patients in these cohorts 
were categorized into two groups: low-risk and high-risk.

We found that most DGs were significantly upregu-
lated in the low-risk group (Fig. 4A, Additional file 1: Fig. 
S2D). Then, we explored the relationship between the DR 
score and two DGs clusters. As displayed in Fig. 4B, the 
DGs cluster 2 had higher DGs scores than cluster 1. Then, 
the expression levels of eight prognosis-related genes and 
clinicopathological features between the two risk groups 
were also investigated in the TCGA and E-MTAB-1980 
cohorts. We found that expression levels of prognosis-
related genes and clinical features between two risk 
groups were significantly different (Fig. 4C, D). The com-
parison in the DG score distribution and survival status 
between two risk groups in the training and testing sets 
demonstrated that the DR score effectively differentiated 
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ccRCC patients (Fig.  4E-G, Additional file 1: Fig. S2E). 
The survival analysis of the training set showed that the 
high-risk group patients exhibited poorer prognosis than 
those in the low-risk group, which was consistent with 
the survival analysis results of the testing sets (Fig. 5A-C, 
Additional file 1: Fig. S2F). The results of time-dependent 
ROC curve analysis demonstrated that the areas under 

the curve values (AUCs) of the DR score in predict-
ing OS were all more than 0.710 for 1-, 3-, and 5-years 
in the TCGA and E-MATB-1980 cohorts (Fig.  5D, E). 
The AUCs of the Braun and JAVELIN trial cohorts also 
showed good prediction of OS (Fig.  5F, Additional file 
1: Fig. S2G). The aforementioned findings together 

Fig. 3  Identification of two DGs clusters and differences in prognosis, TME, and clinicopathological features. A-C All ccRCC patients from the TCGA cohort 
were divided into two DGs clusters by unsupervised consensus clustering analysis (k = 2). The Cumulative Distribution Function (CDF) curve for k = 2–9. 
Area under the CDF curve for k = 2–9. D The principal component analysis displays significant differences of two DGs clusters. E Kaplan–Meier survival 
curve of two DGs clusters. F The heatmap includes clinicopathological features and expression profiles of 13 DGs in the TCGA cohort. G The infiltration 
levels of 28 human immune cell subtypes between two DGs clusters. H The Immune, Stromal, and ESTIMATE scores of two DGs clusters. I KEGG analysis 
of DEGs in two DGs clusters. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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demonstrated that the DR score exhibited a high level of 
predictive efficacy in relation to OS.

Clinical significance of disulfidptosis-related prognostic 
signature and nomogram
To investigate the clinical significance of the DR scores, 
we compared the clinicopathological features (includ-
ing survival state, tumor stage, and T stage) between 

two risk groups and the DR scores between different 
subgroups stratified by clinicopathologic features. As 
portrayed in Fig.  5G-L, it was observed that the high-
risk group patients had a significant correlation with 
unfavorable OS, higher tumor stage and T stage, which 
revealed that from the clinical standpoint, the higher 
DR score indicates a higher degree of tumor malignancy. 
In order to provide further evidence, we conducted the 

Fig. 4  Development of the disulfidptosis-related prognostic signature (DR score). A The expression profiles of 13 DGs between the low- and high-risk 
group in the TCGA cohort. B Difference of DR scores between two DGs clusters. C-D The heatmap includes clinicopathological features and expression 
profiles of 8 OS-genes in the TCGA and E-MTAB-1980 cohort, respectively. E-G The distribution of DGs scores and survival status in the TCGA, E-MTAB-1980, 
Braun cohort, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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same investigations on the E-MATB-1980 cohort and 
achieved the same findings, so validating our conclusion 
(Additional file 1: Fig. S3A, B). Furthermore, univariate 
and multivariate Cox regression analyses proved that 
the DR score is an independent risk factor among other 
clinicopathological features (Fig.  6A, B, Additional file 
1: Fig. S3C). A nomogram was developed by incorporat-
ing tumor stage, age, T stage, and the DR score (Fig. 6C). 
The calibration curves for 1, 3, and 5-years OS rates 

demonstrated excellent performance of the nomogram 
in prognostic prediction (Fig.  6D). The C-index of the 
nomogram was 0.779 (95% CI 0.741–0.811, p = 0.0025). 
The findings from DCA indicated that the nomogram 
presented a greater net benefit in forecasting the progno-
sis compared to the DR score and other clinicopathologi-
cal features (Fig. 6E). The AUCs of time-ROC about the 
nomogram were for 0.872, 0.803, and 0.776 for 1-, 3- and 
5-years OS, respectively (Fig. 6F). The multivariate ROC 

Fig. 5  The relationships between prognosis or clinicopathological features and DR scores. A-C Kaplan–Meier survival curve of two DR score group in 
the TCGA, E-MTAB-1980, Braun cohort, respectively. D-F The time-ROC curves of DR scores in the TCGA, E-MTAB-1980, Braun cohort, respectively. G-I 
Distribution of survival status, tumor stage, and T stage between the two DR score group in the TCGA cohort. J-L Difference of DR scores when stratified 
by survival status, tumor stage, and T stage. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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curve revealed that our nomogram had highest AUC 
value with 0.826, while the DR score with 0.786 (Fig. 6G). 
These findings indicated that our nomogram could fur-
ther enhance the accuracy of prognostic prediction for 
the DR score.

Functional Enrichment Analysis and Gene set enrichment 
analysis of the DR score
Based on the “Deseq2” R package with the standards of 
p. adj. <0.05 and|log2Fold Change (FC)| >1, we identi-
fied 2173 differentially expressed genes (DEGs) between 
two risk groups. In order to delve further the molecular 
processes behind the observed disparity of the two risk 

Fig. 6  Construction and assessment of nomogram. A-B Univariate and multivariate Cox regression analyses of DR scores and clinicopathological features 
in the TCGA and E-MTAB-1980 cohort, respectively. C Nomogram integrated the DR score and clinical features. D The calibration curves displayed good 
uniformity between the predicted 1, 3, 5-years OS by the nomogram and the actual OS. E Decision curve analysis of nomogram, DR score, and clinical 
features. F The time-ROC curves of nomogram. G Multivariate ROC curves analysis of nomogram, DR score, and clinicopathological features
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groups, GO, KEGG, and GSEA analyses were conducted. 
The results of functional enrichment analyses indicated 
that DEGs were primarily enriched in humoral immune 
response, calcium signaling pathway, cytokine-cytokine 
receptor interaction, IL-17 signaling pathway, and JAK-
STAT signaling pathway (Additional file 1: Fig. S3D, E), 
which were associated with immune-related pathways. 
Then, the GSEA analysis demonstrated that P53 signaling 

pathway, cytokine-cytokine receptor interaction, and 
intestinal immune network for IGA production were 
mainly enriched in the high-risk group (Fig. 7A), whereas 
the low-risk group exhibited significant enrichment of 
renal cell carcinoma, mTOR signaling pathway, and fatty 
acid metabolism (Additional file 1: Fig. S3F). It is reason-
able to conclude that the DR score had a prominent rela-
tionship to immunity and tumorigenesis.

Fig. 7  Analysis of tumor mutational landscapes based on DR score. A GSEA analysis showed pathways significantly enriched in the high-risk group. B 
Waterfall plots of mutation characteristics in the high-risk group. C Waterfall plots of mutation characteristics in the low-risk group. D Difference in TMB 
between the two risk groups. E Spearman correlation analysis of DR score and TMB. F Kaplan–Meier survival curve between the high- and low-TMB 
groups. G Kaplan-Meier survival curve of the OS stratified by both TMB and DR score. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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Tumor mutation burden and survival analysis
In light of the genomic features in the tumorigenesis, 
development and treatment, we analyzed the somatic 
mutation data of the two risk groups based on DR scores. 
VHL and PBRM1 were the two most mutated genes in 
two risk groups (Fig.  7B, C), which was the same as in 
previous studies [23]. We quantified the somatic muta-
tion as the TMB score and discovered that the high-risk 
group patients possessed higher TMB scores than the 
low-risk group patients (Fig.  7D). Spearman correlation 
analysis revealed a positive correlation between the DR 
score and TMB score (Fig.  7E). Based on the median 
TMB score, we divided patients into the high-TMB and 
low-TMB groups, and the survival analysis showed that 
patients in the high-TMB group had a worse prognosis 
than the low-TMB group (Fig. 7F). Furthermore, the DR 
scores and TMB scores were combined to forecast prog-
nosis. It was observed that the high-risk + high-TMB 
group patients had the worst prognosis, whereas the low-
risk + low-TMB group patients possessed the best prog-
nosis (Fig.  7G). All these results revealed that the TMB 
scores and DR scores were significantly associated with 
the prognosis.

Tumor immune microenvironment analysis
TME, comprising endothelial cells, fibroblasts, innate and 
adaptive immune cells, as well as non-cellular compo-
nents, has generated increasing attention from research 
as an advanced biomarker in predicting responses to can-
cer immunotherapy [29, 30]. Firstly, we found that the 
high-risk group patients had higher Immune and ESTI-
MATE scores than those in the low-risk group (Fig. 8A). 
The results of ssGSEA indicated that patients with a high 
DR score showed higher levels of immune cell infiltra-
tion, consistent with functional enrichment analyses and 
GSEA analysis (Fig. 8B, C). The differences of 22 immune 
cell fraction between the two risk groups suggested that 
the high-risk group was infiltrated by a higher portion 
of plasma cells, CD8+ T cells, T cells regulated (Tregs), 
T cells follicular helper, and Macrophages M0, while a 
lower portion of CD4+ T cells memory resting, B cells 
naïve, monocytes, mats cells resting, dendritic cells rest-
ing, and Macrophages M2 (Additional file 1: Fig. S4A). 
The correlation analysis showed that the DR score was 
positively correlated with dendritic cells resting, plasma 
cells, T cells follicular helper, CD8+ T cells, Tregs, and 
macrophages M0, whereas it was negatively correlated 
with mats cells resting, monocytes, T cells CD4+ memory 
resting, Macrophages M2 (Additional file 1: Fig. S4B, C).

Prediction of immunotherapy and chemotherapy 
responses
Immune checkpoint inhibitors (ICIs) have become an 
important component of the first-line treatment of 

advanced ccRCC [31]. Nevertheless, due to the hetero-
geneity of the cancer and TME, there is still a subset of 
patients who respond poorly to ICTs. Therefore, it is 
necessary to confirm which type of patients are suitable 
for ICIs. Firstly, we analyzed the expression levels of the 
common immune checkpoint genes between the differ-
ent risk groups and found that patients with high DR 
scores had higher expression levels of PDCD1, CTLA4, 
TNFSF14, CD70, TIGIT, and LAG3, while patients with 
low DR score had higher expression levels of CD274, 
PDCD1LG2, HAVCR2, HLA-G, and KIR2DL1 (Fig. 8E). 
We also found that the 13 DGs and DR scores were signif-
icantly associated with the common immune checkpoint 
genes (Fig.  8D). Then, we also investigated the immu-
notherapy response between the two risk groups by the 
TIDE algorithm. As displayed in Fig. 9A and I, patients 
in the high-risk group had higher TIDE and dysfunction 
scores. It was also found that patients with low DR scores 
had higher expression levels of CD274 predicted by the 
TIDE algorithm (Fig. 9B), consistent with the actual level. 
We also found that patients who responded to immuno-
therapy showed lower DR scores than patients who had 
non-responder to immunotherapy (Fig.  9E, F). In the 
CheckMate immunotherapy cohort, patients in the low-
risk group showed better responses to immunotherapy 
than those in the high-risk group (the chi-square test, 
P = 0.044), and patients who responded to immunother-
apy had lower DR scores (Fig. 9G, H). Additionally, it was 
discovered that the low-risk group patients may be more 
likely to reap benefits of anti-CTLA-4 inhibitors (Fig. 9J, 
Bonferroni corrected p = 0.024). These results indi-
cate that patients with low DR scores respond better to 
immunotherapy. We also found that patients in the low-
risk group had higher levels of tumor-associated mac-
rophages M2 (TAM M2) and microsatellite instability 
(MSI), while the high-risk group patients possessed ele-
vated levels myeloid-derived suppressor cells (MDSCs) 
(Fig.  9C, D). Subsequently, responses to chemothera-
peutic drugs in two risk groups were evaluated by the 
determination of IC50. The findings of the Spearman 
correlation analysis showed that the IC50 values of cis-
platin, gemcitabine, and rapamycin were negatively cor-
related with the DR score, indicating that patients with 
high DR scores were sensitive to cisplatin, gemcitabine, 
and rapamycin (Fig. 10, Additional file 1: Fig. S5). More-
over, the IC50 values of crizotinib, gefitinib, pazopanib, 
sorafenib, and sunitinib were positively correlated with 
the DR score, revealing that patients with low DR scores 
were sensitive to crizotinib, gefitinib, pazopanib, and 
sorafenib (Fig. 10, Additional file 1: Fig. S5).
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Expression levels of disulfidptosis-related genes in three 
ccRCC cell lines
We also investigated the mRNA expression profiles of 13 
disulfidptosis-related genes by qRT-PCR in three ccRCC 
cell lines (786-O, ACHN, and CaKi-1). As displayed in 
Fig.  11 and Additional file 1: S6, we found that mRNA 
levels of ACTB, PRDX1, SLC7A11, MYL6, SLC3A2, 
PRDX1, and TLN1 were significantly upregulated in 
ccRCC cell lines. It was also shown that mRNA levels of 

ACTN4, DSTN, FLNB, FLNA, MYH9, and MYH10 were 
downregulated in ccRCC cell lines. These mRNA levels of 
DGs by qRT-PCR were consistent with our bioinformat-
ics analyses from the TCGA and GEO databases.

Discussion
ccRCC is a highly heterogeneous and historically immu-
nogenic tumor, with a notably infiltrations of immune 
cells compared to other solid tumors, especially T cells 

Fig. 8  Tumor immune microenvironment analysis between two risk groups. A The Immune, Stromal, and ESTIMATE scores of two risk groups. B Correla-
tion analysis of DR score with 28 immune cell subtypes infiltration levels. C The infiltration levels of 28 human immune cell subtypes between two risk 
groups. D Correlation analysis of DR score and expression levels of 13 DGs with immune checkpoint genes. E Expression levels of immune checkpoint 
genes between two risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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[9, 32–34]. Previous studies revealed that the activation 
of specific metabolic pathways plays an important role 
in regulating immunoflogosis in the ccRCC TME [35, 
36]. Due to these characteristics of TME, the treatment 
regimens of ICIs, TKIs, and the combination of both 
developed rapidly and have been approved for the stan-
dard treatments in mccRCC patients. Although immuno-
therapy combinations can give a great benefit of survival 
in responders, the resistance will occur in most ccRCC 
patients, mainly resulting from the high heterogene-
ity of TME [32, 37–41]. Therefore, identifying accurate 

biomarkers for predicting responses to the immunother-
apy of RCC patients is essential for clinicians to adminis-
ter personalized therapies and improve prognosis of RCC 
patients.

The cystine transporter solute carrier family 7 member 
11 (SLC7A11) plays a vital role in the glutathione (GSH) 
synthesis to suppress reactive oxygen species (ROS) and 
ferroptosis [42, 43]. Many studies revealed that the over-
expression of SLC7A11 occurs in various types of malig-
nancies, promotes the development and proliferation of 
them, and confers a survival advantage to cancer cells 

Fig. 9  Predictive values of DR score in immunotherapy response. A TIDE, dysfunction, exclusion scores of two risk groups. B CD274 (PD1) levels calculated 
by the TIDE algorithm of two risk groups. C MDSC, CAF, and TAM. M2 scores of two risk groups. D MSI expression signature of two risk groups. E Distribu-
tion of responders and no-responders predicted by the TIDE algorithm bewteen two risk groups in the TCGA cohort. F Distribution of DR score between 
responders and no-responders predicted by the TIDE algorithm in the TCGA cohort. G Distribution of responders and no-responders between two risk 
groups in the Braun cohort (CheckMate). H Distribution of DR score between responders and no-responders between two risk groups in the Braun cohort 
(CheckMate). I Correlation analysis of the TIDE score and DR score. J Prediction of the response to anti-PD1 and anti-CTLA4 inhibitors in two risk groups 
by the submap algorithm. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance
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[44]. We also found that SLC7A11 is notably increased 
in ccRCC tissues in comparison to normal tissues. More-
over, the SLC7A11-high cancer cells are particularly 
susceptible to disulfidptosis under glucose starvation 
conditions; however, these cells are more likely resistant 
to apoptosis- and ferroptosis-inducing therapies. In addi-
tion, emerging evidences suggest that disulfidptosis can 
regulate the immune cells infiltration and immunoflogo-
sis in glioma and colorectal cancer [45, 46]. Therefore, 
elucidating the molecular mechanism of disulfidpto-
sis in ccRCC could provide novel perspectives into the 

innovative cancer treatment approaches aimed at target-
ing disulfidptosis.

In our present study, we initially investigated the 
genetic levels, the somatic mutation, and CNV altera-
tions of DGs. It was found that most of the DGs were 
dysregulated in ccRCC tissues, especially SLC7A11, and 
only 4.98% of patients had somatic mutations of DGs. 
Based on the consensus clustering analysis of the mRNA 
expression profiles of 13 DGs, we developed two distinct 
DGs clusters (cluster 1 and cluster 2) of ccRCC patients 
from the TCGA cohort. In contrast to patients belonging 
to DGs cluster 2, the DGs cluster 1 patients had a more 

Fig. 10  Prediction of sensitivity to chemotherapeutic drugs between the low- and high-risk groups. *P < 0.05, **P < 0.01, ***P < 0.001, ns: no significance

 



Page 17 of 21Ren et al. BMC Genomics          (2024) 25:413 

favorable prognosis and showed more complicated TME. 
The KEGG and GO analysis revealed that DEGs between 
two DGs clusters were mainly enriched in the cancer-
related pathways, indicating a potential correlation 
between DGs and the progression and proliferation in 
ccRCC. Then, we identified 256 OS-genes among DEGs 
and established a disulfidptosis-related prognostic signa-
ture (DR scores) based on 8 OS-genes in the training set 
(TCGA cohort). The E-MTAB-1980, Braun, and JAVE-
LIN trial cohorts were used as the testing sets. We found 
that patients in the DGs cluster 2 had higher DR scores 
than those in the cluster 1. The K-M curves revealed 
that the high-risk group patients possessed a more 

unfavorable prognosis compared to patients belonging 
to the low-risk group, which was demonstrated by both 
training and testing sets. To verify the applicability of our 
prognostic signature, we included these four cohorts with 
various treatment strategies. The TCGA cohorts and 
E-MTAB-1980 cohorts had similar treatment strategies; 
and most patients underwent radical nephrectomy. The 
Braun and JAVELIN trial cohorts aimed to evaluate the 
immunotherapy in ccRCC, which were entirely different 
from the training set. Moreover, our DR scores exhib-
ited a strong predictive ability for OS across all cohorts, 
which demonstrated that the DR scores had very broad 
clinical applicability in predicting the prognosis in ccRCC 

Fig. 11  The mRNA levels of DGs (ACTB, ACTN4, DSTN, FLNB, MYH9, MYH10, PRDX1, SLC7A11, and TLN1) in three ccRCC cell lines by qRT-PCR. *P < 0.05, 
**P < 0.01, ***P < 0.001, ns: no significance
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patents with various different treatment strategies. In 
addition, it was also found that the DR score is an inde-
pendent risk factor among other clinicopathological fea-
tures in both training and testing sets. Nomograms are 
applied diffusely as statistical prognostic models to assist 
clinicians more easily understand the prognosis of tumor 
patients and provide compressive treatments [47, 48]. We 
also constructed a nomogram integrating the DR score 
and vital clinicopathological information (tumor stage, 
age and T stage), which has been proven to have a greater 
net benefit in forecasting the prognosis and improve the 
predictive accuracy of the DR score in OS with AUC 
0.826. The most commonly used tumor stage system of 
RCC in clinical practice is the AJCC TNM system, which 
has been demonstrated as a prognostic factor in predict-
ing outcomes for RCC patients [49]. Moreover, the tumor 
stage is significantly correlated with the grade malignancy 
and survival time of RCC [5, 50]. Therefore, between two 
risk groups, we compared some vital clinicopathologi-
cal features (including survival state, tumor stage, and 
T stage) and found that patients in the high-risk group 
possessed worse outcomes, higher tumor stages, and 
higher T stages, which revealed that the high DR score 
represents the higher grade malignancy and more aggres-
sive nature from the clinical point of view. GSEA results 
further showed a significant association between the DR 
score and tumor-related pathways and immunity.

Based on the somatic mutation data of ccRCC patients 
from the TCGA database, we found that VHL and 
PBRM1 were the top two mutated genes in the low- and 
high-risk groups, consistent with previous studies [23, 
51]. We also found that patients in the high-risk group 
had higher TMB scores, and the TMB score is positively 
correlated with the DR score. Furthermore, patients with 
high TMB scores showed more unfavorable outcomes. It 
is well-known that TMB is an emerging predictive bio-
marker of response to immunotherapy in many solid 
tumors because of neoantigens generated by the somatic 
mutation genes in cancer cells to strengthen the immune 
reaction against tumors [8, 52–54]. In contrast to many 
other solid tumors, ccRCC has a solely moderate TMB 
[55]; although several studies investigate the TMB score 
as a predictive biomarker of response to immunotherapy 
in RCC, no definitive conclusion has been confirmed [23, 
56].

In the last two decades, tumor microenvironment 
(TME) not only plays critical roles in ccRCC carcino-
genesis, development, and invasion [32, 57], but it is also 
able to predict the immunotherapy response in many 
solid tumors, especially in ccRCC [9, 30, 37]. Therefore, 
we investigated the differences in TME between the two 
DR score groups. It was revealed that patients in the 
high-risk group possessed significantly elevated levels 
of the ESTIMATE and Immune scores, which indicated 

that this group has a more complicated tumor immune 
microenvironment. The infiltration of myeloid-derived 
suppressor cells (MDSCs), playing a suppressive role in 
immune responses and activating tumor immune escape 
[58], showed significantly increased levels in the high-risk 
group, including macrophages and immature dendritic 
cell. Moreover, the MDSC score estimated by the TIDE 
algorithm was also higher in the high-risk group. The 
other immunosuppressive cells, including CD8+ T cells, 
Tregs, T helper cells, and CD4+ T cells, were all signifi-
cantly infiltrated higher in the high-risk group. Previous 
studies revealed that a higher proportion of CD8+ T cells 
and immunosuppressive macrophages M2 were infil-
trated in the tissues of ccRCC compared to other cancers, 
and there exists a positive correlation between elevated 
infiltration levels of CD8+ T cells and unfavorable prog-
nosis [30, 57]. Tregs, as one of the most important parts 
of immunosuppressive cells, can inhibit tumor-specific 
immune responses with the co-inhibitory molecules 
such as CTLA-4, TIGIT, LAG3, and CD28, and promote 
immune evasion, thus facilitating tumor cell prolifera-
tion [59–61]. The above co-inhibitory molecules of Tregs, 
also as the ICGs, were notably upregulated in the high-
risk group patients. The PD-L1 (also known as CD274) 
expressed by tumor cells plays a crucial role in the media-
tion of immunosuppression [62], and its expression level 
in tumor cells has a potential relationship to objective 
response of immunotherapy of ccRCC, such as anti-PD1 
inhibitors [63]. Surprisingly, we found that patients in the 
low-risk group had significantly higher expression levels 
of PD-L1 (CD274) than those in the high-risk group, and 
CD274 level calculated by the TIDE algorithm also dem-
onstrated the results. In conclusion, these findings con-
vincingly revealed that the high-risk group presents an 
immunosuppressive tumor microenvironment and suf-
fers more tumor immune evasion in immunotherapy. The 
TIDE scores algorithm is widely applied in the predic-
tion of immunotherapy response, especially in anti-PD1 
inhibitors, which includes two classical mechanisms of 
tumor immune evasion: the induction of T cell dysfunc-
tion in tumor with high infiltration of CTL and the exclu-
sion of T cell infiltration with low CTL [64]. Interestingly, 
our study revealed that the high-risk group patients 
showed higher TIDE scores and dysfunction scores, and 
patients who responded better to immunotherapy had 
lower DR scores. The submap analysis also showed that 
the low-risk group patients responded better to anti-
CTLA-4 inhibitors. Therefore, we infer that patients with 
lower DR scores are more suitable for immunotherapy, 
such as anti-PD-1 and anti-CTLA-4 inhibitors. Then, we 
validated this result in the Braun immunotherapy cohort 
(CheckMate) and uncovered patients with low DR scores 
responded better to anti-PD1 inhibitors and had better 
prognosis than those with higher DR scores. The results 
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of chemotherapy drugs IC50 showed that patients in the 
high-risk group were more sensitive to cisplatin, gem-
citabine, and rapamycin. To sum up, the DR score could 
be an essential tool to help clinicians provide an individ-
ual-based treatment regime for ccRCC patients.

Nevertheless, it is essential to recognize the limitations 
of our research. Primarily, our retrospective study was 
based on the public data, and selection bias is unavoid-
able, which might influence the accuracy of our final 
results. Subsequently, external immunotherapy cohorts 
and prospective multicentric clinical studies are essential 
to authenticate the predictive ability of immunotherapy 
of the DR score. Finally, additional experimental evidence 
is necessary to uncover the potential relationship of 
molecular mechanisms between the DR score and disul-
fidptosis in RCC.

Conclusion
In this study, we comprehensively explored the expres-
sion profiles, somatic mutation, and TME of disul-
fidptosis-related genes in ccRCC and established a 
disulfidptosis-related prognostic signature (DR score). 
The DR score had an excellent predictive capacity of the 
prognosis and was an independent risk factor. More-
over, the DR score can also predict the immunotherapy 
response and help clinicians provide a personalized treat-
ment regime for ccRCC patients.
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