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Abstract 

Background  Drug-resistant tuberculosis (TB) is a major threat to global public health. Whole-genome sequencing 
(WGS) is a useful tool for species identification and drug resistance prediction, and many clinical laboratories are tran‑
sitioning to WGS as a routine diagnostic tool. However, user-friendly and high-confidence automated bioinformatics 
tools are needed to rapidly identify M. tuberculosis complex (MTBC) and non-tuberculous mycobacteria (NTM), detect 
drug resistance, and further guide treatment options.

Results  We developed GenoMycAnalyzer, a web-based software that integrates functions for identifying MTBC 
and NTM species, lineage and spoligotype prediction, variant calling, annotation, drug-resistance determination, 
and data visualization. The accuracy of GenoMycAnalyzer for genotypic drug susceptibility testing (gDST) was evalu‑
ated using 5,473 MTBC isolates that underwent phenotypic DST (pDST). The GenoMycAnalyzer database was built 
to predict the gDST for 15 antituberculosis drugs using the World Health Organization mutational catalogue. Com‑
pared to pDST, the sensitivity of drug susceptibilities by the GenoMycAnalyzer for first-line drugs ranged from 95.9% 
for rifampicin (95% CI 94.8–96.7%) to 79.6% for pyrazinamide (95% CI 76.9–82.2%), whereas those for second-line 
drugs ranged from 98.2% for levofloxacin (95% CI 90.1–100.0%) to 74.9% for capreomycin (95% CI 69.3–80.0%). Nota‑
bly, the integration of large deletions of the four resistance-conferring genes increased gDST sensitivity. The specific‑
ity of drug susceptibilities by the GenoMycAnalyzer ranged from 98.7% for amikacin (95% CI 97.8–99.3%) to 79.5% 
for ethionamide (95% CI 76.4–82.3%). The incorporated Kraken2 software identified 1,284 mycobacterial species 
with an accuracy of 98.8%. GenoMycAnalyzer also perfectly predicted lineages for 1,935 MTBC and spoligotypes for 54 
MTBC.

Conclusions  GenoMycAnalyzer offers both web-based and graphical user interfaces, which can help biologists 
with limited access to high-performance computing systems or limited bioinformatics skills. By streamlining the inter‑
pretation of WGS data, the GenoMycAnalyzer has the potential to significantly impact TB management and contrib‑
ute to global efforts to combat this infectious disease. GenoMycAnalyzer is available at http://​www.​mycoc​hase.​org.
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Background
The Mycobacterium genus comprises more than 190 
species and subspecies, including the Mycobacterium 
tuberculosis complex (MTBC) and non-tuberculosis 
mycobacteria (NTM) [1]. Tuberculosis (TB), a bacterial 
infection caused by MTBC, is one of the leading causes 
of death worldwide. Millions of newly diagnosed TB 
cases and 1.6 million TB-related deaths were reported 
in 2021 [2]. The effective treatment and management of 
TB is challenging owing to the emergence of multidrug-
resistant TB. Globally, the treatment success rate for 
patients newly diagnosed with TB is 86%, whereas that 
for patients diagnosed with multidrug-resistant TB is 
only 60% [2]. Thus, timely detection of drug resistance 
is crucial to guide treatment options and prevent further 
transmission [3].

In addition to MTBC, NTM has gained recognition as 
an important human pathogen, as its incidence and prev-
alence continue to increase worldwide [4, 5]. NTM can be 
broadly categorized into two groups (rapidly- and slow-
growing mycobacteria), of which Mycobacterium avium 
complex (MAC) and Mycobacterium abscessus complex 
are the most important species frequently isolated from 
patients with NTM infection [5, 6]. MTBC and NTM 
share similar microbiological properties and can lead to 
infections with overlapping clinical symptoms. However, 
they exhibit distinct disease characteristics and respond 
to different treatment options, and their susceptibility 
patterns to antimicrobial drugs vary depending on the 
species causing the infection [4].

Culture-based methods have traditionally been used 
as the gold standard for bacterial identification and 
diagnosis of drug-resistant TB. However, they are labor-
intensive, require specialized infrastructure, and can take 
weeks to months [7]. Although molecular-based meth-
ods, such as GeneXpert and line probe assays, are more 
rapid than culture-based methods, they only target the 
most common resistance-associated variants (RAV) for a 
limited number of drugs [7, 8]. Whole-genome sequenc-
ing (WGS) is a useful tool for species identification, drug 
resistance prediction, and transmission tracing [9, 10]. In 
particular, WGS not only allows for the screening of well-
known RAVs but also presents opportunities to uncover 
novel genetic alterations for both new and repurposed 
drugs. For example, WGS identified rplC p.Cys154Arg 
as a dominant mutation in linezolid-resistant isolates 
[11]. Mutations in mmpR5 (Rv0678), atpE, and pepQ, 
and those in ddn, fbiA, fbiB, fbiC, fbiD, and fgd1 have 
also been reported as potential mechanisms underly-
ing bedaquiline and delamanid resistance, respectively 
[12, 13]. More recently, the World Health Organization 
(WHO) published the first comprehensive catalogue of 
mutations in MTBC, applying rigorous classification 

criteria to assign a confidence grade to each variant asso-
ciated with drug resistance [10].

Despite the many advantages of WGS, its application 
in routine clinical settings has been limited primarily 
owing to the requirement of bioinformatics expertise 
and high-performance computing systems [14]. In addi-
tion, the lack of expertise in command line bioinformat-
ics among biologists has hinder the widespread use of 
WGS data. To overcome these challenges, it is necessary 
to develop analytical tools that meet the following func-
tionalities: 1) identification of both MTBC and NTM 
at the species level; 2) prediction of drug-resistant TB 
based on an endorsed knowledge base, such as the WHO 
mutational catalogue; 3) user-friendliness and low system 
requirements, including graphical user interface (GUI) 
or web-based software, and 4) data quality control and 
visualization. Given that mutation-calling algorithms 
can yield inaccurate results depending on the quality of 
the read and mapping accuracy, visualizing and review-
ing detected mutations before the final report is crucial 
[15]. Although several tools for analyzing mycobacterial 
genomes have been developed in recent years, including 
KvarQ, PhyResSE, Mykrobe, TBProfiler, ReSeqTB-UVP, 
and SAM-TB [16–21], software that integrates all these 
functionalities is scarce (Additional file  1: Table  S1). 
Additionally, variations in drug resistance prediction 
results can occur between software packages owing to 
differences in the analysis pipelines and knowledge bases.

In this study, we developed GenoMycAnalyzer, a web-
based software program that integrates functions for the 
identification of MTBC and NTM species and their line-
ages and spoligotype prediction, variant calling, annota-
tion, drug resistance prediction, and visualization. The 
performance of the GenoMycAnalyzer pipeline was eval-
uated using publicly available WGS data.

Implementation
Quality control of raw sequence reads
Sequencing adapters and low-quality bases were 
trimmed using Cutadapt version 4.2 [22]. Sequencing 
reads with a Phred base quality score greater than 20 
and lengths longer than 50  bp were retained. The base 
quality of the fastq files before and after trimming was 
assessed using FastQC version 0.11.9 [23]. To remove 
the sequencing reads originating from the host genome, 
the trimmed reads were aligned to the human reference 
genome (hg38) using BWA MEM version 0.7.17 [24]. 
The mapping status, including the total number of bases 
and reads, duplicate rate, mapping rate, and sequenc-
ing depth, was calculated using SAMtools version 1.16.1 
[25], and only unmapped reads were extracted for down-
stream analyses.
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Species identification and spoligotyping
The identification of MTBC and NTM at the species 
level was performed using Kraken2 version 2.1.2, a tax-
onomic classification system based on k-mer matches 
[26]. To improve species predictions, a custom-built 
database containing 107 sequences from 18 NTM spe-
cies in addition to the Kraken2 built-in database ver-
sion 2023–8-18 was constructed (Additional file  1: 
Table  S2). Subsequently, Braken software was used to 
estimate the abundance of species using taxonomy 
labels assigned by Kraken2 [26]. The most abundant 
species estimated by Braken was assigned to the species 
in the sample. Samples with fewer than 200 sequence 
reads mapped to the Mycobacterium genus or with a 
mapping rate of less than 10% to a predicted Mycobac-
terium species were excluded from further analyses. 
For MTBC, SpoTyping version 2.1 was used to deter-
mine the spoligotype from trimmed sequence reads 
[27]. The output is presented as an octal code.

Variant calling and lineage prediction
For isolates identified as MTBC, sequencing reads 
were mapped to the H37Rv reference genome (Gen-
Bank accession number: NC_000962) using BWA 
MEM, as previously described [28]. Duplicate reads 
were marked and de-duplicated using SAMtools ver-
sion 1.16.1 [25]. Single-nucleotide variants (SNVs) 
and small indels were identified using BCFtools ver-
sion 1.16 with the ‘ploidy’ option set to 1 and the 
‘consensus-caller’ model [29]. SnpEff version 5.1d was 
used to define mutations in genomic sequences and 
predict their functional consequences [30]. To obtain 
a reliable and robust mutation calling, the following 
variants were eliminated: (i) read depth < 30, (ii) Phred 
quality score < 30, (iii) mapping quality score < 30, and 
(iv) variant allele frequency (VAF) < 5%. Lineages were 
predicted based on a previously reported single-nucle-
otide polymorphisms (SNP) barcoding assay using an 
in-house Python script [31, 32].

Detection of a large deletion
A large deletion profile at the gene level (> 50  bp) was 
estimated using the WGS data. The target genes were 
limited to four (pncA, katG, gid, and ethA) known to be 
associated with drug resistance [33]. Large deletions were 
defined as regions encompassing at least 50  bp with a 
sequencing depth of less than three standard deviations 
from the mean or less than ten mapped reads [34]. For 
comparison, large deletions were also predicted using 
the DELLY software version 1.1.7 with default param-
eters [35]. All identified large deletions were manually 

inspected using the Integrative Genomics Viewer (IGV) 
browser version 2.15.5 [15].

Genotypic drug susceptibility testing
The annotated and filtered variants were classified into 
one of the following five groups according to the WHO 
mutational catalogue [10]: 1, associated with resistance; 
2, associated with resistance-interim; 3, uncertain sig-
nificance; 4, not associated with resistance-interim; and 
5, not associated with resistance (neutral mutations). In 
brief, group 1 mutations were defined when the following 
five criteria were met: 1) a sum of resistant and suscep-
tible isolates with a solo mutation ≥ 5, 2) a lower bound 
of the 95% confidence interval of the positive predictive 
value (PPV) conditional on being solo ≥ 25%, 3) odds ratio 
(OR) > 1, 4) OR of solo mutations > 1, and 5) false discov-
ery rate-corrected P ≤ 0.05. Group 2 mutations were pre-
sent as solo in pncA in at least two resistant isolates with 
a PPV of ≥ 50%, whereas group 4 mutations were present 
as solo in pncA with a PPV ≤ 40% and an upper bound of 
the 95% confidence interval of ≤ 75%. Group 3 comprised 
mutations that did not meet the criteria for inclusion in 
groups 1, 2, 4, or 5. We defined genotypic resistance to 15 
antituberculosis drugs (isoniazid, rifampicin, ethambu-
tol, pyrazinamide, levofloxacin, moxifloxacin, linezolid, 
bedaquiline, clofazimine, delamanid, amikacin, capreo-
mycin, kanamycin, streptomycin, and ethionamide) as 
SNPs or indels overlapped with group 1 or 2 variants of 
the WHO mutational catalogue at either the nucleotide 
or amino acid level (Additional file 1: Table S3). In addi-
tion, large deletions of pncA, katG, gid, and ethA were 
considered resistant to pyrazinamide, isoniazid, strep-
tomycin, and ethionamide, respectively. Variants falling 
into groups 3, 4, and 5 in the WHO mutational catalogue 
or mutations that did not meet the criteria outlined in 
the WHO mutational catalogue were considered geno-
typically susceptible. Detected RAVs were visualized in a 
Circos plot with the sequencing depth of the correspond-
ing gene [36].

Statistical analysis
The sensitivity, specificity, positive predictive value 
(PPV), and negative predictive value (NPV) were deter-
mined. The receiver operating characteristic (ROC) curve 
and area under the curve (AUC) were used to compare 
the predictive values of the WHO mutational catalogue 
and GenoMycAnalyzer datasets. All statistical analy-
ses were performed using SPSS version 29 (IBM Corp., 
Armonk, NY, USA).

Dataset collection and availability of the GenoMycAnalyzer
The inclusion criteria encompassed Mycobacterium spp. 
meeting the following conditions: isolates not used in the 
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training of the WHO mutational catalogue, isolates with 
sequencing depth of 100 or more, and isolates with spe-
cies information or pDST results. The pDST measure-
ment method was not considered. According to these 
criteria, we collected a dataset of 8,259 Illumina raw 
sequence reads for which laboratory-based metadata 
were available from public datasets. Raw sequence data 
were downloaded from the European Nucleotide Archive 
(ENA), Sequence Read Archive (SRA), or DDBJ Sequence 
Read Archive. Among the datasets, those of 1,284 isolates 
were used to evaluate the accuracy of species identifica-
tion, and those of 5,473 isolates with pDST results for at 
least one antituberculosis drug were used to evaluate the 
performance in predicting drug resistance. In addition, 
the datasets of 1,935 and 54 isolates were used to evalu-
ate the accuracy of lineage and spoligotype predictions, 
respectively. Therefore, the data used for validation of 
each functionality comprise different datasets. Accession 
numbers and corresponding metadata are listed in Addi-
tional file 2: Table S4.

The GenoMycAnalyzer is accessible at https://​www.​
mycoc​hase.​org/. This software is compatible with Win-
dows, macOS, and Linux operating systems and is 
released under the GNU General Public License 3.0. The 
manual for the software can be found via the “help” tab 
on the GenoMycAnalyzer website and is accessible with-
out the need to register or log in. Additionally, the source 
code for the data processing pipeline is available in the 
GitHub repository at https://​github.​com/​IRCGP-​Lab/​
GenoM​ycAna​lyzer_​Source.

Data encryption and privacy
The GenoMycAnalyzer server encrypts all transmis-
sions using the Fernet module from the cryptography 
package (https://​github.​com/​pyca/​crypt​ograp​hy). Fernet 

employs the Advanced Encryption Standard (AEC) algo-
rithm for encryption, ensuring that encrypted data can-
not be accessed without the key. This provides users with 
robust, secure communication with the web server.

Results
Pipeline overview
GenoMycAnalyzer is a freely available web-based pipe-
line for users to analyze Mycobacterium genomes. The 
unique features of the GenoMycAnalyzer are listed in 
Table 1. The GenoMycAnalyzer consists of five sequential 
steps: 1) pre-processing and quality control, 2) species 
identification and molecular typing, 3) variant calling and 
annotation, 4) gDST, and 5) visualization and report gen-
eration (Fig. 1). GenoMycAnalyzer ingests single-end or 
paired-end fastq files generated by Illumina instruments 
as input, and supports the multiple file uploads and batch 
analyses. In the pre-processing step, GenoMycAnalyzer 
removes sequencing adaptors, low-quality bases, and 
sequencing reads originating from the host genome. Sub-
sequently, the filtered reads are classified to the species 
level using a custom-built database that includes both 
MTBC and NTM sequences. If the isolate is predicted to 
be MTBC, GenoMycAnalyzer is used to perform subse-
quent analyses, such as lineage and spoligotype predic-
tion, variant calling, annotation, and RAV identification. 
Notably, detected variants can be interactively inspected 
using the IGV browser [15], which helps determine the 
false-positive or false-negative calls. Finally, the analy-
sis results are summarized in a report and downloaded 
in PDF file format. The run time for a sample with a 
sequencing depth of 300-fold is approximately 15  min. 
The uploaded data and processed files are retained on the 
server for three months. The GenoMycAnalyzer is avail-
able at http://​www.​mycoc​hase.​org.

Table 1  Features of GenoMycAnalyzer

Feature Description

Quality control ● Provide various quality control statistics, including sequencing depth and mapping status

Identification ● Identify MTBC and NTM at species levels based on Kraken2
● Provide improved species prediction based on a custom-built database

Molecular typing ● Provide lineage prediction based on genome-wide SNPs
● Provide spoligotype based on the direct repeat locus

Genotypic DST ● Provide gDST results for 15 antituberculosis drugs using the WHO mutational catalogue
● Detection of large deletions associated with drug resistance

Visualization ● Detected RAVs are visualized in a Circos plot, along with the sequencing depth of the cor‑
responding gene
● Integrate the IGV browser to visualize and review the detected variants

Report ● Provide pdf formatted report with sample details, assay details, and genomic characteris‑
tics
● Users can edit additional comment in the report

Flexibility ● Users can modify the analysis parameters
● Users can add newly discovered RAVs to the knowledge database

https://www.mycochase.org/
https://www.mycochase.org/
https://github.com/IRCGP-Lab/GenoMycAnalyzer_Source
https://github.com/IRCGP-Lab/GenoMycAnalyzer_Source
https://github.com/pyca/cryptography
http://www.mycochase.org
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SNP‑based genotypic DST performance 
of GenoMycAnalyzer
The GenoMycAnalyzer knowledge database com-
prises the 13,221 unique mutations reported in the 
WHO mutational catalogue, including 1,149 group 1 
and 2 mutations known to confer drug resistance [10]. 
To evaluate the predictive performance of the Geno-
MycAnalyzer for gDST, we analyzed 5,473 MTBC 

genomes with pDST results for at least one antituber-
culosis drug. All isolates used in this evaluation were 
independent datasets not included in the training data 
of the WHO mutational catalogue. The mean coverage 
of the sequencing depth was 193.6x, with an average 
of 97.6% of bases covered by at least 50 reads in each 
isolate. The completeness of the pDST results differed 
depending on the drug, with the highest rates observed 

Fig. 1  GenoMycAnalyzer pipelines. A The GenoMycAnalyzer platform includes five modules: pre-processing, identification, variant calling, 
genotypic DST, and visualization and report. (B-D) Example of WGS analyzed by GenoMycAnalyzer. B Partial result of the ’Analysis Summary’ 
is displayed. The strain is identified as M. tuberculosis, with lineage (2.2.1) and spoligotype (000000000003771). Genotypic DST for 15 types 
of antimicrobial drugs is color-coded (resistant: red, susceptible: green). A Circos plot represents the sequencing coverage depth and detected 
variants for 17 genes harboring group 1 or 2 mutations. C Among the detected variants, overlapped variants with the WHO mutational catalogue 
are shown in ‘RAV (resistance-associated variants)’. D The reads mapping status of gyrA p.D94G, which confers resistance to fluoroquinolone, 
is shown in IGV implemented in GenoMycAnalyzer
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for the first-line drugs, rifampicin (94.4%), isoniazid 
(94.2%), ethambutol (84.0%), and pyrazinamide (60.4%) 
(Additional file 2: Table S4). The pDST data for second-
line drugs ranged from 59.6% (streptomycin) to 1.9% 
(levofloxacin). Among the 5,473 isolates, 3,094 (56.5%) 
were pan-susceptible, 1,599 (29.2%) were multidrug-
resistant TB (MDR-TB), and 77 (1.4%) were extensively 
drug-resistant TB (XDR-TB). The remaining 703 iso-
lates (12.8%) were resistant to at least one drug. Four 
drugs were excluded from the evaluation because of the 
lack of RAVs (bedaquiline and clofazimine) or pheno-
typically resistant isolates (linezolid and delamanid).

Overall, the GenoMycAnalyzer gDST for first-line 
drugs exhibited excellent predictive values (Fig.  2 and 
Table  2): 95.9% sensitivity and 97.3% specificity for 
rifampicin, 91.0% sensitivity and 97.7% specificity for iso-
niazid, and 89.9% sensitivity and 91.9% specificity for eth-
ambutol. The sensitivity for pyrazinamide was lower than 
that for other first-line drugs (79.6% sensitivity and 96.2% 
specificity), which is consistent with a previous report 
[10]. The predictive values for second-line drugs varied 
for each drug, with sensitivities ranging from 98.2% (lev-
ofloxacin) to 74.9% (capreomycin) and specificities rang-
ing from 98.7% (amikacin) to 79.5% (ethionamide) (Fig. 2 
and Table 2). The sensitivity for assigning MDR-TB and 

XDR-TB was 88.2% (95% CI 86.5–89.7%) and 83.1% (95% 
CI 72.9–90.7%), respectively.

Next, we calculated the differences in AUC between 
the GenoMycAnalyzer and WHO mutational catalogue 
datasets and found that the predictive values for pyrazi-
namide, levofloxacin, and kanamycin were significantly 
better than those reported in the WHO mutational cata-
logue (Additional file  1: Table  S5). In contrast, the pre-
dictive values for streptomycin and ethionamide were 
poorer than those of the WHO mutational catalogue. The 
predictive values for the remaining six drugs were not 
significantly different from those reported in the WHO 
mutational catalogue, suggesting the non-inferiority of 
the GenoMycAnalyzer (Additional file 1: Table S5).

Discordance analysis in resistance predictions
To gain insights into the discrepancies between pDST 
and gDST, we examined RAVs for rifampicin and isonia-
zid, for which genotypic resistance mechanisms are well 
understood. To this end, we further analyzed isolates 
for which GenoMycAnalyzer predicted resistance while 
pDST was reported as susceptible (false positive; FP), and 
vice versa (false negative; FN) using TBProfiler (Addi-
tional file 3: Table S6) [19]. GenoMycAnalyzer called 74 
FP predictions for isoniazid, and all of them had RAVs 

Fig. 2  Genomic variants associated with 11 antimicrobial drugs. Genomic alterations and phenotypic DST to rifampicin, isoniazid, ethambutol, 
pyrazinamide, levofloxacin, moxifloxacin, amikacin, capreomycin, kanamycin, streptomycin, and ethionamide are shown. Each row and column 
represents the resistance-associated gene and strain, respectively
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corresponding to group 1 or 2 mutations: katG p.S315T 
(n = 24), fabG1 c.-15C > T (n = 22), fabG1 c.-8  T > C 
(n = 14), fabG1 p.L203L (n = 7), fabG1 c.-8  T > A (n = 3), 
katG p.P429fs (n = 2), katG p.199  fs (n = 1), and katG 
p.Q471* (n = 1). Notably, all variants were consist-
ently detected using TBProfiler except for two iso-
lates. Similarly, all 101 FP predictions for rifampicin by 
GenoMycAnalyzer had RAVs corresponding to group 
1 or 2 mutations, of which 88 (87.1%) were concordant 
with those of TBProfiler. The most frequent RAV for 
rifampicin FP predictions were rpoB p.S450L (n = 26) and 
p.I491F (n = 26), followed by p.L452P (n = 12), p.L430P 
(n = 8), and p.H445N (n = 5).

Among the 208 FN predictions for isoniazid, 130 iso-
lates (62.5%) were identified as resistant, whereas the 
remaining 78 isolates (37.5%) were consistently predicted 
as susceptible (false negative) by TBProfiler (Additional 
file 3: Table S6). Notably, most variants detected in iso-
lates predicted to be resistant by TBProfiler were also 
detected using GenoMycAnalyzer (n = 105, 80.8%); how-
ever, they were group 3 (uncertain significance) muta-
tions (n = 98) or mutations not included in the WHO 
mutational catalogue (n = 7). Overall, 88.0% of the 

isoniazid FN predictions were concordant with TBPro-
filer. Regarding rifampicin, 62 of the 73 FN predictions 
made by GenoMycAnalyzer (84.9%) were concordant 
with those made by TBProfiler.

Detection of large deletions increases the sensitivity 
of gDST
GenoMycAnalyzer identified 25 large deletions in katG 
(0.5%), 58 in pncA (1.8%), 69 in gid (2.1%), and nine in 
ethA (0.8%). In contrast, when large deletions were pre-
dicted using DELLY, the number of large deletions 
detected was higher than that identified using the Geno-
MycAnalyzer: 114 in katG (2.2%), 36 in pncA (1.1%), 90 
in gid (2.8%), and 33 in ethA (2.9%). Most large deletions 
detected by the GenoMycAnalyzer (63.0%) overlapped 
with those detected by DELLY, whereas 60 large deletions 
were specific to the GenoMycAnalyzer (Fig.  3A). Man-
ual inspection using IGV confirmed that all deletions 
detected by the GenoMycAnalyzer were true positives; 
however, only 35.1% of the DELLY-specific deletions were 
true positives (Fig. 3B-D and Additional file 4: Table S7). 
Comparisons of large deletions with the pDST results 
revealed that GenoMycAnalyzer had a PPV of 100% for 

Table 2  Performances of GenoMycAnalyzer for genotypic drug susceptibility testing

a Present is the number of isolates with resistance-associated variants that overlap with high-confidence variants (grade 1 or 2) of the WHO mutational catalogue

RAV resistance-associated variant
b To calculate the predictive performances of GenoMycAnalyzer, pDST was assumed to be the gold standard

PPV positive predictive value, NPV negative predictive value

Drug Phenotypically resistant Phenotypically susceptible Performancesb

RAVa Total RAVa Total Sensitivity
(95% CI)

Specificity
(95% CI)

PPV
(95% CI)

NPV
(95% CI)

Present Absent Present Absent

Rifampicin 1688 73 1761 93 3315 3408 95.9%
(94.8%-96.7%)

97.3%
(96.7%-97.8%)

94.8%
(93.7%-95.7%)

97.9%
(97.3%-98.3%)

Isoniazid 1827 181 2008 71 3075 3146 91.0%
(89.7%-92.2%)

97.7%
(97.2%-98.2%)

96.3%
(95.3%-97.0%)

94.4%
(93.7%-95.1%)

Ethambutol 998 112 1110 284 3201 3485 89.9%
(88.0%-91.6%)

91.9%
(90.9%-92.7%)

77.9%
(75.8%-79.7%)

96.6%
(96.0%-97.2%)

Pyrazinamide 747 191 938 89 2276 2365 79.6%
(76.9%-82.2%)

96.2%
(95.4%-97.0%)

89.4%
(87.2%-91.2%)

92.3%
(91.3%-93.1%)

Levofloxacin 53 1 54 2 48 50 98.2%
(90.1%-100.0%)

96.0%
(86.3%-99.5%)

96.4%
(87.2%-99.0%)

98.0%
(87.3%-99.7%)

Moxifloxacin 137 13 150 118 560 678 91.3%
(85.6%-95.3%)

82.6%
(79.5%-85.4%)

53.7%
(49.5%-58.0%)

97.7%
(96.2%-98.6%)

Amikacin 213 45 258 14 1042 1056 82.6%
(77.4%-87.0%)

98.7%
(97.8%-99.3%)

93.8%
(90.0%-96.3%)

95.9%
(94.7%-96.8%)

Capreomycin 200 67 267 42 1104 1146 74.9%
(69.3%-80.0%)

96.3%
(95.1%-97.4%)

82.6%
(77.8%-86.6%)

94.3%
(93.1%-95.3%)

Kanamycin 465 39 504 25 1129 1154 92.3%
(89.6%-94.4%)

97.8%
(96.8%-98.6%)

94.9%
(92.7%-96.5%)

96.7%
(95.5%-97.5%)

Streptomycin 762 216 978 110 2176 2286 77.9%
(75.2%-80.5%)

95.2%
(94.2%-96.0%)

87.4%
(85.2%-89.3%)

91.0%
(90.0%-91.9%)

Ethionamide 280 73 353 158 611 769 79.3%
(74.7%-83.4%)

79.5%
(76.4%-82.3%)

63.9%
(60.4%-67.3%)

89.3%
(87.2%-91.2%)
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isoniazid, 93.1% for pyrazinamide, 79.7% for strepto-
mycin, and 44.4% for ethionamide, whereas DELLY had 
a PPV of 71.9% for isoniazid, 83.3% for pyrazinamide, 
75.6% for streptomycin, and 24.2% for ethionamide 
(Additional file 1: Table S8). The sensitivity of the Geno-
MycAnalyzer gDST, including large deletions, improved 
to 92.0, 84.5, 83.3, and 80.2% for isoniazid, pyrazinamide, 
streptomycin, and ethionamide, respectively.

Species identification performance of GenoMycAnalyzer
To identify MTBC and NTM at the species level, Gen-
oMycAnalyzer was integrated with the Kraken2 and 
Braken software [26]. To evaluate the accuracy of species 
identification, we analyzed 1,284 mycobacterial genomes, 
including 69 isolates of MTBCs and 1,215 isolates of 39 
NTM species [20, 37]. The GenoMycAnalyzer reliably 
distinguished between MTBC and NTM at the species 
level, achieving an accuracy of 98.8% (1,268 concordant 
results out of 1,284 isolates), whereas the accuracy of the 
Kraken2 built-in database was 90.0% (1,156 concordant 
results out of 1,284 isolates) (Additional file 1: Table S9). 
Furthermore, the GenoMycAnalyzer successfully iden-
tified isolates that had not previously been identified at 
the species level in the NCBI database. This included an 

isolate labeled M. avium complex sp. CF00315-00498, in 
which the GenoMycAnalyzer was identified as M. mar-
seillense. However, at the subspecies level, the identifica-
tion performance of GenoMycAnalyzer was significantly 
lower than its species-level identification performance 
(508 concordant results out of 803 isolates; 63.3%) 
(Additional file  1: Table  S10). For example, of the 494 
isolates reported as M. abscessus subsp. abscessus, 296 
(59.9%) were identified as the same subspecies, whereas 
the remaining 198 isolates were identified as M. absces-
sus subsp. massiliense within the same species. Similarly, 
three out of the 37 isolates reported as M. intracellulare 
subsp. chimaera were identified as M. intracellulare. 
Although incorrect classifications at the subspecies level 
were identified within the same species (Additional file 1: 
Table S10), these results suggest that GenoMycAnalyzer 
subspecies identification may not be optimal. Therefore, 
GenoMycAnalyzer reports MTBC and NTM at the spe-
cies level without further subspecies identification.

Lineage and spoligotype predictions
The lineage of MTBC isolates can be determined based 
on SNP differences [31, 32]. To evaluate the accu-
racy of the lineage-prediction module implemented in 

Fig. 3  Evaluation of large deletions detected by GenoMycAnalyzer and DELLY. A Venn diagram of the large deletions detected 
by GenoMycAnalyzer and DELLY. Large deletions confirmed as true positive by manual inspection are displayed in gray. B-D Examples of large 
deletions detected in gid (B), pncA (C), katG (D), and ethA (E). In each example, the top (1), middle (2), and bottom (3) panels represent large 
deletions detected by GenoMycAnalyzer only, both tools, and DELLY only, respectively. The x-axis represents genomic position, and the y-axis 
represents sequencing depth. The black arrows indicate the breakpoint of a large deletion. GenoMycAnalyzer detects large deletions at the gene 
level. Accession numbers for the B-1 to E-3 are SRR958195, ERR718365, SRR6824567, SRR6824340, SRR6824578, ERR040134, SRR6824287, ERR040137, 
ERR867540, SRR924218, ERR038737, and SRR6824300, respectively
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GenoMycAnalyzer, we analyzed 1,935 MTBC isolates 
with phylogenetically determined lineages [31]. A total 
of 84 lineages/sub-lineages were identified, all of which 
were concordant with previously reported lineages 
(Additional file 5: Table S11).

GenoMycAnalyzer predicts spoligotypes based on 
43 spacer sequences of the direct repeat locus in the 
MTBC genome. We analyzed 54 MTBC isolates with 
experimentally determined spoligotypes [38] and identi-
fied 20 different spoligotypes. Notably, spoligotype pre-
dictions using the GenoMycAnalyzer were concordant 
with the laboratory-determined spoligotypes for all iso-
lates, resulting in an accuracy of 100% (Additional file 1: 
Table S12).

Discussion
In this study, we present a high-confidence automated 
bioinformatic tool we dubbed the GenoMycAnalyzer. We 
present extensive validation of this tool, which analyzes 
MTBC WGS data to provide gDST for 15 antituberculo-
sis drugs using the WHO mutational catalogue [10] and 
large deletions [33]. GenoMycAnalyzer also offers spe-
cies-level identification of MTBC and NTM, prediction 
of the MTBC lineage and spoligotype, and visualization 
of the detected variants. In a clinical setting, WGS data 
obtained after patient sample processing could be auto-
matically processed through this pipeline which would 
present a user-friendly interface and deliver results in 
standard lab format.

The WHO mutational catalogue is the most compre-
hensive knowledge base of mutations associated with 
MTBC drug resistance and assigns a confidence grade to 
one of five groups for each variant [10]. Group 1 and 2 
mutations present in the catalogue accurately predicted 
resistance and strongly correlated with pDST for most 
drugs [10], and GenoMycAnalyzer reports strains har-
boring group 1 or 2 as resistant. One of the limitations 
of the WHO mutational catalogue is that it has not been 
validated using an independent dataset [10]. Using the 
GenoMycAnalyzer, we confirmed the excellent discrimi-
native ability of drug resistance for most antituberculosis 
drugs, even in an independent large dataset. Specifi-
cally, the AUC of GenoMycAnalyzer showed equivalent 
(rifampicin, isoniazid, ethambutol, moxifloxacin, ami-
kacin, and capreomycin) or better (pyrazinamide, levo-
floxacin, and kanamycin) prediction performances than 
those reported by the WHO mutational catalogue, thus 
confirming the non-inferiority of the GenoMycAnalyzer.

In some cases, it is noteworthy that mutations reported 
in the WHO mutational catalogue and those detected 
in this study overlap at the amino acid level but are dis-
cordant at the nucleotide level. For example, nucleotide 
change of embB p.Met306Ile conferring ethambutol 

resistance is ‘c.918G > A’ in the WHO catalogue, whereas 
‘c.918G > C’ causing the identical p.Met306Ile was recur-
rently detected in our ethambutol-resistant isolates. 
Likewise, katG c.944G > C (p.Ser315Thr), rpsL c.128A > G 
(p.Lys43Arg), and rpoB c.1349C > T (p.Ser450Leu) iden-
tified in this study overlapped at the amino acid level, 
but were discordant at the nucleotide level. This obser-
vation could be related to the inherent redundancy in 
the genetic code, suggesting that clinicians assessing or 
diagnosing gDST using the present version of the WHO 
mutational catalogue should exercise caution to prevent 
misdiagnoses.

Large deletions lead to the loss of genetic material, can 
disrupt protein function, and are sporadically observed in 
drug resistance-related genes such as katG and pncA [39, 
40]. Using WGS data, GenoMycAnalyzer successfully 
detected large deletions with varying frequencies in katG 
(0.5%), pncA (1.8%), gid (2.1%), and ethA (0.8%). Notably, 
large deletions were mutually exclusive to resistance-con-
ferring mutations. When large deletions were included, 
the gDST sensitivity to pyrazinamide and streptomycin 
increased by 4.9% and 5.4%, respectively. In addition, 
more than half of the isolates with pncA large deletions 
belonged to the East Asian lineage (lineage 2, 38 of 58 
isolates with large pncA deletion, 65.5%), consistent with 
previous findings [28]. These results suggest that the use 
of WGS data in clinical settings may provide advantages 
for diagnosing drug-resistant MTBC by simultaneously 
detecting large deletions and resistance-conferring vari-
ants that are difficult to detect using conventional PCR.

Identifying NTMs at the species level is important for 
effective treatment [41]. Kraken2 is effective in iden-
tifying mixed NTM infections, with the highest sensi-
tivity and specificity among the tested analytical tools 
[42–44]. However, species prediction by Kraken2 using 
a built-in database revealed that only 90% of the tested 
isolates matched their known species, and most of the 
mismatches were due to the absence of NTM sequences 
within the database (Additional file  1: Table  S9). These 
include M. colombiense, M. asiaticum, and M. mal-
moense, which cause human infections [45–47]. In con-
trast, GenoMycAnalyzer uses a custom-built database 
that adds 107 NTM sequences, and its species identifica-
tion accuracy is as high as 98.8%. The GenoMycAnalyzer 
has two additional functionalities that are important 
for mycobacterial analysis. First, the GenoMycAnalyzer 
includes a molecular typing function, and large-scale 
validation confirmed accurate lineage and spoligotype 
predictions. These features may be useful for epidemio-
logical surveillance of mycobacteria [31, 48]. Second, the 
GenoMycAnalyzer integrates the IGV browser to visual-
ize the detected variants. Manual inspection using IGV 
may allow investigators to assess variants efficiently, 
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serving as a potent method for validating variant calls 
and reducing false positives while confirming true find-
ings [15].

An inherent limitation of this study is that the gDST 
predictions between software programs may be incon-
sistent. These discrepancies could arise from the cohort 
used for the analysis, incorrect pDST data, lack of stand-
ardization of the bioinformatics pipeline, or different 
knowledge databases. Given that most of the differences 
between GenoMycAnalyzer and TBProfiler results were 
due to group 3 variants, further evaluation of group 3 
mutations is required. In addition, we did not evaluate 
the four drugs because of a lack of resistance-conferring 
mutations or phenotypically resistant isolates. Further 
studies in a larger cohort are required to discover novel 
resistance-conferring mutations and elucidate the under-
lying resistance mechanisms. GenoMycAnalyzer includes 
a function for users to edit the knowledge database, 
which serves as a valuable bridge until regular database 
updates occur. Finally, although the GenoMycAnalyzer 
accurately distinguished clinically important mycobac-
teria at the species level, further efforts are needed to 
improve the accuracy of subspecies identification.

Conclusions
GenoMycAnalyzer software provides flexible and rapid 
analysis of WGS data from the Illumina platform to 
predict species, drug resistance, and molecular profiles 
with high accuracy. GenoMycAnalyzer also offers both 
web-based and GUI interfaces, which can help biolo-
gists with limited access to high-performance computing 
systems or limited bioinformatics skills. Ultimately, by 
streamlining the interpretation of WGS data, the Geno-
MycAnalyzer has the potential to significantly impact TB 
management and contribute to global efforts to combat 
this infectious disease.
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