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Abstract 

Background  Current approaches to profile the single-cell transcriptomics of human pancreatic endocrine cells 
almost exclusively rely on freshly isolated islets. However, human islets are limited in availability. Furthermore, 
the extensive processing steps during islet isolation and subsequent single cell dissolution might alter gene expres-
sions. In this work, we report the development of a single-nucleus RNA sequencing (snRNA-seq) approach with tar-
geted islet cell enrichment for endocrine-population focused transcriptomic profiling using frozen archival pancreatic 
tissues without islet isolation.

Results  We cross-compared five nuclei isolation protocols and selected the citric acid method as the best strategy 
to isolate nuclei with high RNA integrity and low cytoplasmic contamination from frozen archival human pancreata. 
We innovated fluorescence-activated nuclei sorting based on the positive signal of NKX2-2 antibody to enrich nuclei 
of the endocrine population from the entire nuclei pool of the pancreas. Our sample preparation procedure gener-
ated high-quality single-nucleus gene-expression libraries while preserving the endocrine population diversity. In 
comparison with single-cell RNA sequencing (scRNA-seq) library generated with live cells from freshly isolated human 
islets, the snRNA-seq library displayed comparable endocrine cellular composition and cell type signature gene 
expression. However, between these two types of libraries, differential enrichments of transcripts belonging to differ-
ent functional classes could be observed.

Conclusions  Our work fills a technological gap and helps to unleash frozen archival pancreatic tissues for molecular 
profiling targeting the endocrine population. This study opens doors to retrospective mappings of endocrine cell 
dynamics in pancreatic tissues of complex histopathology. We expect that our protocol is applicable to enrich nuclei 
for transcriptomics studies from various populations in different types of frozen archival tissues.
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Background
The pancreas is a complex organ with two major ele-
ments: the exocrine component and the endocrine 
component. The exocrine component, which is 95% of 
the pancreatic mass, produces and secretes digestive 
enzymes into the small intestine. The endocrine compo-
nent of the pancreas, which is less than 5% of the pancre-
atic mass, secretes hormones into the blood to regulate 
glucose homeostasis. The functional and structural unit 
of the endocrine pancreas is the islet of Langerhans. 
Islets contain five endocrine cell types: glucagon-pro-
ducing alpha cells, insulin-producing beta cells, somato-
statin-producing delta cells, ghrelin-producing epsilon 
cells, and pancreatic polypeptide-producing PP cells. The 
endocrine pancreas is the central focus of research in 
type 1 (T1D) and type 2 diabetes (T2D) [1–3].

Because of the diverse cellular components of the endo-
crine pancreas, bulk assays cannot dissect the cell type-
specific biological signatures. In recent years, there has 
been an explosion of single-cell RNA-seq (scRNA-seq) 
studies aiming to profile in depth the human endocrine 
pancreas in development and disease at the single-cell 
resolution [4–13]. These studies have brought unprece-
dented insights into islet biology [13]. However, the start-
ing material of these scRNA-seq studies is mostly freshly 
isolated pancreatic islets — a limited and expensive 
resource that comes with several challenges: (1) The long 
and laborious islet isolation procedure may alter the islet-
cell cellular states and their gene expression profile [14]. 
(2) Post isolation, islets are transported to recipient labo-
ratories and cultured in  vitro for days before enzymatic 
dissociation for scRNA-seq experiments [15]. These 
procedures themselves may induce cellular stress that 
results in changes in gene expression programs [16, 17]. 
(3) Successful islet isolation relies on optimal collagenase 
digestion [18]. Various factors influence the efficiency of 
collagenase digestion, notably the integrity and composi-
tion of the peri-insular basement membrane, which con-
sists of different types of collagens and other extracellular 
matrix proteins [19]. The variations in the peri-insular 
basement membrane in younger donors, in donors with 
T1D, and in donor pancreata with various pathologies 
render islet isolation extremely challenging [20, 21]. (4) 
The complete dependence on islets isolated from fresh 
pancreatic tissues for scRNA-seq misses the opportunity 
to utilize the rich frozen archival tissues available in pan-
creatic tissue biobanks such as the Network for Pancre-
atic Organ Donors with Diabetes (nPOD) [22].

Recently, a few protocols were developed for scRNA-
seq profiling on fixed cells [23, 24] or frozen islets [25, 
26]. However, these protocols still rely on the isolation of 
live islet cells in the first place for targeted interrogation 
of islet endocrine cells, and hence do not overcome the 

limitations of islet isolation detailed above. To effectively 
utilize the existing large collections of biobank pancreatic 
tissues with no islet isolation, we present our workflow 
of single-nucleus RNA-seq (snRNA-seq) combining opti-
mized nuclei isolation with fluorescence-activated nuclei 
sorting (FANS) based on NKX2-2 to enrich pancre-
atic endocrine cells from frozen human pancreata. Our 
method bypasses the need for isolating islets and makes 
it possible to utilize frozen archived pancreatic tissues 
including tissues from various pancreatic pathologies 
for transcriptomic profiling focused on the endocrine 
system.

Methods
Nuclei isolation from frozen human pancreas
Five protocols potentially compatible with nuclei iso-
lation and RNA sequencing were cross-compared: 
Frankenstein protocol [27], ATAC-seq protocol [28], 
sNucDrop-seq protocol [29], GRO-seq protocol [30, 31], 
and citric acid protocol [32]. Frozen mouse pancreata 
were used for protocol comparison. Each protocol was 
performed as described in their original publications. In 
all protocols, the nuclei isolation steps were performed 
on ice. Detailed protocols are included in the Supplemen-
tary method and step-by-step protocol.

After isolating nuclei using each protocol, a portion of 
the sample was counted with a hemocytometer to assess 
nuclei yield. To evaluate nuclei purity, the remaining 
nuclei were labeled with DAPI (1 μg/ml) and celltracker 
red (1:2000, ThermoFisher Scientific, C34552) for 30 min 
on ice and imaged under an Olympus microscope at 
40 × magnification.

Based on the yield, purity, and mRNA quality of iso-
lated nuclei (see RESULTS), we selected the citric acid 
method for all subsequent experiments using frozen 
archival human pancreas as input.

Nuclei labeling and purification
Isolated nuclei were immediately fixed and permeabilized 
by ice cold methanol at -20  °C for 10  min. Nuclei were 
washed twice in the resuspension buffer (1× PBS, 1% 
BSA + 10% glycerol + 0.2 U/μl RNase inhibitor). Nuclei 
were then labeled with the primary antibody against 
NKX2-2 (DSHB, 74.5A5, 1:100) and Cy3 donkey-anti-
mouse secondary antibody (Jackson ImmunoResearch, 
715-165-151, 1:200). Subsequently, nuclei were stained 
with DAPI at a final concentration of 1  μg/ml. Right 
before FANS, nuclei were filtered through a 35  μm cell 
strainer. BD FACSAria with a 100 μm nozzle was used for 
targeted nuclei sorting. Sorted nuclei were loaded onto 
a 10× Genomics Chromium Next GEM Chip G (10X 
Genomics, PN1000127). Detailed procedure is included 
in the step-by-step protocol.
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snRNA‑seq library preparation and sequencing
snRNA-seq libraries were prepared from three donors. 
Details of the donors’ demographic information is shown 
in Table S1. Libraries were prepared following the manu-
facturer’s protocol (Chromium Next GEM Single Cell 3’ 
Reagent Kits v 3.1, CG000315). Libraries were sequenced 
on an Illumina Novaseq 6000 instrument.

snRNA‑seq and scRNA‑seq data analysis
FASTQ files were aligned to GRCh38-3.0.0 using Cell 
Ranger V.5.0.1 and Include introns = TRUE. The raw gene 
expression matrices were input to Soup X 1.6.2 [33] for 
ambient RNA removal using autoEstCont to automati-
cally estimate the contamination fraction. Contamination 
was removed from the original count matrix to generate 
a corrected gene expression matrix. All the downstream 
analysis was performed in Seurat V4.3.0 [34], with the 
corrected gene expression matrix as input. Data quality 
control (QC), integration, dimension reduction, cluster-
ing, and cell type calling were performed with Seurat 
similarly as previously described [35, 36].

For the snRNA-seq data, the individual dataset was 
first filtered with minimal reads of 200 and a maximum 
percentage of mitochondrial reads of 5%. To compare the 
snRNA-seq data from the frozen pancreas between non-
enriched and NKX2-2+ enriched populations, the two 
libraries were normalized with SCTransform and inte-
grated using the anchor-based method by sequentially 
calling for SelectIntegrationFeatures, PrepSCTIntegra-
tion, FindIntegrationAnchors, and IntegrateData, all with 
default parameters. RunPCA, RunUMAP, FindNeighbors, 
and FindClusters were then performed on the integrated 
assay. A resolution of 0.4 was used for cell clustering. 
Cell type classification was based on the expression of 
canonical pancreatic markers in each cluster: GCG for 
alpha cells, INS for beta cells, SST for delta cells, GHRL 
for epsilon cells, PPY for PP cells, CFTR for ductal cells, 
CPA2 for acinar cells, SPARC for fibroblasts, VWF for 
endothelial cells, PTPRC for immune cells, and BRCA1 
for proliferating cells. One population coexpressing mul-
tiple cell type markers was categorized as doublets.

Raw scRNA-seq (HPAP080_sc) FASTQ data was down-
loaded from PANC-DB [37]. The scRNA-seq data were 
aligned to GRCh38-3.0.0 and corrected for ambient RNA 
as described above for snRNA-seq data. The resulting 
gene expression matrix was filtered with minimal reads of 
200 and a maximum percentage of mitochondrial reads 
of 15%. The scRNA-seq (HPAP080_sc) and snRNA-seq 
(HPAP080_sn) data were then integrated and annotated 
using the same process described above for integrating 
snRNA-seq datasets. For visualization, the two datasets 
were projected to the Human Pancreas Reference from 

Azimuth using FindTransferAnchors and MapQuery with 
default parameters.

The proportions of spliced and unspliced counts in the 
snRNA-seq and scRNA-seq libraries were computed by 
invoking velocyto run10x [38] with cellranger prebuilt 
GRCh38-3.0.0 GTF file and default parameters.

Differential expression analysis
Differential expression analyses were performed using 
the limma-trend method [39] and a threshold of 
FDR < 0.01 and log2FC > 1 was used in all comparisons to 
select significantly differentially expressed genes.

To derive signature genes in pancreatic endocrine cells, 
the panc8 dataset available as Seurat Data [6–8, 11, 40] 
was utilized. The design matrix was coded as model.
matrix(~ Condition + Tech). Condition includes endo-
crine cells (alpha, beta, delta, epsilon, and PP) and others 
(ductal, acinar, endothelial, fibroblast, macrophage, mast, 
and schwann); and Tech indicates the different single-
cell chemistries. A contrast fit was applied to compare 
endocrine cells to others. To prioritize nuclear-enriched 
proteins, the resulting list was intersected with the list of 
transcription factors downloaded from the Human Pro-
tein Atlas [41].

To calculate marker gene cell-type specificity, we com-
puted the tau score based on the average gene expression 
of each marker gene in each cell type. The tau score was 
calculated as follows [42, 43]:

Where Xi is the average expression of the gene in cell 
type i and n is the number of cell types. Cell types here 
refer to the cell type in each donor condition (for exam-
ple, beta cells in T2D and beta cells in T1D are consid-
ered two different cell types). A tau score of 0 means 
ubiquitous expression whereas a tau score close to 1 
means the transcript is highly cell-type specific.

Cell type signatures were derived in the snRNA-seq 
and scRNA-seq data separately. Within each dataset, the 
design matrix was coded as model.matrix(~ 0 + Celltype) 
with Celltype being different cell type labels. To compare 
an endocrine cell type of interest, e.g., alpha cells, to all 
of the other endocrine cell types, the contrast matrix was 
coded as makeContrasts(alpha_vs_others = Celltypeal-
pha  -  (Celltypebeta + Celltypedelta + Celltypepp)/3, lev-
els = colnames(design)). Integrated expressions of the 
union of the cell type signature genes were used to con-
struct the heatmap in Fig. 4F.

To compare snRNA-seq with scRNA-seq data, differ-
ential expression analysis was performed in each cell type 

τ =

n

i=1
1− xi

n− 1
; xi =

xi

max
1≤i≤n

(xi)
.
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with a design matrix as model.matrix(~ 0 + tech) with 
tech being snRNA-seq or scRNA-seq.

Rank‑rank hypergeometric overlap
Rank–rank hypergeometric overlap (RRHO) is a thresh-
old-free method aiming to compare gene expression pro-
files across two gene lists that were ranked by the degree 
of differential expression from two separate differential 
expression analyses [44]. The original RRHO method was 
further modified to improve the interpretability when 
the differential expression patterns are discordant in the 
two gene lists [45]. The input gene lists for RRHO were 
ranked by the log2FC (computed by limma-trend, see 
above) comparing the gene expressions of each endo-
crine cell type with all the other endocrine cell types in 
the snRNA-seq or scRNA-seq library.

Immunostaining
Frozen pancreatic sections were fixed with ice-cold meth-
anol for 10 min at -20°C. The following primary antibod-
ies and dilutions were used: anti-INSULIN (Invitrogen, 
701265, 1:300), anti-GLUCAGON (Santa Cruz Biotech-
nology, sc-514592-AF546, 1:100), anti-SOMATOSTATIN 
(Santa Cruz Biotechnology, sc-7819, 1:300), anti-GHRE-
LIN (Santa Cruz Biotechnology, sc-10368, 1:500), anti-
PANCREATIC POLYPEPTIDE (Abcam, ab77192, 1:500), 
anti-NKX2-2 (DSHB, 74.5A5, 1:25). The following sec-
ondary antibodies were used: Cy2-anti-rabbit (Jackson 
ImmunoResearch, 711–225-152), Cy2-anti-goat (Jackson 
ImmunoResearch, 705–225-147), Cy3-anti-mouse (Jack-
son ImmunoResearch, 715–165-151), Cy5-anti-rabbit 
(Jackson ImmunoResearch, 711–175-152), and Cy5-anti-
mouse (Jackson ImmunoResearch, 115–175-207). All 
secondary antibodies were applied at 1:200 dilution. Slide 
scanning images were taken with an Olympus micro-
scope at 20x/0.75NA. Confocal images were captured 
with a Zeiss at 20x/0.75NA.

Results
Comparison of five nuclei isolation methods
Several groups have demonstrated the feasibility of iso-
lating nuclei from frozen tissues followed by RNA-seq 
[32, 46–50]. However, existing nuclei isolation protocols 
vary in yield, purity, and procedure complexity, relying on 
homemade solutions or commercial kits. To explore the 
best strategy to isolate nuclei from frozen archival pan-
creatic tissues, we compared five widely used nuclei isola-
tion methods: (1) the Frankenstein method [27]; (2) the 
ATAC-seq method [28, 51]; (3) the sNucDrop-seq proto-
col method [29]; (4) the GRO-seq method [30, 31]; and 
(5) the citric acid method [32, 52]. To evaluate the perfor-
mance of the different protocols, we utilized snap-frozen 
mouse pancreata. To assess whether the isolated nuclei 

were free of cytoplasmic contamination, we stained 
them with DAPI to label DNA and CellTracker Red to 
label cytoplasm. We observed that all methods preserved 
nuclei integrity, as shown by the clear nuclear boundaries 
and minor blebbing under the bright field (Fig. 1A). How-
ever, the Frankenstein, ATAC-seq, and sNucDrop-seq 
methods produced nuclei with higher cytoplasmic con-
taminations compared with the GRO-seq and citric acid 
protocols (Fig.  1A and B). Furthermore, the ATAC-seq 
method had lower nuclei yield (Fig. 1C).

We proceeded to prepare two snRNA-seq libraries with 
nuclei isolated from frozen archival human pancreata 
using the two methods that generated the cleanest nuclei 
— the GRO-seq and the citric acid method. The complex-
ity and purity of the snRNA library prepared with the cit-
ric acid method were significantly higher compared with 
the library of the GRO-seq method. This is supported by 
the higher number of genes, higher number of unique 
molecular identifiers (UMIs), and the lower percentage of 
mitochondrial reads per nucleus in the citric acid library 
compared with the GRO-seq library (Fig.  1D). Further-
more, the ambient RNA percentage estimate was 25% 
for the GRO-seq library and 3% for the citric acid library 
based on SoupX [33], indicating compromised nuclei 
quality in the former and good quality in the latter. We 
subsequently used the citric acid method in all the fol-
lowing experiments.

NKX2‑2 as a pan‑endocrine marker in the human pancreas
Islet cells constitute only 5% of cells of the pancreas. To 
efficiently capture nuclei of islet cells from the total pan-
creatic nuclei pool, we reasoned that a pan-endocrine 
nuclear marker could be used to enrich the nuclei of the 
target population. To identify such a marker, we explored 
the panc8 data, which contains merged scRNA-seq data 
derived from eight human pancreatic datasets [6–8, 11, 
40]. We performed differential expression analysis com-
paring the gene expression differences between the endo-
crine cells and all the other pancreatic cell types and 
intersected the resulting differential expression gene list 
with the list of transcription factors to prioritize markers 
expressed in the nuclei. Twelve markers emerged from 
this analysis: ARX, FEV, INSM1, IRX2, ISL1, MAFB, 
MEIS2, MLXIPL, NEUROD1, NKX2-2, PAX6, and 
RFX6. Among them, INSM1, ISL1, MLXIPL, NKX2-2, 
and RFX6 display a pan-endocrine expression pattern 
(Fig. 2A). To ensure the broad usability of the pancreatic 
endocrine markers, we investigated their expressions 
in pancreatic cells associated with different patholo-
gies including autoantibody-positive (AAB+), T1D, and 
T2D. We utilized scRNA-seq data generated with 65 
donors from HPAP that were recently annotated by the 
Gaulton group [37, 53]. We confirmed that NKX2-2 is 
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consistently expressed in islet endocrine cells in control, 
AAB+ , T1D, or T2D pancreata, with one of the highest 
gene specificity tau scores (Fig.  2B). To further validate 
the ubiquitous expression of NKX2-2 at the protein level 
in the islet endocrine cells, we performed immunostain-
ing with an anti-NKX2-2 antibody on frozen human pan-
creatic tissue sections (Fig. 2C). The NKX2-2+ signal was 
detected in the nuclei of close to all islet endocrine cells, 
as shown in Fig. 2D. Our expression analysis of NKX2-2 
in the human pancreas agrees with what was previously 
reported in mice [54] and nominates NKX2-2 as a pan-
endocrine marker in the pancreas in normal and patho-
logical conditions across species.

Fluorescence‑activated nuclei sorting (FANS) to enrich 
pancreatic endocrine population for targeted snRNA‑seq 
profiling
To demonstrate the feasibility of using an anti-NKX2-2 
antibody to enrich nuclei of pancreatic islets from frozen 
archival pancreatic tissue in the snRNA-seq experiment, 

we processed two snRNA-seq libraries using frozen pan-
creatic tissue from one donor. Nuclei were isolated with 
the citric acid method and methanol fixed and permea-
bilized immediately after isolation. Methanol was used 
because it not only permeabilizes the nuclei and allows 
antibodies to access nuclear epitopes but has also been 
shown to preserve the integrity of mRNA [55, 56]. For 
one sample (non-enriched), the nuclei were subjected 
to FANS to isolate intact single nuclei based solely on 
DAPI signals; for the other sample (enriched), nuclei 
were sorted to enrich NKX2-2+ endocrine popula-
tion (Fig.  3A). Next, both samples were processed fol-
lowing the standard 10× Genomics scRNA-seq library 
preparation procedure. We evaluated the quality of 
these two snRNA-seq libraries and benchmarked these 
two libraries against two recently published snRNA-seq 
datasets [25, 32] (Fig. 3B). The complexity and purity of 
our snRNA libraries compared favorably with the cur-
rent field standard, evidenced by the higher number of 
genes and UMIs detected and the lower percentage of 

Fig. 1  Citric acid method is the best method to isolate nuclei from frozen pancreata. A Cross-comparison of five different nuclei isolation 
protocols. Isolated nuclei were labeled with DAPI (DNA, blue) and CellTracker Red (red) and imaged under a 20× epifluorescent microscope. Scale 
bars correspond to 20 μm. Inserts show zoomed-in bright field images of the nuclei pointed by arrows. B Quantification of the CellTracker Red 
signals in nuclei isolated with different methods. * indicates adjusted P value < 0.05 with one way ANOVA and Tukey post hoc. GRO-seq and citric 
acid methods generate intact and high purity nuclei with the lowest cytoplasmic contaminations. C Nuclei yield from each isolation protocol, 
normalized to 50 mg of pancreatic tissue. Error bars indicate standard errors. * indicates adjusted P value < 0.05 with one way ANOVA and Tukey 
post hoc. D Violin plots showing distributions of the number of genes/nucleus, number of UMIs/nucleus, and percentage of mitochondrial reads 
in the snRNA-seq libraries with nuclei isolated with GRO-seq method or citric acid method. Box plots inside the violins display the distribution 
of the first quartile, median, and third quartile, as well as minimum and maximum
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mitochondrial reads per nucleus in our libraries com-
pared with the other two published datasets (Fig. 3B). To 
be noted, the frozen pancreas we used here had a rela-
tively long cold ischemia time (20 h, Table S1), represent-
ative of the general timeline of human tissue and organ 
harvesting and preservation.

We integrated the snRNA-seq data from the non-
enriched and enriched samples and annotated cell 
types based on marker gene expression (Fig. 3C and D). 
All major pancreatic cell types could be detected from 

our dataset. Approximately 3% of the cells expressed 
multiple cell type markers and were annotated as dou-
blets. We confirmed that targeted enrichment based 
on NKX2-2 labeling increased the proportion of endo-
crine cells from 5.3% to 76.7% (> 14-fold enrichment) 
(Fig.  3E). Comparing the fraction of each endocrine 
cell type in these two samples, we observed that with or 
without NKX2-2-based enrichment, the cellular com-
positions were highly similar between the two samples 
(correlation coefficient r = 0.98) (Fig.  3F), confirming 

Fig. 2  NKX2-2 as a pan-endocrine marker in the human pancreas across normal and different pathological conditions. (A) The RNA expression 
levels of top 12 endocrine-cell enriched transcription factors in different human pancreatic cell types. INSM1, ISL1, MLXIPL, NKX2-2, and RFX6 show 
exclusive and ubiquitous expressions in the endocrine cells. B Dot plot summarizes the expression of candidate endocrine markers in the pancreatic 
cells from controls (ND), autoantibody-positive (AAB+), T1D, and T2D donors. The size of the dot represents the percentage of cells expressing 
the marker genes, while the color of the dot indicates the average expression of the marker genes across all cells. Tau score for each marker 
is shown under the gene name. C Immunofluorescent labeling in the human pancreatic tissue confirms NKX2-2 as a pan-endocrine marker. Nuclei 
are labeled with DAPI (DNA, blue). Left, tissue is co-labeled with INSULIN (INS, green), NKX2-2 (red), and GLUCAGON (GCG, white). Right, tissue 
is co-labeled with NKX2-2 (red) and pan-endocrine cocktail (Endo, white) with a mixture of anti-INSULIN, GLUCAGON, SOMATOSTATIN, GHRELIN, 
and PANCREATIC POLYPEPTIDE antibodies. Scale bars correspond to 20 μm. D Quantification of the co-expression of NKX2-2 and endocrine markers. 
Each dot represents one individual islet
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that NKX2-2 antibody-based FANS is not biasing for 
or against a certain endocrine population. The Tosti, 
et  al. [32] dataset contains cell type annotation from 
the original authors, enabling the comparison of cell 
type proportions (Figure S1). We observed that the pro-
portions of endocrine/exocrine/others cells in the Tosti 
et  al. dataset (average from 6 donors) were similar to 
our non-enriched sample, with endocrine cells consti-
tuting 5–6% of all cells. This result further confirmed 
the relatively low abundance of the endocrine cells in 
the ensemble pancreatic cellular space and underlined 
the importance of endocrine population enrichment 
for targeted molecular profiling. We conclude that our 
protocol offers increased flexibility to generate high-
quality gene expression snRNA-seq libraries of islets 

from frozen archival pancreatic tissues. Figure 3G sum-
marizes the sample processing workflow.

Comparison of snRNA‑seq and scRNA‑seq modalities 
from the same donor
Having confirmed that our sample preparation procedure 
generates good quality data, we proceeded to prepare a 
pancreatic endocrine population enriched snRNA-seq 
library using frozen archival pancreas from one donor 
and compared it with the scRNA-seq library prepared 
using freshly isolated human islets from the same donor 
(Fig.  4A). We compared the snRNA-seq and scRNA-
seq modalities from the same donor in order to control 
for gene expression variations originating from donor 
heterogeneity.

Fig. 3  snRNA-seq with NKX2-2-based enrichment enables transcriptomic profiling of endocrine population from frozen archival human pancreata 
without islet isolation. A Sequential gating strategy to enrich nuclei from endocrine population by FANS. Nuclei are first gated in FSC and SSC 
(P1) to exclude debris and aggregates. Nuclei in P1 are then gated based on DAPI signal area versus width to select single nuclei. Endocrine 
nuclei are then selected and sorted based on the positive expression of NKX2-2. Population percentages from a representative experiment are 
shown next to each gate. B Composite violin and box plots showing distributions of the number of genes/nucleus, number of UMIs/nucleus, 
and percentage of mitochondrial reads in our snRNA-seq libraries with or without NKX2-2 based enrichment compared with Tosti et al. [32] 
and Basile et al. [25]. C UMAP embedding with cells colored according to cell type (left) and samples (right). D Dot plot illustrating the expression 
of marker genes in each cell type. E The proportions of endocrine and exocrine cells in the two snRNA-seq libraries. F Endocrine cell composition 
in the two snRNA-seq libraries. G The overall experimental workflow of snRNA-seq with islet-cell enrichment
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After removing low-quality nuclei/cells, we retained 
5,938 nuclei in the snRNA-seq dataset and 2,645 cells in 
the scRNA-seq dataset. All cells passing QC were used 
in the downstream comparative analysis. As expected, 
scRNA-seq detected larger numbers of genes and UMI 
per cell and had a higher percentage of mitochondria 
reads compared with snRNA-seq (Fig.  4B). We aligned 
the two datasets for visualization by projecting these data 
to the Azimuth Human Pancreas Reference (Fig. 4C) [58]. 
Both datasets recovered all major pancreatic cell types 
as distinguished by specific marker gene expressions 

(Fig.  4D). Within the endocrine population, these two 
libraries showed strong similarities in cell type compo-
sitions (r = 0.89) (Fig. 4E). 0.5% of nuclei in the snRNA-
seq library and 6.8% of the cells in the scRNA-seq library 
expressed multiple cell type markers and were annotated 
as doublets (Fig. 4D). We next extracted cell type specific 
signatures in each modality (Table S2). We observed that 
cell type markers display similar expressions between 
snRNA-seq and scRNA-seq libraries (Fig.  4F). We used 
RRHO2 [44, 45] to formally compare the expression of 
cell type signature genes in snRNA-seq and scRNA-seq 

Fig. 4  Comparison of snRNA-seq and scRNA-seq libraries from the same donor. A Experimental design for generating endocrine population 
enriched snRNA-seq library from frozen human pancreas and scRNA-seq library from freshly isolated islets, both from the same donor. B Composite 
violin and box plots showing distributions of the number of genes/nucleus, number of UMIs/nucleus, and percentage of mitochondrial reads 
in the two libraries. C UMAP embedding with cells colored according to cell type (left) and samples (right). D Dot plot illustrating the expression 
of marker genes in each cell type in the snRNA-seq (left) and scRNA-seq (right) libraries. E Endocrine cell composition in the two libraries. 
F Heatmap showing the relative expression of cell type markers in the two libraries. n, snRNA-seq library. c, scRNA-seq library. The rows 
of the heatmap correspond to genes and columns to cells. Canonical markers of each cell type are extracted from van Gurp et al. [57] and labeled 
next to the corresponding row
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datasets. We observed significant concordant patterns 
between the two libraries in genes upregulated or down-
regulated in each endocrine cell type compared with the 
rest of the endocrine cells (Figure S2).

Next, we evaluated the differences between snRNA-
seq and scRNA-seq in the transcripts they recovered. 
We observed that 81% of all transcripts detected in the 
snRNA-seq data were unspliced whereas 71% of tran-
scripts in the scRNA-seq data were spliced (Fig.  5A). 
The differences in the percentage of spliced/unspliced 
transcripts in the two modalities are similar to what 
was reported in the brain tissues [59] and reflect the dif-
ferences in transcripts’ subcellular origins. To further 
understand differential transcripts enriched in nuclear 
versus whole-cell transcriptomes, we performed differ-
ential expression analysis between these two modalities 
in each cell type (Table  S3). We categorized the differ-
entially expressed genes into 19 feature classes based on 

the human protein atlas annotation (https://​www.​prote​
inatl​as.​org/​human​prote​ome/​prote​incla​sses) [41]. Com-
mon to all endocrine cell types, genes higher expressed in 
snRNA-seq were significantly enriched (multiple t-test, 
FDR < 5%) in the classes of voltage-gated ion channels 
and membrane proteins; while genes higher expressed in 
the scRNA-seq data were significantly enriched (multiple 
t-test, FDR < 5%) in the categories of ribosomal proteins, 
RNA polymerase related proteins and secreted proteins 
(Fig. 5B). The differential enrichment of mRNAs between 
nuclei and whole cells is likely reflective of different tran-
scripts’ transcription and processing rates, nuclear export 
speed, and half-lives.

Discussion
Over the last decade, scRNA-seq has driven major 
advances in our understanding of human islet biology 
[13]. However, because of the reliance on freshly isolated 
islets, scRNA-seq studies have serious time constraints 
and limited source materials. In this work, we optimized 
a nuclei isolation method with targeted enrichment to 
characterize the transcriptional landscape of pancreatic 
endocrine cells from frozen human pancreatic tissues 
without islet isolation. The success of nuclei isolation is 
less influenced by pancreatic microenvironment changes 
including inflammation, breakdown of the islet basement 
membrane, or the fibrosis seen in various pancreatic dis-
eases and in donors with advanced ages. Hence, single-
nucleus transcriptomic workflow has built-in advantages 
to profile endocrine populations from samples that are 
difficult for islet isolation including those from young 
donors or donors with various pancreatic pathologies 
including T1D and T2D. Indeed, using two young donors 
in our study (Table S1), we demonstrate the feasibility of 
our workflow to obtain high-quality endocrine popula-
tion enriched transcriptomics data from samples where 
islet isolations are challenging. Moreover, snRNA-seq 
is better for capturing intrinsic cellular states because it 
utilizes snap-frozen tissues, and the entire procedure is 
conducted on ice [17]. Our method presents an exciting 
opportunity for retrospective studies on the islet cells 
using frozen archival human tissues from biobanks.

Our protocol is easy to set up and does not use com-
mercial kits or ultracentrifugation. The procedure can 
be separated into two major parts: (1) nuclei isolation 
from frozen tissues and (2) target population enrich-
ment. The nuclei isolation step involves lysing cells 
at low pH in a hypotonic citric acid buffer. No RNase 
inhibitor is needed in the buffer because the acidic 
environment and the citric acid’s metal-chelating prop-
erty effectively inhibit the activities of RNase [52, 60]. 
One major advantage of this protocol is that it does 
not require the genetic labeling of target populations, 

Fig. 5  Differences in transcriptomics captured 
between the snRNA-seq and scRNA-seq modalities. A Percentage 
of spliced/unspliced reads in each library. B Differential enrichment 
of genes in different functional classes between the two types 
of libraries. Each dot represents one of the four endocrine cell 
types (alpha, beta, delta, PP) in the snRNA-seq or scRNA-seq 
data. Y axis corresponds to the percentage of genes significantly 
higher expressed in snRNA-seq (red) or scRNA-seq (blue) dataset 
that belongs to each functional class. Only significantly differentially 
enriched functional classes are shown

https://www.proteinatlas.org/humanproteome/proteinclasses
https://www.proteinatlas.org/humanproteome/proteinclasses
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making it exceptionally adaptable for applications 
involving human tissues and various other organisms. 
Our protocol is versatile for target population enrich-
ment and this enrichment is not limited to cell types. 
Any intranuclear epitopes that can be targeted by anti-
bodies (single antibody or antibody combinations), 
including signaling molecules and metabolic proteins, 
can be used to enrich populations of interest. We expect 
the protocol to be easily adapted to isolate and enrich 
nuclei from a wide range of populations in the pancreas 
and in different organs/tissues. Moreover, our proce-
dure is theoretically compatible with other methods for 
single-cell transcriptomic and proteomic profiling [24, 
61], with the optional change of fixative from methanol 
to paraformaldehyde to increase cross-linking.

Our method benchmarks favorably against two recently 
published snRNA-seq datasets using frozen human pan-
creata [32] or frozen human islets [25] (Fig.  3B). The 
application of detergent-free citric acid buffer likely 
avoids uncontrollable lysing of cells when tissue con-
ditions are less than ideal. Furthermore, the FANS step 
in our protocol not only enriches for target population 
but also enriches intact single nuclei [46, 62, 63], hence 
explaining the observed higher quality of our snRNA-
seq libraries compared with Tosti et  al. [32] despite the 
usage of the same citric acid method. To be noted, the 
pancreatic tissues used in the experiment had 13–20  h 
of cold ischemia time and between 1.3 to 15.3  years of 
storage time (Table  S1). The fact that we were able to 
obtain good-quality snRNA-seq data from all these sam-
ples underscores the robustness of our experimental 
procedure.

Collectively using three donors, we demonstrate the 
feasibility of our workflow using NKX2-2 based nuclei 
sorting on frozen human archival pancreas to enrich 
islet endocrine populations for snRNA-seq. NKX2-2 is a 
highly conserved homeobox transcription factor [64]. In 
mice, Nkx2-2 is broadly expressed in the pancreatic pro-
genitor cells during early embryogenesis and gradually 
restricted to Neurog3+ endocrine progenitor cells and 
later to mature islet endocrine cells [64, 65]. In humans, 
the expression of NKX2-2 is absent in early progenitor 
cells and appears in differentiated pancreatic endocrine 
cells of all types after 8  weeks post-conception [66, 67]. 
Here, we confirm that NKX2-2 is expressed in almost 
all human pancreatic endocrine cells (Fig.  2). Further-
more, the stability of NKX2-2 expression across control, 
AAB+ , T1D, and T2D conditions (Fig.  2B) makes it an 
excellent marker to enrich endocrine cells in various pan-
creas endocrine pathologies. In fact, in our laboratory, we 
have used the same workflow on frozen T1D pancreata 
and obtained high-quality snRNA-seq libraries on endo-
crine populations (data not shown).

The snRNA-seq data and scRNA-seq data in our study 
have comparable cellular compositions and cell type 
marker gene expressions (Figs. 4F, S1, Table S2). None-
theless, differences exist in the transcripts captured by 
the two modalities (Figs. 4B and 5, Table S3). Compared 
to scRNA-seq, snRNA-seq recovers lower numbers 
of genes, has lower mitochondrial reads, and enriches 
unspliced RNA transcripts (Figs.  4B and 5A). Hence 
snRNA-seq provides a nuclear-centric transcriptional 
view complementary to the whole-cell perspective of 
scRNA-seq. Differences between these two modali-
ties can be also observed at the individual gene level. 
In the scRNA-seq data, the canonical hormone markers 
for different endocrine cell types (INS, GCG, SST, PPY 
for alpha, beta, delta, and PP cells correspondingly) are 
the top enriched markers based on log2 fold change. In 
the snRNA-seq data, INS and SST remain as the top 
enriched markers in beta and delta cells respectively. 
However, in alpha cells, PTPRT ranked first while GCG 
ranked fifth. In PP cells, CHRM3 ranked first while PPY 
ranked fourth (Table  S2). PTPRT and CHRM3 were 
also among the top enriched cell-type specific mark-
ers in a recent study using snRNA-seq from isolated 
human islets [26]. PTPRT and CHRM3 both encode 
membrane proteins, a protein class that is significantly 
enriched in the snRNA-seq dataset compared with 
scRNA-seq dataset (Fig.  5B). A study revealed that 
transcripts encoding membrane proteins have a long 
residing time in the nuclei, potentially explaining their 
relatively higher abundance in the nuclei compared 
with whole cells [68].

Conclusions
In summary, we develop a FANS protocol on human 
frozen archival pancreatic tissues to enrich islet endo-
crine populations for single nucleus transcriptomic 
profiling. Our study opens doors to retrospective map-
pings of endocrine cell dynamics in frozen archival 
pancreatic tissues of complex histopathology.
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