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Cis‑eQTLs in seven duck tissues identify 
novel candidate genes for growth and carcass 
traits
Wentao Cai1, Jian Hu1, Yunsheng Zhang1, Zhanbao Guo1, Zhengkui Zhou1 and Shuisheng Hou1* 

Abstract 

Background  Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants 
on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate 
genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping 
has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck 
economic traits.

Results  In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 
samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs 
for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood 
were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. 
Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new asso-
ciations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 
in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth 
and carcass traits.

Conclusions  Our findings highlight substantial differences in genetic regulation of gene expression across duck pri-
mary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and car-
cass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic associa-
tion signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.
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Background
Ducks are frequently raised as poultry for the con-
sumption of their meat and eggs by humans. Duck meat 
is commonly acknowledged for its rich flavor, high 
amino acid and polyunsaturated fatty acid content, and 

comparatively low-fat levels [1, 2]. Breeders consider 
traits related to growth and body weight composition 
to be the most critical in broiler ducks [3]. Meat pro-
duction and growth traits are influenced by numerous 
polygenic QTLs, with each QTL making a small con-
tribution to the trait [4, 5]. To overcome the challenge, 
genome-wide associated studies (GWAS) have been 
widely used to identify genetic loci affecting complex 
traits such as growth rate and meat production. Cur-
rently, several candidate loci associated with economic 
traits have been identified [6, 7]. For example, the vari-
ants of IGF2BP1 determined the variation in body size 
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and feed efficiency [8]. However, how to mechanisti-
cally decipher these candidate loci contributing to 
agronomic traits in ducks is a challenge. Nowadays, 
with the development of molecular phenotypic meas-
urements, we can elucidate the genetic architecture of 
complex traits using these molecular phenotypes, such 
as gene expression information [9, 10].

Analyzing expression quantitative trait loci (eQTLs) is 
the most effective approach for evaluating how sequence 
variants influence gene expression within their native 
genomic and cellular environments [11]. This approach 
has been extensively documented in the series of Gen-
otype-Tissue Expression (GTEx) project [12–14] in 
human. Currently, several eQTL studies have been con-
ducted on farm animals, including cattle [15], pigs [16], 
sheep [17], and chicken [18]. For example, they observed 
that the production traits related to eQTLs also affect the 
expression of MGST1 [19] and SLC37A1 [20] in dairy cat-
tle. However, eQTL analysis has not been conducted in 
ducks. Therefore, it is desirable to know whether eQTLs 
within GWAS signals contributed to duck economic 
traits.

In this study, we hypothesized that the colocalization 
of eQTL mapping and GWAS strategy could help iden-
tify essential candidate genes and causal DNA variants 
vital to growth and carcass traits. We integrated GWAS 
results of duck carcass and growth traits with the tran-
scriptomes from seven tissues to prioritize genes and 
variants that influence duck economic traits through 
transcriptome. This work provided a duck cis-eQTL cata-
log consisting of 820 samples from seven tissues. The 
study results provide valuable resources for understand-
ing the genetic effects on the transcriptome and also sug-
gest the underlying molecular mechanisms of potentially 
causal functional variants in duck economic traits.

Methods
RNA‑seq analysis
We downloaded 820 RNA-Seq datasets from Sequence 
Read Archive (SRA; https://​www.​ncbi.​nlm.​nih.​gov/​sra) 
and BIGD (https://​bigd.​big.​ac.​cn/​biopr​oject/; Table S1). 
The adaptor and low-quality reads were trimmed and 
adaptor by Trimmomatic v0.39 [21]. The clean reads 
were mapped to the duck reference genome (ZJU1.0, 
https://​www.​ncbi.​nlm.​nih.​gov/​datas​ets/​genome/​GCF_​
01547​6345.1/) using STAR aligner [22]. To quantify gene 
expression, we used the mapped reads to calculate the 
gene expression levels using transcript per million (TPM) 
by StringTie [23] based on the annotation of RefSeq 
(GCF_015476345.1). A gene was considered expressed if 
it had a TPM threshold of ≥ 0.1 in at least 20% of the sam-
ples [15].

Genotype imputation
PCR duplicates of STAR alignments were marked using 
MarkDuplicates in Picard (http://​broad​insti​tute.​github.​
io/​picard/). We splited reads into exon segments and 
trimmed any sequences overhanging into the intronic 
regions using SplitNCigarReads modules of GATK 
v4.2.6.1 [24]. Then, we recalibrated base quality scores 
based on known genomic variants using BaseRecalibrator 
and ApplyBQSR modules of GATK. Then, we carried out 
joint-calling of all GVCF samples using the GenotypeG-
VCFs module of the GATK tool. The low-quality variants 
were filtered out using –filter-expression “FS > 30.0 & 
QD < 2.0”. We also check the variants consistency of dif-
ferent tissues from the same individual in PRJNA419583 
study. The average of consistency was 99.6% (Table S2). 
The variants were imputed to DNA sequence variants 
level based on a multiple-breed reference panel consist-
ing of 2215 Pekin ducks and 289 public individuals from 
Shaoxing ducks (n = 166) and wide mallards (n = 123) 
by Beagle 5.4 [25]. We removed variants with dosage 
R-squared (DR2) of less than 0.8, genotype call rates 
of less than 90%, minor allele frequency (MAF) of less 
than 0.05 or variants located outside of autosomes using 
PLINK v1.90 [26]. On average, we retained 1,112,867 
autosomal variants with average DR2 of 0.92 for eQTL 
mapping.

Cis‑eQTL mapping
Gene expression values were normalized across samples 
using the inverse normal transformation. To account 
for population effects, we incorporated principal com-
ponents (PCs) of genotype into the eQTL analyses. The 
number of PCs selected for the analysis was determined 
by testing their significance using EIGENSTRAT v6.1.4 
(https://​alkes​group.​broad​insti​tute.​org/​EIGEN​SOFT/). We 
ultimately decided to use the first three PCs for the eQTL 
analysis, as the test was not significant (P-value = 0.061) 
when more than three PCs were included (Table S3). 
Additionally, in order to address hidden batch effects and 
other sources of technical or biological variation, we esti-
mated latent covariates for gene expression levels in each 
tissue using the Probabilistic Estimation of Expression 
Residuals (PEER) [27]. We retained 15 PEER confound-
ing variables because the posterior variances of factor 
weights were nearly at their minimum values (Fig. S1). 
For blood tissue, we also conducted cis-eQTLs using 20 
PEER confounding variables (https://​github.​com/​Wenta​
oCai/​Duck_​eQTL_​resul​ts), we identified 1029 eGenes 
with 20 peer variables compared to 1040 eGenes using 
15 peer variables. The number of overlapped eGenes was 
952 (Fig. S2). We defined potential cis-eQTLs as variants 
located within a 1  Mb proximity ups or downstream of 
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the transcription start sites (TSSs) of genes [28]. The cis-
eQTLs mapping was conducted using a nominal P-value 
threshold that corresponded to FDR ≤ 0.05 for each 
gene by fastQTL [29]. The scripts of data analysis can be 
accessed on https://​wenta​ocai.​github.​io/​eQTL-​analy​sis/. 
The gene lists were subjected to GO and KEGG analy-
ses using DAVID with a significance threshold set at a 
P-value ≤ 0.05 [30]. We estimated the replication rate of 
cis-eQTL across different tissues using π1 statistic of the 
qvalue R package [31].

GWAS and Colocalization
The phenotype of 50 growth and carcass traits were col-
lected from 941 Pekin XMallard F2 individuals. The sum-
mary of phenotype records can be found in Table S4. The 
genotypes were conducted using resequencing technol-
ogy on Illumina HiSeq X Ten, which was described in our 
previous study [8]. After mapping, call SNPs, and qual-
ity control, 13,064,619 variants for 941 individuals were 
obtained for GWAS. The phenotype was adjusted for 
covariates, including sex, feed room, and the first three 
PCs of genotypes. We used a linear mixed model for the 
association test of each SNP using the GCTA -mlma [32].

where y is adjusted phenotype; X is a vector of genotypes 
of a variant at the locus tested; β is the effect size of the 
variant; u is a vector of random polygenic effects ~ N 
(0, Gσ 2

g ), where G is genomic relationship matrix con-
structed from all variants; ε is a vector of residual errors.

We conducted the colocalization analysis of GWAS 
variants and eQTLs using Coloc R package [33]. The vari-
ants with P-value < 5 × 10−5 and their neighboring ± 50 Kb 
extracted from GWAS summaries of 50 growth and car-
cass traits were obtained for colocalization analysis [34]. 
GWAS signals and eQTLs were considered colocalizing if 
a posterior probability (H4) of the shared signal was > 0.4 
[35].

Results
Transcriptome profile of duck primary tissues
We obtained 22.5 billion clean reads from a total of 820 
publicly available RNA-seq samples, including seven tis-
sues (251 liver, 184 muscle, 120 blood, 71 adipose, 87 
ovary, 66 spleen, and 41 lung) from 17 breeds (Table 
S1). Pekin ducks accounted for the largest proportion of 
samples (36.2%), indicative of their extensive economic 
significance worldwide. Approximately 88.9% of the 
total reads were successfully mapped to the reference 
genome (Table S1). Under the expression threshold of 
TPM ≥ 0.1 in at least 20% of the samples, 16,485 (65.7% 
of total genes) genes were expressed across tissues. Using 
PCA analysis, we can successfully distinguish samples 

y = Xβ + u+ ε,

according to different tissues and reconstruct the rela-
tionships between these tissues based on their expres-
sion levels (Fig.  1A). The expression profiles accurately 
reflected tissue types (Fig. 1B), which reaffirmed the high 
quality of these profiles and underscores their suitabil-
ity for our subsequent analysis. We called variants from 
RNA-Seq samples and imputed each genotype using 
a reference population of 2,504 ducks. When applying 
PCA clustering to imputed genotypes, as anticipated, the 
samples exhibited clustering patterns corresponding to 
their respective breeds (Fig. 1C).

Genetic effects on gene expression
Considering all tissues, our analysis detected a total of 
113,374 cis-eQTLs associated with 12,266 genes. These 
genes represent approximately 54.8% of all autosomally 
expressed genes. The numbers of eGene (gene with sig-
nificant cis-eQTLs) for liver, muscle, blood, ovary, adi-
pose, spleen, and lung were 7,301, 5,706, 1,040, 2,390, 
989, 368, and 775, respectively (Table 1). The most nota-
ble cis-eQTLs detected in the liver were found to influ-
ence the expression of TIMMDC1, a gene crucial for the 
assembly of the membrane arm of mitochondrial Com-
plex I (Fig. 2A). The most significant cis-eQTLs of muscle 
affected expression of PHOSPHO2, involved in dephos-
phorylation (Fig. 2B). The Manhattan plots of cis-eQTLs 
for other tissues are shown in Figs. S3, S4, S5, S6 and S7. 
The cis-eQTL results of seven tissues are accessed on 
https://​github.​com/​Wenta​oCai/​Duck_​eQTL_​resul​ts.

Character of cis‑eQTLs
Consistent with previous work in humans [36], most of 
the significant duck cis-eQTLs clustered around the TSS 
of target genes (Fig. 3A). An average of 45.3% of signifi-
cant cis-eQTLs fell within 100  kb around the TSS. We 
found an enrichment of low P values closer to TSSs, 
showing that cis-eQTLs are more likely to be located 
within this distance (Fig. 3B and Fig. S8). Cis-eGenes of 
most tissues exhibited significantly higher expression lev-
els compared to non-eGenes (Wilcoxon test, Bonferroni 
adjusted P-value < 0.05), with the exception of lung and 
spleen tissue (Fig. 3C). To assess the sharing patterns of 
cis-eQTLs between tissues, we computed the π1 statistics 
for each pair of tissues. We observed that cis-eQTLs in 
blood exhibited lower conservation across different tis-
sues., while cis-eQTLs from any tissue exhibited a strong 
sharing pattern to liver tissue (Fig. 3D). We detected that 
any two tissues shared 39.1% of eGenes (Fig.  3E), and 
10.7% of eVariants (Fig. S9). The 244 eGenes shared by at 
least four tissues were involved in basic metabolic path-
ways, such as nucleoplasm, mitochondrion, cytosol, and 
ATP binding (Table S5). Interestingly, we detected that 
the expression of THNSL1, SF3B6, PPIL3, PHOSPHO2, 
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LOC119713243, and LOC119717646 were affected by cis-
eQTLs in almost all tissues except for spleen. On average, 
10.7% of cis-eQTLs were involved in at least two eGenes.

Colocalization of cis‑eQTLs and GWAS loci
We conducted GWAS between genomic variants and 
50 growth and carcass traits in F2 ducks (Table S4). We 
identified a total of 2,136 unique variants that showed 
significant association (P < 5 × 10–8) with 47 agronomic 

traits, of which, 1,039 variants were associated with at 
least two traits (Table S6). We obtained the variants 
with P-value < 5 × 10−5 and their neighboring ± 50  Kb 
for colocalization analysis. We observed that the 
eQTLs for 49 eGenes in seven tissues were colocalized 
with 41 traits, resulting in a total of 94 tissue-gene-trait 
pairs (Fig. 4, Table 2, Fig. S10, and Table S5). In liver, we 
detected that eQTLs of SRSF4 (serine and arginine rich 
splicing factor 4) were colocalized with GWAS signals 

Fig. 1  Principal component analysis (PCA) and hierarchical clustering of samples. A Sample clustering (n = 820) using PCA based on gene 
expression levels. B Hierarchical clustering of 820 samples using gene expression levels, sample clustering is affected by both tissues and breeds. C 
PCA of samples (n = 820) based on imputed genotypes

Table 1  The summary of cis-eQTL results in seven tissues. The genes, with an expression threshold of TPM (transcripts per 
million) ≥ 0.1 in at least 20% of samples on autosomes, account for the expressed genes. The eGene is a gene with significant cis-
eQTLs. The eVariant is a genetic variant regulated at least one gene

a Total item refers to the number of genes, variants or their pairs in the union across all seven tissues

Tissue Sample size Expressed genes Cis-eGenes Cis-eVariants Cis-eQTL-gene pairs

Liver 251 14,537 7,301 73,267 104,594

Muscle 184 16,750 5,706 25,692 27,550

Blood 120 11,761 1,040 11,774 16,977

Ovary 87 20,503 2,390 7,437 7,847

Adipose 71 16,992 989 3,079 3,179

Spleen 66 15,744 368 1,365 1,368

Lung 41 17,137 775 5,109 5,452

Total 820 21,718a 12,266a 113,374a 159,240a
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of jejunum length and total intestine length (Fig.  5A). 
The top GWAS signal of jejunum length significantly 
affecting the expression of SRSF4. The eQTLs of GSS 
(glutathione synthetase) were colocalized with GWAS 
signals of shank length (Fig.  5B). There was a strong 
LD (r2 = 1) between the top eQTLs signal and the top 
GWAS signal. The top GWAS signal of shank length is 
also significantly associated with the expression of GSS. 
Previously, we detected the variants located IGF2BP1 
gene affecting the carcass traits and body size [8]. Here, 
we confirmed these GWAS signals can affect the phe-
notype of eviscerated weight, heart weight, neck length, 
and skeleton weight through the change of IGF2BP1 
expression (Fig. 5C and Table S7).

In muscle tissue, the eQTLs of NDUFC2 (NADH: 
ubiquinone oxidoreductase subunit C2) were colocal-
ized with BW28 (body weight at 28  days; Fig.  5D). The 
top significant GWAS signals for BW28 and the top sig-
nificant eQTLs of NDUFC2 were the same. It appeared 
that there were two independent loci in eQTL signals 
of liver GSS and muscle NDUFC2 (Fig.  5B and D). To 
confirm whether the eQTL signals were derived from 
the same causative variant, we repeated cis-eQTL map-
ping using the top eQTL signal of GSS or NDUFC2 as a 
covariate. No significant signals were detected using this 
conditional analysis (Fig. S11), indicating the eQTL sig-
nals of liver GSS and muscle NDUFC2 arise from one 
causative variant. The eQTLs of LOC113840004 were 

Fig. 2  Manhattan plot of cis-eQTLs. A The Manhattan plot illustrates the nominal P-value (y-axis) for all cis-eQTLs in liver (left). Points colored dark 
red or pink represents significant cis-eQTLs, whereas those in black or gray were SNPs that did not reach a significant threshold. The expression 
of TIMMDC1 with three genotypes in liver (right). B The Manhattan plot shows the nominal P-value (y-axis) for all cis-eQTLs in muscle (left). The 
expression of PHOSPHO2 with three genotypes in muscle (right)
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Fig. 3  The characters of cis-eQTLs. A The density of top significant cis-eQTLs for each tested gene around TSS. B The P-value distribution of top 
significant cis-eQTLs for each tested gene in liver. C The expression of eGenes of cis-eQTL compared to non-eGenes. The significant P-value were 
calculated using Wilcoxon test. D Pairwise sharing patterns of cis-eQTL (π1 value) across tissues. E The overlaps of eGenes across tissues



Page 7 of 12Cai et al. BMC Genomics          (2024) 25:429 	

colocalized with 20 traits, implying this uncharacterized 
gene would be an important functional gene in ducks. In 
other tissues, we observed the eQTLs of EIF3 (E74 like 
ETS transcription factor 3) in adipose were associated 
with the GWAS of BW56 body weight at 56 days (Table 
S7). The eQTLs of RUNDC1 (RUN domain containing) 
in blood were detected colocalized with the GWAS of 
ileum length. The eQTLs of IPPK (inositol-pentakispho-
sphate 2-kinase) in ovary were detected colocalized with 
the GWAS of neck weight percentage. Overall, the colo-
calization analysis enhanced our ability to identify poten-
tially causal genes and gain a deeper understanding of the 
genetic underpinnings of complex traits in ducks.

Discussion
In this study, we created a comprehensive catalog of 
eQTLs across multiple tissues, further expanding the 
list of candidate genes and potential variants affecting 
important agronomic traits in ducks.

Consistent with other species [36, 37], a high density 
of signals was observed near the TSSs of their respective 
genes. The majority of eQTLs appear to be tissue-specific, 

suggesting intricate and distinct genetic mechanisms 
governing gene expression across different tissues. The 
functional annotation of tissue-shared eGenes revealed 
that genetic variants more prominently and frequently 
impact genes related to immune and metabolic functions, 
which is consistent with previous findings in human [38] 
and cattle [37]. Similar to cattle [37], these cis-eGenes in 
duck were found to exhibit higher expression levels than 
non-eGenes in most tissues.

The colocalization analysis between GWAS signals and 
cis-eQTLs in the seven tissues facilitates the identifica-
tion of causal genes for association signals that were pre-
viously unresolved. Several GWAS signals were observed 
to colocalize with cis-eQTLs. SRSF4 belongs to the family 
of Arginine-Serine-rich (SR) proteins, which play a cru-
cial role in constitutive splicing and also regulate alter-
native splicing [39]. Like other SRSFs, SRSF4 shuttles 
between the nucleus and cytoplasm, and mediate mRNA 
regulation, including export, stability, and translation 
[40, 41]. SRSF4 is associated with human colon adeno-
carcinomas [42]. SRSF4 has a relatively high expression 
in the liver, stomach, and intestine [43]. The upstream 

Fig. 4  The colocalized results between cis-eQTLs and GWAS signals. A Manhattan plot illustrates the colocalization results (H4 > 0.4) 
between liver eQTLs and GWAS signals. The x-axis represents the P-value of lead eQTLs (points) across traits in liver. The right labels are colocalized 
SNP-gene-trait pairs. The different categories of tissues are distinguished by colors (B) Manhattan plot illustrates the colocalization results (H4 > 0.4) 
between muscle cis-eQTLs and GWAS signals
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variants of SRSF4 have significantly regulated the expres-
sion of SRSF4 in the liver for both cattle [15] and pigs 
[16]. GSS is responsible for catalyzing the condensation 
of gamma-glutamylcysteine and glycine to produce glu-
tathione (GSH) [44]. GSH is essential for a multitude of 

processes, such as safeguarding cells from oxidative dam-
age, facilitating amino acid transport, detoxifying for-
eign compounds, preserving protein sulfhydryl groups 
in a reduced state, and serving as a cofactor for several 
enzymes [45]. The mutations of GSS are associated with 

Fig. 5  Examples of colocalized results between eQTLs and GWAS signals. A The colocalization between jejunum length GWAS and SRSF4 eQTLs 
of liver. The colors of the variants are determined based on their linkage disequilibrium values with the most significant variant. B The colocalization 
between shank length GWAS and GSS eQTLs of liver. C The colocalization between eviscerated weight GWAS and IGFBP1 eQTLs of liver. D The 
colocalization between BW28 (body weight at 28 days) GWAS and NDUFC2 eQTLs of muscle
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body height in humans [46, 47]. The length of the shank 
directly determines a poultry’s height. The top GWAS 
signal of shank length is also significantly associated with 
the expression of GSS, which implies that GSS could be 
a candidate gene for the shank length and body height 
of the duck. IGF2BP1 belongs to the insulin-like growth 
factor 2 mRNA-binding protein family and plays a role 
in RNA transport, cell proliferation, differentiation, and 
metabolism by regulating the mRNA localization, sta-
bility, and translation of specific target genes. [48, 49]. 
IGF2BP1 is a well-known candidate gene for body size 
in ducks [8], chickens [50], and humans [51]. Here, we 
confirmed the variants of IGF2BP1 can regulate the duck 
body size by changing the IGF2BP1 expression in liver.

NDUFC2 is a subunit of the mitochondrial mem-
brane respiratory chain NADH dehydrogenase (Com-
plex I) [52]. A deficiency in NDUFC2 results in 
cellular-level mitochondrial dysfunction and increased 
oxidative stress [53]. NDUFC2 appears to be down-
regulated in the skeletal muscle cells of individuals 
with insulin resistance and is linked to insulin secretion 
in vivo [54, 55]. The mutations of NDUFC2 are associ-
ated with body mass index [56]. Both BW28 GWAS and 
NDUFC2 eQTLs shared the same of top significant var-
iant, implying NDUFC2 may act as a candidate gene for 
duck body weight. ELF3, an important member of the 
E74-like transcription factor family, involves in inflam-
matory response [57] and adipogenic differentiation 
[58]. Leptin is a potent pro-inflammatory and pro-cat-
abolic factor, and its downstream actions are mediated 
by ELF3 [59]. The mutations near ELF3 were associated 

with body mass index in humans [60]. The eQTLs of 
ELF3 in adipose were associated with BW56. RUNDC1 
is an inhibitor of the tumor suppressor p53 [61], which 
can negatively modulate autophagy by blocking fusion 
between autophagosomes and lysosomes [62]. The 
eQTLs of RUNDC1 in blood were associated with ileum 
length. We can hypothesize that RUNDC1 is a candi-
date gene for ileum length. These results are crucial for 
gaining a deeper understanding of the molecular mech-
anisms underlying specific traits by considering gene 
expression and the functional characteristics of genes 
associated with these traits.

Although our study released thousands of eGenes 
by analyzing public RNA-seq data, there are still some 
limitations. For example, some tissues have limited 
sample sizes, resulting in the detection of a small num-
ber of eGenes in several tissues, such as spleen, lung, 
and adipose. The potential biases in variant detection, 
population stratification resulting from the inclusion 
of data from multiple breeds, and confounding factors 
stemming from diverse experimental designs may not 
have been completely resolved when using publicly 
available RNA-seq data. In addition, the variety and 
sample size of our multiple-breed reference panel for 
genotype imputation remain limited, which may intro-
duce biases in the genotype results. This study serves as 
a pioneering investigation into the field of duck eQTLs. 
The summary statistics of duck eQTLs are still una-
vailable, which impedes a more detailed investigation 
of colocalized signals and thus an evaluation of possi-
ble pleiotropic effects. Our analysis of GWAS signals 

Table 2  The colocalized results of eGene-trait pairs. Colocalization analyses were conducted between cis-eQTLs and GWAS traits

The arrow symbol denotes cis-regulated genes that mediate the association between genetic variants and traits. ADG1-19 Average daily gain from 1 to 19 days, ADG1-28 
Average daily gain from 1 to 28 days, ADG1-56 Average daily gain from 1 to 56 days, ADG28-56 Average daily gain from 28 to 56 days, AFP Abdominal fat percentage, 
AFWT Abdominal fat weight, BMP Breast muscle percentage, BMT Breast muscle thickness, BMV Breast muscle volume, BMWT Breast muscle weight, BW1 Body weight 
at 1 day, BW19 Body weight at 19 days, BW28 Body weight at 28 days, BW56 Body weight at 56 days, CWT​ Carcass weight, DL Duodenum length, DP Dressed percentage, 
EP Eviscerated percentage, EW Eviscerated weight, FP Feet percentage, FWT Feet weight, GWT​ Gizzard weight, HDP Head percentage, HDWT Head weight, HTWT​ Heart 
weight, IL Ileum length, JL Jejunum length, LGMP Leg muscle percentage, LMWT Leg muscle weight, LWT Liver weight, NL Neck length, NP Neck percentage, NWT Neck 
weight, SFT Skin and fat thickness, SFWT Skin subcutaneous fat weight, SGWT​ Swing weight, SKP Skeleton percentage, SKWT Skeleton weight, SL Shank length, SWWW​ 
Skeleton without wings weight, TIL Total intestine length

Tissue The colocalization pairs of eGene and trait

Adipose ELF3 → BW56; LOC101795547 → BMWT; LOC101795662 → HDP; LOC119713076 → EW, SFWT, CWT, BW19, SFT; LOC119714005 → GWT; 
TACC2 → LWT; VTI1B → ADG1-19, ADG28-56

Blood CEP19 → BW56; DNAJC13 → LGMP; GPR155 → BMP; RUNDC1 → IL

Liver ALG5 → SL; ARG2 → ADG1-19; CACFD1 → NP; DENND2A → EP; FBXO7 → DP; GSS → SL; HLCS → AFP; IGF2BP1 → HTWT, NL, SKWT, EW; 
LOC101793645 → NWT; LOC101804322 → FWT; LOC119714045 → BMP, SGWT, DL, IL; OTOS → SGWT; PPP1R13B → SFT, BW19, SKWT, SWWW, EW; 
SRSF4 → JL, TIL; UBE2G2 → SGWT; VTI1B → ADG1-19, ADG28-56

Lung LOC113840671 → GWT; LOC119714045 → BMP; LOC119714053 → NP

Muscle GABPB1 → SGWT, LMWT; LOC113840004 → ADG1-28, SFWT, BW28, BW19, SFT, NWT, CWT, EW, LMWT, SWWW, SKWT, BW56, BMP, TIL, JL, ADG1-56, 
BW1, BMV, DL, IL; LOC119713317 → DL; LOC119717507 → BMP; MAP6D1 → SL; MED1 → BMP; NDE1 → FWT; NDUFC2 → BW28; NUDT15 → HDWT; 
PHYH → BMT; PPP1R9B → HTWT; RPS6KC1 → SKP; RUNDC1 → BMV; SNF8 → BMWT; SPATA5L1 → NL; SRPRB → SL; ZNF652 → GWT, HDWT

Ovary GTF2H5 → FP; IPPK → NP; LOC119718243 → SFWT, AFWT; RIT1 → FWT

Spleen PLA2G4A → BMV
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within the context of duck eQTLs serves as a prelimi-
nary foundation for future investigations in this field.

Conclusions
The interpretation of genetic mechanisms underlying 
complex traits based on the molecular phenotype of pri-
mary tissues in ducks was rare. Through the integration 
of eQTL and GWAS data, we have constructed a molecu-
lar QTL map in ducks, which aids in unraveling genetic 
association signals by identifying candidate genes, such 
as SRSF4, GSS, IGF2BP1, NDUFC2, ELF3, and RUNDC1. 
Moreover, these newly identified cis-eQTLs and candi-
date genes will enhance the accuracy of genomic predic-
tion and contribute to the benefit of genetic improvement 
programs in duck breeding.
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