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responsible for plant specialized metabolite 
biosynthesis by integrating multi-omics data
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Abstract 

Background Plant specialized (or secondary) metabolites (PSM), also known as phytochemicals, natural products, 
or plant constituents, play essential roles in interactions between plants and environment. Although many research 
efforts have focused on discovering novel metabolites and their biosynthetic genes, the resolution of metabolic 
pathways and identified biosynthetic genes was limited by rudimentary analysis approaches and enormous number 
of candidate genes.

Results Here we integrated state-of-the-art automated machine learning (ML) frame AutoGluon-Tabular and multi-
omics data from Arabidopsis to predict genes encoding enzymes involved in biosynthesis of plant specialized metab-
olite (PSM), focusing on the three main PSM categories: terpenoids, alkaloids, and phenolics. We found that the related 
features of genomics and proteomics were the top two crucial categories of features contributing to the model per-
formance. Using only these key features, we built a new model in Arabidopsis, which performed better than models 
built with more features including those related with transcriptomics and epigenomics. Finally, the built models were 
validated in maize and tomato, and models tested for maize and trained with data from two other species exhibited 
either equivalent or superior performance to intraspecies predictions.

Conclusions Our external validation results in grape and poppy on the one hand implied the applicability 
of our model to the other species, and on the other hand showed enormous potential to improve the prediction 
of enzymes synthesizing PSM with the inclusion of valid data from a wider range of species.
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Background
Plants synthesize a huge number of specialized metabo-
lites that allow them to interact and adapt to the ever-
changing environment. There are more than 200,000 
PSM estimated, with vast specificity in different species, 
tissues or after different stimulations [1]. Some of these 
compounds are high-value nutraceuticals and pharma-
ceuticals, which has primed a desire to delineate their 
biosynthetic genes and pathways in various organisms 
[2–4]. Based on their biosynthetic pathways, specialized 
metabolites are usually classified into several molecule 
families, among which three have the largest number: 
terpenoids, alkaloids and phenolics [5, 6]. For example, 
essential oils (mainly comprising monoterpenes) are used 
for aromatherapy and medicine [7–9], while caffeine, 
the most well-known alkaloid [10], and salicylic acid, 
the active ingredient in aspirin, have established medical 
applications [11]. Hence, the discovery of various special-
ized metabolites and their biosynthetic pathways is likely 
to have a significant impact on our production and life 
[12–14].

However, uncovering new genes that synthesize spe-
cialized metabolites is challenging due to the tremen-
dous complexity of metabolic networks and the absence 
of standard chemicals for intermediate products [15, 
16]. Despite the numerous challenges, we have accumu-
lated substantial knowledge of metabolic pathway genes 
through biochemical and genetic approaches over the 
past few decades [13, 17, 18]. With the ever-increasing 
availability of multi-omics data, candidate genes respon-
sible for primary and specialized metabolism have 
been predicted computationally. For example, pathway 
memberships of genes could be identified based on co-
expression profiles [19, 20], co-localization in cellular 
compartment [21], as well as biosynthetic gene clusters 
[22, 23]. Although these methods have produced notable 
results in various species or fields, the selection and func-
tional validation of a massive number of candidate genes 
makes the discovery of metabolites and related genes 
time-consuming and expensive [24, 25]. Noteworthily, 
Moore et al. [26] used machine learning (ML) algorithms 
to classify primary and specialized metabolic genes from 
multiple characteristics with high prediction accuracy. 
However, the Moore et al. [26] did not explore genes par-
ticipating in different specialized metabolic pathways. 
Later on, Wang et  al. [20] used ML algorithms to pre-
dict genes in 85 metabolic pathways in tomato. However, 
the best model accuracy in this study was 58.3%, which 
means the prediction may generate misleading results 
when distinguishing genes in multiple individual meta-
bolic pathways.

Here we utilized multi-omics feature data from 
Arabidopsis to build ML models with state-of-the-art 

techniques (AutoGluon-Tabular) [27] for the prediction 
of genes synthesizing terpenoids, alkaloids, and phenolics 
(Fig. 1A, B), and assessed the essential features contribut-
ing to the model performance (Fig.  1C, D). Using these 
key features, we built a new model which performed bet-
ter than the model built with all features. Furthermore, 
we constructed a three-species (Arabidopsis, tomato and 
maize) model using corresponding key features from 
these species (Fig. 1E), which rendered either equivalent 
or superior performance to intraspecies predictions. The 
external validation results in grape and poppy suggested 
our three-species model not only predicted enzymes 
synthesizing PSM with high accuracy, but could also be 
potentially extended to further improve the prediction of 
enzymes synthesizing PSM as data increases from other 
species.

Results
Datasets, features and machine learning algorithms
Arabidopsis thaliana has been thoroughly studied gno-
mically and genetically and has accumulated a suffi-
cient amount of omics data, making it possible to build 
enzymes synthesizing PSM predicting models with 
high accuracy and assess the essential features linked to 
the models [26, 28]. Given that there are frequently less 
than 10 genes in a single SM pathway, we concentrated 
on a wide range of metabolic domains to train models 
effectively [20]. On the Metabolic Gene Cluster Viewer 
(https:// metab olicc luste rview er. dpb. carne giesc ience. 
edu/# !/ clust er/ v1/ search), 363 alkaloids with the Meta-
bolic Domains “Nitrogen-Containing Compounds”, 381 
phenolics with the Metabolic Domains “Phenylpropa-
noid Derivatives”, and 207 terpenoids with the Meta-
bolic Domains “Terpenes” were identified in Arabidopsis 
(Search parameters: Species, “Arabidopsis thaliana col 
(3702)”; Protein Feature (Metabolic Domains), “Nitro-
gen-Containing Compounds, Phenylpropanoid Deriva-
tives, and Terpenoids”). Since we aimed to build models 
to distinguish genes from these three main metabolic 
categories, hereafter, these three Metabolic Domains are 
referred to as metabolic pathways in this paper. There are 
only 16 genes (1 gene involved in terpene and phenolic 
biosynthesis; 15 genes involved in alkaloid and phenolic 
biosynthesis) involved in multiple pathways after our 
strict selection. Since the ML algorithm we used only 
allows prediction of a gene to one class, and incorporat-
ing genes involved in multiple pathways would bewilder 
the algorithm, thus genes that were involved in multiple 
metabolic pathways were excluded beforehand.

Furthermore, based on the genes obtained above 
and their features employed by Moore et  al., (2019), we 
obtained a total of 195 terpenoids, 354 alkaloids, and 
363 phenolic genes involved in terpene, alkaloid, and 

https://metabolicclusterviewer.dpb.carnegiescience.edu/#!/cluster/v1/search
https://metabolicclusterviewer.dpb.carnegiescience.edu/#!/cluster/v1/search


Page 3 of 12Bai et al. BMC Genomics          (2024) 25:418  

phenolic biosynthesis respectively (Original dataset, 
Additional file 2: Data S1) with abundant features. There 
were 80 numeric features, and one text feature containing 

a string representation of the protein domains associated 
with each gene (see Methods). These numeric features 
inherited from Moore et al. (2019) were generally divided 

Fig. 1 Diagram illustrating the research workflow. A Multi-omics features (data) from Arabidopsis collection and preprocessing. B The genes 
with properties (referred to as features) were split into training (80%) and test (20%) sets, and machine learning (ML) models were built and tuned 
to predict the enzymes synthesizing plant specialized metabolites (PSM). C Comparing importance of individual features separately. D Assessing 
importance in groups of omics features. E Essential features were picked from Arabidopsis and then re-extracted in Arabidopsis, maize and tomato 
to be used to create a three-species ML model to predict enzymes synthesizing PSM in these three species
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into three categories: features related to gene expres-
sion/co-expression, chromatin accessibility, and protein 
domain. As gene expression, especially co-expression, is 
often utilized to determine candidate genes in metabolic 
pathways based on the assumption that genes in the same 
pathway are co-expressed, and chromatin accessibil-
ity is believed to affect gene expression, we incorporate 
them into our feature analysis. And the three categories 
have 28, 9, 43 features, respectively. The feature of gene 
expression/co-expression contain the expression values 
(median, max, variation or breadth) of different develop-
mental stages, the number of conditions (abiotic, biotic 
or hormone stimuli) under which a gene was up or down-
regulated and the max Pearson correlation coefficients to 
paralog, specialized metabolism or general metabolism 
genes under different condition (developmental stages, 
abiotic, biotic or hormone stimuli). There are eight aver-
age values of histone marks and one CG methylation in 
chromatin accessibility. The numeric features related to 
protein domain is a binary table, showing pfam domains 
where 1 means the presence of the corresponding domain 
and 0 means the absence, which makes different protein 
domain as different features. The detailed description 
of features was summarized in Additional file  2: Data 
S2. Although only a few gene sequence-related features 
were utilized when predicting SM genes by Moore et al. 
(2019), sequence-related features provided important 
information in models predicting cold-responsive genes 
by Meng et  al. (2021). Therefore, 120 sequence related 
features were obtained in Arabidopsis by referring to the 
method of Meng et al. (2021). We further narrowed down 
our datasets to include a smaller set of genes with PMID, 
which means the metabolic functions were supported by 
experimental validation in previous research (see Meth-
ods). This led to a gold standard (GS) dataset, which 
comprised 146, 212, and 236 genes involved in terpenoid 
alkaloid, and phenolic biosynthesis (Fig.  1A; Additional 
file 2: Data S3). The original and GS datasets were utilized 
to build ML models. While we initially focused on Arabi-
dopsis due to the availability of extensive multi-omics 
data, the importance of model generalizability impels us 
to subsequently verify the model’s performance by incor-
porating gold standard datasets of tomato and maize.

An automated ML algorithm, AutoGluon-Tabular, was 
used to build predictive models [27]. This algorithm fits 
various “base” models including Random Forests (RF) 
[29], LightGBM boosted trees (LightGBM) [30], Cat-
Boost boosted trees (CatBoost) [31], Extremely Rand-
omized Trees (ExtraTrees) [32], XGboost [33] and neural 
networks (NeuralNetMXNet and NeuralNetFastAI), 
which are ultimately assembled in a linear way and the 
performance of the final integrating algorithm of Auto-
Gluon-Tabular was evaluated using 11 tabular datasets 

chosen from Kaggle competitions [27]. In particular, 
these “base” models are individually trained with conven-
tional pipelines. Subsequently, the final ensemble model 
is trained with the predictions of the base models as its 
features. Hyperparameter details and weights of the base 
models are provided in Additional file 1: Table S1.

Model construction and evaluation in Arabidopsis
To examine whether the integrating algorithm outper-
forms all the algorithms implemented in AutoGluon-
Tabular, we built three-classification models using GS 
dataset with AutoGluon-Tabular and all the implemented 
algorithms (Fig. 2A). 80% genes from the GS dataset were 
used to train three-classification models, and the remain-
ing 20% genes were utilized as a test set to evaluate the 
model performance. For each model, five random splits 
of dataset were repeated. The performance of the model 
was assessed using the average area under the receiver 
operating characteristic curve (AUC-ROC), accuracy 
(ACC) and average F1 score weighted by support (F1; 
the harmonic mean of precision and recall), and the 
evaluation scores in five repeats of the three approaches 
were plotted in Additional file  1: Figure S3 and S6. We 
observed that the final ensemble model of AutoGluon-
Tabular yielded an average AUC-ROC of 0.891 (aver-
age ACC = 0.779, average F1 = 0.77), higher than all the 
built-in conventional ML algorithms (Fig. 2A, Additional 
file 1: Figure S1 and Table S2). Models built with two deep 
learning (DL) algorithms (NeuralNetMXNet and Neural-
NetFastAI) exhibited the worst performance (P < 0.05 
from Student’s t test), which may result from the rela-
tively small sample size of our data. Thus, in the following 
analysis, we would only report performance of models 
built with the ensemble model of AutoGluon-Tabular.

To build predictive models for the enzymes synthesiz-
ing PSM, 80% genes from two datasets, the original and 
GS dataset, were used to train three-classification models 
with AutoGluon-Tabular (Fig. 2B). The mean AUC-ROC 
scores for models built with original and GS datasets 
were 0.863 and 0.891 (original dataset: ACC = 0.711, F1 
= 0.706; GS dataset: ACC = 0.765, F1 = 0.756), respec-
tively (Fig. 2B; Additional file 1: Figure S2 and Table S3). 
The slight AUC-ROC difference (0.028, P = 0.105 from 
Mann-Whitney U test) between these two datasets indi-
cates that the model’s performance was not affected by 
the reduction of genes for three-classification task in the 
GS dataset, and that models built with experimentally 
validated genes only showed minor, if any, advantage 
over models when computationally annotated genes were 
included. In addition, we constructed binary-classifica-
tion models (terpenoids and alkaloids: Ts-As; terpenoids 
and phenolics: Ts-Ps; alkaloids and phenolics: As-Ps) for 
any two of the three metabolic gene classes separately 
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(Fig.  2B; Additional file  1: Figure S2 and Table  S3). For 
example, the Ts-Ps means genes synthesizing terpenoids 
were treated as positive class (first class) and genes syn-
thesizing phenolics were treated as negative class (sec-
ond class). We found that the models built with the GS 
dataset significantly outperformed the models built with 
the original dataset when distinguishing terpenoids and 
alkaloids (P = 1.07e-2 from Mann-Whitney U test), phe-
nolics (P = 3e-2 from Mann-Whitney U test). However, 
no significant differences in Ts-Ps for the two datasets 
(Ts-Ps: terpenoids and phenolics, P = 0.26 from Mann-
Whitney U test). Interestingly, the performance of Ts-Ps 
models built with GS dataset did not exceed the model 
built with original dataset, which is contrary to the three 
and the other two binary-classification models. Hereafter 
we will focus on the three-classification models using GS 
dataset for simplicity.

Screening of important features
To understand features from which omics data tend to 
contribute more to the model performance, we classified 
the features of the Arabidopsis GS dataset into four types: 
genomic (G) [34, 35], transcriptomic (T) [36, 37], epig-
enomic (E) [38], and proteomic (P) features [39] (Addi-
tional file  2: Data S4-7). Features that do not belong to 
any of the above four categories were excluded from the 
analyses. Next, we compared the performance of Auto-
Gluon-Tabular models built with different combinations 
of omics features (Fig. 3A). Specifically, the models were 
built with all the four types of omics features (GTEP), 
combinations of three types of omics features (GTE, 
GTP, GEP, and TEP), combinations of two omics features 

(GT, GE, GP, TE, TP, and EP) and single-omics features 
(G, T, E, and P). We found that the model trained with 
proteomic features had the highest performance (mean 
AUC-ROC = 0.881, ACC = 0.76, F1 = 0.755), followed 
by the models trained with genomic (mean AUC-ROC = 
0.809, ACC = 0.679, F1 = 0.668), transcriptomic (mean 
AUC-ROC = 0.648, ACC = 0.475, F1 = 0.462) and epi-
genomic (mean AUC-ROC = 0.617, ACC = 0.447, F1 
= 0.4) features (Fig. 3A; Additional file 1: Figure S3 and 
Table S4). These results indicate that the proteomic and 
genomic features might be more informative for predict-
ing enzymes synthesizing PSM than the other two types 
of features. Surprisingly, we found no improvement in 
model performance when additional omics features were 
included to train the models, even for models integrating 
proteomic and genomic features (GP, mean AUC-ROC: 
0.881). These results further suggest that the proteomic 
and genomic features might be sufficient to distinguish 
genes involved in metabolic pathways for terpenoids, 
alkaloids, and phenolics biosynthesis.

Moreover, to identify what features contribute more to 
the model performance, we examined the mean feature 
importance from three-classification models with the GS 
dataset in Arabidopsis. A feature score of 0.01 from the 
AutoGluon-Tabular algorithm indicates a predictive per-
formance drop of 0.01 when this feature’s values are ran-
domly shuffled across instances, and thus a higher feature 
score suggests more contribution to model performance. 
Ten features with the highest average feature importance 
scores were shown in Fig. 3B. The protein domain-related 
features (Pfam domains were mapped to each gene with 
a significant match) was the most influential feature 

Fig. 2 Performance for the models of enzymes synthesizing PSM in Arabidopsis. A Performance of models built with AutoGluon-Tabular 
and the algorithms built-in AutoGluon-Tabular. All models were evaluated by mean AUC-ROC from 5 experiments for each model. The black 
triangles indicate mean values; the black star represents the outliers. B Performance of models built with AutoGluon-Tabular with the gold 
standard (GS) dataset and original dataset for three-classification tasks (terpenoids-alkaloids-phenolics: Ts-As-Ps) and binary-classification tasks 
(terpenoids-alkaloids: Ts-As; terpenoids-phenolics: Ts-Ps; alkaloids-phenolics: As-Ps). Error bar indicated standard error (SE) for the 5 resamples (see 
Methods). “*” indicates P values less than 0.05 and “n.s.” represents no significant difference
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(average importance score = 0.063) for enzymes synthe-
sizing PSM prediction, followed by P450 and UDPGT 
defining whether a gene contains a P450 or UDPGT Pfam 
domain. Since these top three most important features 
are all protein domain-related features, we questioned 
whether genes involved in metabolic pathways of terpe-
noids, alkaloids and phenolics can be distinguished with 
protein domain-related features only. Principal compo-
nent analysis (PCA), an unsupervised learning algorithm, 
was utilized to assess the utility of the protein domain-
related features for enzymes synthesizing PSM prediction 
(Fig.  3C). Surprisingly, protein domain-related features 
can’t distinguish genes involved in metabolic pathways of 
terpenoids, alkaloids and phenolics very well, which may 
be owing to the lack of Pfam domains or the shared pro-
tein domain of some genes. Then another two features 
related to protein (number of domains and amino acid 
length) were added in PCA (Additional file 1: Figure S4), 
which did not improve the prediction of enzymes synthe-
sizing PSM, indicating that a combination of multi-omics 
features can potentially improve the accurate of enzymes 
synthesizing PSM predictions.

Besides protein domain-related features, the fea-
tures related with gene sequences were also important 

for predicting enzymes synthesizing PSM, such as gene 
family size, homolog presence (presence of Arabidop-
sis homologs in given species), and presence of tandem 
duplication (with paralogs within a distance of 10 genes 
and 100kb) in the study of Moore et al. (2019). However, 
the feature of gene family size was also not able to distin-
guish three metabolic domains separately as most PSM 
genes exhibited small gene family size (Additional file 1: 
Figure S5). Among the top ten important features, there 
are two expression-related features with relatively lower 
importance, namely, expression breadth (number of 
development conditions called with an expression inten-
sity threshold of ≥ 4) and expression median (median 
expression level in development dataset). In summary, 
the top ten features were dominated by genomic and 
proteomic features, which indicates combinations of 
these essential features may provide sufficient informa-
tion for enzymes synthesizing PSM prediction. In addi-
tion to evaluating the model built with all features (AUC: 
0.891 ± 0.026), we further explored the potential ben-
efits of feature selection. We computed feature impor-
tances for each omics data type (Additional file  2: Data 
S8-S11). Features with positive importance scores were 
considered potentially informative. A model built using a 

Fig. 3 Feature importance and performance of the multi-omics model in Arabidopsis. A Performance of models built with single, two and multiple 
omics features (e.g., GTEP: genomic [G], transcriptomic [T], epigenomic [E], and proteomic [P]). Error bar indicates standard errors among 5 
replicate runs (see Methods). B The top ten important features from the model of three-classification tasks (5 experiments for each model). 
C Principal component analysis (PCA) of Pfam domains for genes involved in the metabolic pathways of terpenoids (purple), alkaloids (turquoise) 
and phenolics (orange). Scatterplots show the scores of the first two principal components estimated with the feature “protein domains” 
in Arabidopsis 
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combined set of these positive features achieved an AUC 
of 0.905 ± 0.025. While the improvement compared to 
the model using all features is modest, it suggests that 
feature selection techniques could be a valuable strat-
egy for further optimization, especially when additional 
data becomes available. Furthermore, the proteomic and 
genomic features can be captured more readily for non-
model species than features from other omics. To eval-
uate the contribution of these omics data to the model, 
we built and evaluated models with features from solely 
genomic and proteomic data, respectively, as well as from 
both omics data. Interestingly, while a model built using 
only proteomic features achieved good performance 
(AUC: 0.863 ± 0.022), incorporating features from both 
omics data led to a further improvement of model accu-
racy (AUC: 0.885 ± 0.015) (Additional file  1: Table  S5). 
These results suggest a multi-omics approach can pro-
vide additional benefits for prediction tasks. Thus, in the 
subsequent section, we built cross-species models using 
features from the two omics data.

Performance of trans‑species prediction
Since the proteomic and genomic features are most 
informative for predicting enzymes synthesizing PSM, 
we then asked whether models built with features from 
both omics in one species can be used to predict enzymes 
synthesizing PSM in other species. 467 and 544 enzymes 
synthesizing PSM with experimental and literature sup-
port were downloaded for tomato and maize from Plant 
Metabolic Network (PMN) (https:// www. plant cyc. org/), 
respectively. Considering the fact that the annotations for 
protein domain and genomic features are continuously 
updated, and for the sake of the unification of features 
among three species, we re-extracted features of each 

gene. Thus, based on the genomic assembly and anno-
tation information, we re-extracted the Arabidopsis fea-
tures to obtain three proteomic related features: amino 
acid sequence, amino acid sequence length and protein 
domain, which was similar to proteomic features that 
were used to build multi-omics models, and two genomic 
features (i.e., gene length and gene family size). The other 
genomic features, such as gene sequence and 120 fre-
quencies of bi-nucleotides (see Methods), were discarded 
due to the lower feature importance. The same features 
were also extracted for genes in tomato and maize, 
respectively.

Models built using the five genomic and proteomic 
features of training set genes in single, double or triple 
species were applied to the test genes in Arabidopsis (a 
for short), tomato (s) and maize (z), separately (Fig.  4). 
The model performance across species (or interspecies, 
i.e., model was trained using all GS genes in one species 
and was evaluated using test genes from another species, 
e.g., s-a: mean AUC-ROC = 0.785, ACC = 0.588, F1 = 
0.559) was lower than the performance of within-species 
predictions (or intraspecies, i.e., model built with train-
ing genes in one species was evaluated with test genes 
in the same species, e.g., a-a: mean AUC-ROC = 0.924, 
ACC = 0.765, F1 = 0.756; P < 0.001 from Student’s t test). 
Although still worse than intraspecies predictions, the 
performance of two-species based interspecies mod-
els (i.e., model built with all GS genes from two species 
was evaluated with test genes from another species) was 
significantly improved compared with that of the single-
species based interspecies model (Fig. 4; Additional file 1: 
Figure S6 and Table S6).

Based on the previous finding that ML models incor-
porated with training data from multiple species can 

Fig. 4 Cross-species validation of enzymes synthesizing PSM. Validation of enzymes synthesizing PSM in Arabidopsis, tomato and maize using 
models trained with genes from other species (the interspecies models, pink), the same species (the intraspecies models, orange), or multiple 
species (yellow and blue). Model performance was assessed using mean AUC-ROC values. Error bars indicate standard errors among 5 replicate 
runs (see Methods). Abbreviations: a, Arabidopsis; s, tomato; z, maize, asz-a, models trained using genes in the training sets from Arabidopsis, tomato 
and maize were used to predict genes in the Arabidopsis test set

https://www.plantcyc.org/
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improve model performance [35], we trained a three-
species AutoGluon-Tabular model with Arabidopsis, 
tomato and maize GS datasets, using re-extracted fea-
tures. We found the validation data of three-species 
model rendered the best ACC of 0.844. Additionally, 
we evaluated the performance of our three-species 
model on an external grape dataset and compare it 
with seven basic models. While the AutoGluon-Tabu-
lar performed better on ACC (0.844) than RF (0.834), 
LightGBM (0.835), ExtraTrees (0.829), CatBoost 
(0.827), XGBoost (0.836), NeuralNetFastAI (0.837) 
and NeuralNetMXNet (0.783) on the validation data, 
it yielded the lowest ACC (0.603) on the grape data-
set. Notably, LightGBM achieved the highest ACC of 
0.63 on the grape dataset (Additional file 2: Data S12). 
Furthermore, to evaluate three-species model in non-
model species, such as medicinal plants, the SM genes 
of Papaver somniferum were collected base on the 
published literatures and KEGG PATHWAY (https:// 
www. genome. jp/ kegg/ pathw ay. html) including 22 ter-
penoids, 13 alkaloids and 38 phenolics genes involved 
in terpenoid alkaloid, and phenolic biosynthesis 
respectively. For the genes of Papaver somniferum, 
the performance of AutoGluon-Tabular ensemble 
model was not as good as that in model species, but 
still acceptable (AUC-ROC = 0.584, ACC = 0.479, F1 
= 0.478). Interestingly, the DL algorithms NeuralNet-
FastAI gained the best performance (AUC-ROC = 
0.69, ACC = 0.589, F1 = 0.607) (Additional file 2: Data 
S13), which suggested the DL algorithm performed 
better than ensemble model for three-classification 
task when the training gene set was increased to over 
1000 genes (Additional file  2: Data S3). Further scru-
tiny showed that the main failure lied in the distinction 
between alkaloids and phenolics (6 alkaloids predicted 
to phenolics; 11 phenolics predicted to alkaloids). For 
example, as for the alkaloid gene “113340172”, the pre-
dicted probability for alkaloids is 0.39, for phenolics is 
0.52 and for terpenoids is 0.09. Two factors are pos-
sibly accountable for the decrease of performance: (1) 
the distinct source of training (exclusively from PMN) 
and test dataset; (2) the limited representation of the 
full diversity of metabolic pathways within each of the 
tree main PSM categories. Taken together, it implied 
that more samples or features are needed for a better 
prediction of unknown gene in non-model species.

Finally, three-species models, which were trained 
with all GS genes from all the three species and evalu-
ated with test genes in the species in question, exhib-
ited either equivalent or superior performance to 
intraspecies predictions (Fig. 4).

Discussion
Researchers have explored the application of ML meth-
ods in prediction of genes synthesizing secondary metab-
olites (SM) versus primary metabolites (PM) [26] and 
participating in specific secondary metabolite pathways 
[20]. Models distinguishing SM genes from PM genes had 
great performance (accuracy = 86%), while models for 
individual pathways failed in predicting genes to correct 
pathways (accuracy = 58.3% for benchmark genes). The 
failure can be due to several reasons: 1) the training gene 
sets within individual pathways had limited sizes; 2) that 
work was done in tomato where only few experimentally 
validated metabolic pathway genes are available; 3) only 
transcriptome data was used in that study. Considering 
these aspects and the trade-off between the refinement 
and accuracy of gene prediction, we established models 
distinguishing genes participating in the biosynthesis of 
three main categories of secondary metabolites (terpe-
noids, alkaloids, and phenolics) in Arabidopsis using the 
same features as in Moore et al. (2019). Our prediction 
model demonstrated a mean accuracy of 83.2% and the 
best accuracy of 86.6% at predicting genes participating 
in a broader classification of secondary metabolites. In 
addition, we came up with a minimized set of features 
with no decreases in prediction performance, which pro-
nounced broader applications of our models especially in 
non-model species. The reliable application of Arabidop-
sis model in cultivated tomato, maize, grape and Papaver 
somniferum further supports this.

The upper bound of the model is determined by the 
dataset and features [40]. A dataset with accurate labels 
and balanced number of items under each label was cru-
cial for a reasonable model. In this study, we selected 
genes with experimental validation as the GS dataset 
and validated the reliability of the gold standard dataset 
by comparing the model performance with the original 
dataset. The GS dataset contained a total of 594 genes, 
which was comparable to the number of specialized 
metabolic genes (649) utilized in Moore et al. (2019). An 
automated ML algorithm was employed to build mod-
els, because the algorithm neither necessitates a large 
amount of data like DL algorithms nor requires manual 
tuning of parameters like conventional ML algorithms 
[41, 42]. We found in our GS dataset, the model Auto-
Gluon-Tabular outperformed models using individual DL 
algorithms implemented in AutoGluon-Tabular (Fig. 2A), 
which usually require a large amount of data for the 
training and did not work well with such a small amount 
of data. For example, Ma et al. [43] utilized 10,321 anti-
microbial peptides (AMPs) and 3,030,124 Non-AMP to 
build and optimize DL models for identifying AMPs from 
the human gut microbiome. Chen et al. [44] employed 30 
million sequences (4-kb windows with 100-base pair step 

https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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size) in the human genome to build a robust DL model 
“Sei” for discovering the regulatory basis of traits and 
diseases. In contrast, our model might be applicable in 
specialized tasks with limited amounts of data, such as 
human diseases or plant metabolic pathways [45, 46].

Among the features we investigated, genomics and pro-
teomics related features played a significant role in pre-
dicting genes synthesizing the three categories of PSM 
in our study. Importantly, these features have also been 
shown to play a pivotal role in gene prediction in other 
studies. For example, gene family size and specialized 
protein domain (P450) provided significant informa-
tion in models predicting the primary and specialized 
metabolism genes constructed by Moore et  al. (2019). 
In addition, the sequence features of genes, which can 
be calculated solely from genomic sequences and gene 
structural annotation, contributed significantly to the 
prediction of genes that transcriptionally responded to 
cold abiotic stress [35]. In conclusion, the genomics and 
proteomics related features enabled us to build mod-
els that outperformed those constructed with all multi-
omics features. In addition, due to the relatively easy 
extraction of these features from species with genome 
assemblies, our practice can overcome the limitation of 
adaptability of models when applied across non-model 
species, especially for medicinal plants. Even though a 
small feature set (five key features) facilitated interpret-
ability and model performance, it inherently restricts the 
model’s ability to learn and predict unknown enzymes 
synthesizing PSMs due to limited knowledge. To address 
this limitation and enhance the model’s capacity, future 
investigations could focus on exploring the integration of 
pre-trained protein language models and incorporating 
features specifically tailored to different plant species or 
specific secondary metabolite classes (e.g., alkaloids and 
phenolics).

Using only five genomic and proteomic features, the 
predicting models rendered an average AUC-ROC of 
> 0.8 across three species, which is comparable to the 
cross-species model performance for predicting cold 
responsive genes in Poaceae [35]. Furthermore, the suc-
cessful prediction of SM genes in grape and Papaver 
somniferum suggests the potential of our models for 
identifying SM genes synthesizing the surveyed three 
categories of PSM among genes with unknown func-
tion based on data in non-model species. However, 
further validation on a broader range of non-model 
species is warranted to evaluate the models’ generaliz-
ability. Our cross-species validation was based on four 
species from three different families spanning mono-
cots and eudicots. Despite the distant evolutionary rela-
tionships among these species, the high accuracy across 
species indicated that our models have great application 

potential for predicting genes participating in special-
ized metabolic pathways in some non-model plant spe-
cies. For example, in traditional medicinal plants, which 
are a rich source of highly diverse specialized metabolites 
with critical pharmacological properties [16], our models 
can be potentially used to identify unknown genes syn-
thesizing effective compounds. In the future, the pre-
diction accuracy of enzymes synthesizing PSM will be 
further improved along with the explosion of plant omics 
data and the increasing accumulation of gene annotation 
information. Our study manifested the great potential of 
machine learning models in unearthing the biosynthe-
sis pathway of effective biochemical molecules in plant 
species.

Conclusions
Here, we constructed a GS dataset with multi-omics fea-
tures for genes synthesizing three specialized metabo-
lites: terpenoids, alkaloids and phenolics, in the model 
species Arabidopsis. A three-classification model was 
built using this dataset and the ML algorithm AutoGluon-
Tabular, rendering a mean AUC-ROC of 0.891 (Fig. 2A). 
Among the features we investigated, genomic and prot-
eomic features were selected as the crucial omics features 
for predicting genes synthesizing the three categories of 
PSM (Fig. 3). The key features that were re-extracted for 
genes in Arabidopsis, tomato and maize were utilized to 
build new models (Fig.  4), which exhibited high predic-
tion accuracy across species. Our results illustrate the 
application potential of models built in species with rela-
tively abundant experimentally validated pathway anno-
tations to data-poor species. In addition, our model is 
also beneficial for predicting unknown enzymes synthe-
sizing PSM, and may guide experimental design and save 
significant cost [47, 48].

Methods
Datasets
For training models, we downloaded specialized meta-
bolic genes and pathway annotation in three species 
(namely, Arabidopsis [Arabidopsis thaliana col-0], 
tomato [Solanum lycopersicum], and maize [Zea mays 
B73]) from Plant Metabolic Network (PMN 15.5) 
(https:// www. plant cyc. org/). Datasets from these three 
species were used in this study owing to the high data 
quality [49] and comprehensive pathway annotation 
information. Based on the metabolic domains of PMN, 
a label (either terpenoids, alkaloids, or phenolics) was 
obtained for each gene. Genes assigned to ≥2 domains 
were not included. In total, we identified 951 Arabidop-
sis genes, 1234 tomato genes, and 1179 maize genes. Fur-
thermore, to obtain gold standard (GS) gene sets, genes 
without experimental and literature support (have a 

https://www.plantcyc.org/
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PubMed ID) were excluded, resulting in 594 Arabidop-
sis genes, 467 tomato genes, and 544 maize genes (Addi-
tional file 2: Data S2).

For additional validation of the model, we collected 
two different datasets. The first dataset consisted of 1083 
grape SM genes that were collected from PMN with 
the same data processing as Arabidopsis. This dataset 
included 285 genes involved in terpene biosynthesis, 313 
genes involved in alkaloid biosynthesis, and 485 genes 
involved in phenolic biosynthesis (Additional file 2: Data 
S12). The second dataset was composed of 73 poppy SM 
genes from Kyoto Encyclopedia of Genes and Genomes 
(KEGG; https:// www. genome. jp/ kegg/) including 22 ter-
penoids (11 sesquiterpenoid and triterpenoid biosynthe-
sis and 11 diterpenoid biosynthesis genes), 13 alkaloids 
(13 isoquinoline alkaloid biosynthesis genes) and 38 phe-
nolics (8 anthocyanin biosynthesis and 30 coumarin bio-
synthesis genes) genes (Additional file 2: Data S13).

Feature acquirement
For analyzing feature importance and building models in 
various species, two feature sets were constructed on the 
GS dataset of the model species Arabidopsis.

First, we collected a comprehensive set of features, 
including four categories (e.g., genomic sequence infor-
mation, expression/co-expression, chromatin accessi-
bility, protein domain) [26]. The features of the protein 
domain were transformed from one-hot coding to text 
string to regain information about the domain. Two 
approaches were utilized to process sequence features. 
One approach was to maintain the raw information of 
the sequence by splitting each nucleotide with space 
and treating it as one feature. The other was to calcu-
late frequencies of all individual nucleotides (4 features) 
and dinucleotides (16 features) for each of six sequence 
regions: the CDS, intron, estimated 5’ UTR, estimated 
3’ UTR, 1 kb upstream of the 5’ UTR starting site, and 1 
kb downstream of the 3’ UTR ending site, which resulted 
in 120 features as described in Meng et al. (2021). Over-
all, 234 features were scored and collected for each gene 
(Additional file 2: Data S1).

Second, to expand the model application, five impor-
tant features related to genomics and proteomics were 
selected and re-extracted: protein domain, amino acid 
sequence, amino acid sequence length, gene length and 
gene family size. The protein domain(s) of each gene was 
obtained from Pfam v35.0-A using amino acid sequence 
with sequence-searching software HMMER (3.1b1; 
http:// hmmer. org/) (hmmscan -o out.txt -E 0.001 --cpu 
2 ./Pfam-A.hmm input_file) [50]. Amino acid sequence, 
amino acid sequence length, and gene length were 
obtained based on gene names and genome assemblies 
with Bioawk (https:// github. com/ lh3/ bioawk). Genome 

assemblies, gene annotation and protein sequences of 
genes in Arabidopsis (TAIR10), tomato (SL3.0), maize 
(Zm-B73-REFERENCE-NAM-4.0) and grape (Vitis vin-
ifera) were downloaded from Ensemble Genomes [51]. 
The feature gene family size was obtained from a previ-
ous work [49]. Genes with unknown sequence or pro-
tein domain were excluded in the analysis. Summaries of 
feature values for Arabidopsis, tomato, and maize were 
deposited in Additional file  2: Data S2 and for grape in 
Additional file  2: Data S12. The poppy SM genes were 
extracted from KEGG with a python script and their fea-
tures were further collected (Additional file 2: Data S13).

AutoGluon‑Tabular model training, classification, 
and evaluation
Two strategies were taken to generate holdout test data: 
one for within-species prediction; the other for cross-
species prediction. For within-species prediction, all 
genes were partitioned into training (80%) and test 
(20%) subsets. For cross-species predictions, models 
were trained with all the GS genes from other species 
and were applied on genes in the test (20%) subset in 
a given species, in order to ensure that the cross-spe-
cies model performance is comparable to the within-
species performance. Models were trained by using the 
AutoGluon-Tabular algorithm in the python (v3.8.13) 
package “autogluon” (v0.4.2) [27]. Compared with 
conventional ML algorithms, AutoGluon-Tabular can 
train a ML model with relative high accuracy from an 
unprocessed tabular dataset such as a CSV file by auto-
matically recognizing the data type in each column, 
including text data. Meanwhile, it can significantly 
save considerable time in parameter tuning and feature 
engineering. In this study, we utilized two hyperparam-
eters. The parameter “num_bag_folds” (the fold number 
of cross-validation) was set as five (num_bag_folds=5), 
and the “time_limit” (the training model’s limit time) 
was set as 1000 (time_limit=1000), which means Auto-
Gluon-Tabular trains multiple ML models and inte-
grates the models to an ensemble model within 1000 
seconds. Other hyperparameters, such as the number 
of folds for model-training vs. validation and the type of 
prediction problem (binary, multi-class classification or 
regression), were automatically optimized by the algo-
rithm AutoGluon-Tabular. To evaluate the performance 
of AutoGluon-Tabular and the models implemented 
in AutoGluon-Tabular, we used three evaluation sta-
tistics: accuracy (ACC), average F1 score weighted by 
support (F1_weighted), and macro-averaged area under 
the receiver operating characteristic curve (AUC-ROC) 
in package ‘scikit-learn’ (https:// scikit- learn. org/). We 
evaluated all the algorithms using five randomly (ran-
dom_seed = 1 ~ 5) generated training and test splits, 

https://www.genome.jp/kegg/
http://hmmer.org/
https://github.com/lh3/bioawk
https://scikit-learn.org/
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and the mean and standard error of the evaluation met-
rics across these five replicate runs were reported.
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