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Abstract 

Background  Single-cell clustering has played an important role in exploring the molecular mechanisms about cell 
differentiation and human diseases. Due to highly-stochastic transcriptomics data, accurate detection of cell types 
is still challenged, especially for RNA-sequencing data from human beings. In this case, deep neural networks have 
been increasingly employed to mine cell type specific patterns and have outperformed statistic approaches in cell 
clustering.

Results  Using cross-correlation to capture gene–gene interactions, this study proposes the scCompressSA method 
to integrate topological patterns from scRNA-seq data, with support of self-attention (SA) based coefficient compres-
sion (CC) block. This SA-based CC block is able to extract and employ static gene–gene interactions from scRNA-seq 
data. This proposed scCompressSA method has enhanced clustering accuracy in multiple benchmark scRNA-seq 
datasets by integrating topological and temporal features.

Conclusion  Static gene–gene interactions have been extracted as temporal features to boost clustering perfor-
mance in single-cell clustering  For the scCompressSA method, dual-channel SA based CC block is able to inte-
grate topological features and has exhibited extraordinary detection accuracy compared with previous clustering 
approaches that only employ temporal patterns.

Keywords  Single-cell RNA sequencing (scRNA-seq), Static gene–gene interactions, Coefficient compression, Dual-
channel self-attention mechanism

Introduction
As a high-throughput technology, single-cell RNA 
sequencing (scRNA-seq) make it feasible to investigate 
the cellular heterogeneity and thus played a crucial role 
in systems biology and precision medicine. Distributions 
of cell subpopulations are closely related with cell states 
and disease subtypes. Cell clustering of scRNA-seq data 
is crucial to detect meaningful patterns from raw gene 
count matrix [1–3]. One important topic in single-cell 
data analysis is to decipher the cellular compositions 
and cell subpopulations of complex tissues [4, 5]. For 
instance, tumor-infiltrating immune cell compositions 
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may play a role in understanding anti-tumor immune 
responses. Once the cell types were detected, temporal 
gene patterns were used to enhance the understandings 
of cell signatures. Compared with statistical approaches, 
deep learning models including graph learning and trans-
former have exhibited superior capability in analyzing 
high-dimensional single-cell transcriptomics data [6–8].

For single-cell transcriptomic data, feature selection 
was regarded as an essential step in extracting biologi-
cally meaningful patterns from raw count matrix [9, 10]. 
Without cell labels, unsupervised single-cell clustering 
methods were widely used to select informative genes, 
with the measure of highly variable genes (HVGs). Unsu-
pervised M3Drop method selects genes whose drop-
out rate exceeds that of other genes as features [11]. 
Similarly, GiniCluster method employs a modified Gini 
index to detect genes whose expression is concentrated 
in a limited number of cells [12]. As an unsupervised 
method, the DUBStepR method defines a graph-based 
measure of cell aggregation in the feature space, and 
uses this measure to optimize the features [13]. Seurat 
method combines variance filtering and standardiza-
tion to select genes with differential expression and large 
variance as inputs [14]. Meanwhile, the FEAST method 
selects genes with strong correlation to clustering results 
through mutual information filtering based on informa-
tion entropy. In fact, topological features have played an 
increasingly important role in computational analysis of 
single-cell data [15, 16]. Gene–gene interactions can be 
regarded as topological features, thus capturing compu-
tational analysis of scRNA-seq data.

With extracted features, deep learning models includ-
ing graph learning methods have been employed to 
extract meaningful patterns from raw gene count matrix 
[1, 17–19]. The scDeepCluster method combines depth-
counting autoencoder (DCA) modeling and deep embed-
ding to conduct single-cell clustering [20]. But high 
variable genes are not pre-selected in scDeepCluster, 
and lead to high time consumption and slowly increased 
clustering accuracy. In contrast, highly variable genes are 
selected as features in the scziDesk, thus reducing the 
computational burden as well as memory consumption. 
Both scDeepCluster and scziDesk employ a stack autoen-
coder (SAE) model to detect cell types and train a multi-
layer autoencoder [21]. These deep learning methods 
use a stack autoencoder (SAE) which employs the CNN 
architecture. CNN model keeps the input neighborhood 
relationship and the spatial locality in the high-level fea-
ture representation, and effectively learn local features in 
input matrices. For single-cell data, CNN may encoun-
ter certain limitations. To alleviate these problems, deep 
convolutional autoencoder (CAE) has been used to 
replace SAE to learn the effective data compression.

Among various deep learning models, the autoen-
coder model has received increasing attention in the field 
of single-cell data analyzing. Autoencoder (AE) model 
refers to a type of neural network capable of effective data 
compression without supervision. This auto-encoder 
architecture conducts nonlinear dimension reduction of 
high-dimensional single-cell gene expression data in a 
latent space. The scCAEs method employs the convolu-
tional autoencoder architecture and regularization terms 
designed for scRNA-seq data [22]. In the original scCAEs 
method, a multilayer convolutional autoencoder model is 
adopted to learn the low-dimensional representations of 
the input gene expression matrix. However, gene–gene 
interactions have not yet been taken into consideration 
during cell clustering. Actually gene–gene interactions 
can be regarded as topological features, thus contributing 
to a comprehensive model.

In order to enhance the performance of single-cell 
clustering, this study proposes a scCompressSA method 
to integrate expression patterns and gene–gene interac-
tions, with self-attention (SA) based coefficient compres-
sion. The contributions of scCompressSA method are 
three-folds: F-test based selection of informative genes, 
coefficient compression (CC) based integration of gene–
gene interactions, and dual-channel SA scheme based 
CC block. Two types of information, i.e. static gene–
gene interactions and gene expression dynamics, are 
effectively integrated by the dual-channel SA based CC 
block, with the purpose of capturing spatial–temporal 
dynamics underlying RNA-sequencing data. Validation 
experiments about benchmark scRNA-Seq datasets are 
conducted to demonstrate the effectiveness and advan-
tages of this scCompressSA method.

Single‑cell clustering using deep CAE architecture
In the conventional encoder-decoder (CAE) architecture, 
gene count matrices of individual cells are firstly reshaped 
into two-dimensional image that were employed to train 
deep neural networks. This reconstructed two-dimen-
sional data matrix is able to learn non-linear gene–gene 
dependencies from complex and multi-cell type samples 
and guide the training of autoencoder model to construct 
embedded spaces that define cell types. In the deep CAE 
architecture, the expression profiles of individual cells 
are reshaped into two-dimensional (2D) data matrix and 
used as samples for model training.

Data preprocessing of single‑cell data
Assume X as an unlabeled gene count matrix composed 
of n samples, single-cell clustering approaches aim to 
divide these n samples into K  categories. Gene count 
matrix was firstly transformed with a nonlinear mapping 
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φw : X → Z , where Z denotes a latent feature space with 
reduced dimension.

Given the top layer of the corrupted and clean pathway 
pathways as the embedding subspace, the polynomial 
logistic regression function is employed to predict the 
probability distribution. Soft label pik of embedded point 
zi is defined by Eq. (1).

where pik represents the probability that the i-th cell is 
assigned to the k-th cluster, while zi = φw(xi) ∈ Z rep-
resents the embedded xi ∈ Z . For the k-th cell cluster, 
the set of weight vectors θk and bias values bk were com-
puted. Deep clustering methods learned neural network 
classifier that maximizes the mutual information, which 
was converted to maximization of the clustering loss. 
Note that pik is related with learnable parameters in neu-
ral network classifier. In soft clustering, the weight rik , 
which ranges from 0 to 1, denotes the weight of assigning 
the embedded data point zi to the k-th category.

The total responsibilities of the respective point is 1, i.e. ∑K
k=1 rik = 1 . When the latent space z and the responsi-

bility rik are known, the optima in a closed form can be 
obtained. Afterwards, the polynomial logistic regres-
sion function is used to predict the probability of cluster 
assignment pik.

Training of deep CAE model
The original data X is mapped to the embedded subspace 
Z , which contains K  clusters. In single-cell clustering, 
deep neural networks are trained with the loss func-
tion containing the K-means clustering target, which is 
defined by Eq. (3).

Furthermore, a reconstruction loss function is used as 
a data-dependent regularization during the training of 
deep neural networks, while a soft-max layer is superim-
posed on the CAE architecture to predict the soft allo-
cation of clustering. In order to minimize the mismatch 
between the weight rik and the probability distribution 
pik , the KL divergence is introduced into the objec-
tive function to reduce the distance between these two 
parameters.

(1)pik =
exp

(
θTk zi + bk

)
∑K

k=1 exp
(
θTk zi + bk

)

(2)rik =
exp

(
−β�zi − µk�

2
)

∑K
k=1 exp

(
−β�zi − µk�

2
)

(3)L1 =

N∑

i=1

K∑

k=1

rik ||zi − µk ||
2 − �

N∑

i=1

zTi zi.

where R and P denote the set of target variables and pre-
dicted target probability pik respectively. Here KL diver-
gence plays the role of constraint to narrow the distance 
between predicted probability distribution and the soft 
distribution. In order to obtain a mapping function that is 
more suitable for K-means clustering, the squared error 
reconstruction loss L3 between the decoder and encoder 
layers are introduced to the total loss function, which is 
defined by Eq. (5).

where 
∣∣∣zli

∣∣∣ denotes the output size of the l-th layer. The 
weigh rik and the optima µk are alternately updated. 
Hence, the general loss function, consisting of three com-
ponents, is optimized to learn network parameters.

where weighted coefficients α1 and α2 are employed to 
pursue a trade-off between two regularization terms. In 
this case, the reconstruction loss function of autoencoder 
model is employed as a data-dependent regularization 
term, with the purpose of avoid over-fitting.

Evaluation metrics of cell clustering
For single cell clustering tasks, the performance is quan-
titatively evaluated by adjusted rand index (ARI) and nor-
malized mutual information (NMI). Denote U as the true 
partition of P classes, while V  as the predicted partitions. 
In addition, ni and nj denote the number of the class µi 
and cluster vj , respectively. nij is represented as the num-
ber of observations in both class µi and cluster vj . During 
evaluation, the ARI index is defined by Eq. (7).

where n =
∑P

i=1 ni· =
∑K

j=1 n·j . Meanwhile, the NMI 
index is expressed as Eq. (8).

where I(U ,V ) is the amount of mutual information 
between U and V  , H(U) and H(V ) are the entropy of par-
titions U and V  . In addition, clustering accuracy (ACC) is 
designed to measure the best matching between the pre-
dicted and true clusters, which is defined by Eq. (9).
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where Îi and Ii represent the true and predicted cell 
labels. It is noted that cell annotation and single-cell clus-
tering tasks are similar while different in computational 
analysis of RNA-seq data. Single-cell clustering focus 
on difference in expression patterns of various cell types 
while cell annotation provide the specific functions of cell 
types.

Self‑attention based scCompressSA method
In order to detect cell types, this study proposes a self-
attention mechanism based deep AE model to integrat-
ing expression pattern and gene–gene interactions. 
Cross-correlation values between transcript levels of 
gene pairs are computed to reconstruct input matrices. 
Reconstructed data matrix contains temporal expres-
sion patterns and gene–gene interactions. To assign the 
weighted coefficients, the scCompressSA employs auto-
matic coefficient compression (CC) block quantitatively 
determine the contributions of these two parts in recon-
structed input matrix. The architecture of scCompressSA 
method contains three blocks: F-test based supervised 
learning, SA-based CC block, an high-speed AE archi-
tecture. The architecture of scCompressSA method was 
demonstrated by Fig. 1.

In Fig.  1, three interconnected blocks have been 
designed to conduct single-cell clustering, with extracted 
topological features  about gene-gene interactions. The 
role of section (a) is to perform F-test based supervised 
selection of informative genes, while the SA-based CC 
block in section (b) aims to integrate topological fea-
tures with dual-channel self-attention mechanism. In this 
study, topological features, which correspond to static 
gene–gene interactions in gene  expression matrix, were 
captured by cross-correlation between transcript levels 
and integrated by the SA mechanism into reshaped input 
matrix. The role of SA mechanism is to assign weights to 
two components of reconstructed input matrix according 
to their contributions.

F‑test based selection of informative genes
In selection of informative genes, the F-test method is 
used to compare significant differences among multiple 
cell samples. For each cell sample, F-value and p-value 
are calculated using analysis of variance (ANOVA). The 
ratio of within-group error to between-group error was 
used to evaluate whether there is a significant difference 
in means among the groups. In supervised selection of 

(8)ACC = max
m

n∑

i=1

1

{
Îi = m(Ii)

}

n

informative genes, F-test was used to conduct variance 
analysis, which is defined by Eq. (10).

In Eq.  (10), F(k−1,N−k) represents the degrees of free-
dom in F  distribution, where k denotes the number of 
groups and N  is the total sample size. After comput-
ing the F-value, p-value for each feature is computed 
using the F  distribution with degrees of freedom of 
(k − 1,N − k) . The formula for calculating the p-value is 
defined by Eq. (11).

F-test, which was employed in informative gene select-
ing, is associated with correlation level between each 
feature and its corresponding category by comparing the 
ratio of variances. By analyzing the contribution of mark 
genes to the response variable variance, F-test identify 
the most informative genes for cell clustering, which is 
described by Eq. (12).

The variable σb represents the variance between dif-
ferent groups, while σw denotes the variance within each 
group. In the application of gene expression matrices, 
σb was regarded as the differences in gene expression 
between different categories, while σw is related with the 
degree of fluctuation in gene expression.

Self‑attention based coefficient compression (CC)
The scCompressSA method designs and implements self-
attention based coefficient compression (CC) to integrate 
static gene–gene interactions with temporal expression 
patterns. Correlation values of transcript levels between 
gene pairs were calculated to capture the dynamics of 
gene–gene interactions. Considering the characters of 
RNA-seq data, dual-channel self-attention mechanism 
was employed to assign suitable weights for topological 
and temporal patterns in reconstructed input matrix.

The two-channel SA mechanism embedded in coef-
ficient compression is illustrated in the Fig. 1(b). In this 
dual-channel SA architecture, In this dual-channel SA, 
there are three inter-connected stages. The first stage 
aims to calculate the cross-correlation si between Query 
and Key valueKi , while the second stage computes the 
coefficients ai of Ki by standardizing si through softmax 
function. Eventually, the third stage in dual-channel SA 
scheme computes attention scores to determine weights 

(10)F(k−1,N−k) =

σb
(k−1)
σw

(N−k)

(11)p = 1− F(k−1,N−k)(F)

(12)Fi =
σb

σw
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for temporal and topological features in reconstructed 
data matrix.

In this case, topological features underlying transcrip-
tomic data take the form of cross-correlation between 
transcript levels of gene pairs. Cross-correlation values 
between gene-pairs is defined by Eq. (13).

In Eq. (13), the sequence a is first unified to the length 
of n + k, and if the length is not enough, zero padding 
is performed. vn is the complex conjugate of vn . In this 
self-attention (SA) architecture, a and v represent the 

(13)ck =
∑

n

(
an+k · vn

)

same sequence, namely x. Therefore, the autocorrela-
tion of k-th gene in a cell are calculated according to 
Eq. (14).

Denote x as a cell, then xi represents the expression 
of the i-th gene in the cell. Decompose the gene expres-
sion xi into two components which are assigned with 
coefficients α and β respectively, for specific decompo-
sition, see Eq.  (15). IIn reconstructed gene expression 
matrix X , where Xij

(
1 ≤ i ≤ n, 1 ≤ j ≤ p

)
 indicates the 

expression of j-th gene in the i-th cell of X .

(14)xk =
∑

n

(
xn+k · xn

)

Fig. 1  The diagram of self-attention based scCompressSA method. There are three blocks in the scCompressSA method, i.e. F-test based supervised 
learning, SA-based coefficient compression (CC) block and high-speed autoencoder architecture. The role of SA-based CC is to integrate static 
gene-gene interactions with temporal expression patterns
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In this case, reconstructed data matrices contain tem-
poral expression dynamics and topological features, 
which correspond to nonlinear gene–gene interactions. 
The specific formula of reconstructed input matrix is 
computed according to Eq. (15).

In Eq.  (15), the second part 
∑n

j=1 (xj ·xj+i)
n  refers to the 

cross-correlation between gene pairs. In this case, static 
gene–gene interactions were extracted and incorpo-
rated into the reconstructed input matrix. Given a spe-
cific scRNA-seq dataset, the attention mechanism has 
been employed to find optimal or suboptimal combi-
nation of gene expression and gene–gene interaction 
components.

The attention function was described as map-
ping a query and a set of key-value pairs to an out-
put. Transcript levels of informative gene xi in each 
cell are regarded as Query values, and two parts xi and ∑n

j=1 (xj ·xj+i)
n  are regarded as K1 and K2 . In subsequent 

computation, attention matrix F(Q,Ki) is computed by 
Q and the corresponding K  , scaled by the inverse of the 
square of dimension of K  ( dk ) and activated by softmax 
function.

where dk denotes the dimension of input vectors. The 
similarity values of Query and Key varies depending on 
the selected computational mechanism. A modified 
softmax mechanism has been employed to to covert 
similarity value and organize the scores into probability 
distributions. The formula for normalizing similarity val-
ues is defined by Eq. (17).

In Eq.  (17), ai denotes the weighted coefficient cor-
responding to attention scores. In the scCompressSA 
method, correlation values of between gene pairs are com-
puted to capture static gene–gene interactions. The final 
formula to calculate the weights is defined as follows:

(15)xi = αxi + β

∑n
j=1

(
xj · xj+i

)

n
, i = 1, 2, . . . , n.

(16)F(Q,Ki) = softmax

(
KT
i Q√
dk

)

(17)ai = Softmax(F(Q,Ki)) =
eF(Q,Ki)

∑Lx
j=1

eF(Q,Kj)

(18)

α = Softmax(F(xi, xi))

=
exp(F(xi ,xi))

exp

(
F

(∑n
j=1

∣∣∣xi∓xj

∣∣∣
n ,xi

))
+exp(F(xi ,xi))

Each cell recalculates the coefficients to reconstruct 
the matrix. Such computation has the advantage of 
greatly saving the time cost of manual parameter 
reconstruction matrix and achieving an optimal result. 
With the weighted coefficients of Key values, the atten-
tion scores in SA scheme are computed by the sum 
operation.

Reconstructed data matrix A consists of two compo-
nents, i.e. gene expression and static gene–gene inter-
action dynamics. The architecture of deep autoencoder 
model has been optimized to reduce computational 
burden without significant loss of clustering accuracy.

In the scCompressSA method, SA-based CC block 
aims to integrate static gene–gene interactions into the 
reconstructed input matrix. The function of s balances 
the contributions of temporal expression dynamics and 
nonlinear gene–gene interactions to compressed data 
matrix. The value of probability density pik denotes 
the probability that i-th cell is assigned to the k-th cell 
cluster.

Experimental outcomes and analysis
In the validation experiment, multiple scRNA-Seq data-
sets with cell annotations have been selected as bench-
marks to evaluate the performance of scCompressSA 
and candidate cell clustering methods. These scRNA-
Seq data were downloaded from multiple sequenc-
ing platforms including 10X genomics and GEO, 
which contain expression profiling by high throughout 
sequencing technology.

Nine benchmark scRNA-seq datasets with cell type 
labels are used to validate the performance of clustering 
approaches. Among these datasets, five groups of periph-
eral blood mononuclear cells (PBMCs) datasets have 
been selected as benchmarks in the clustering experi-
ments. These PBMC datasets were measured from mul-
tiple platforms. Details of these scRNA-seq datasets are 
given in Table 1.

In Table  1, 10X denotes the platform of 10X Chro-
mium. Among these scRNA-seq datasets with cell labels, 

(19)

β = Softmax

(
F

(∑n
j=1|xi−xj|

n , xi

))

=

exp

(
F

(∑n
j=1

∣∣∣xi−xj

∣∣∣
n ,xi

))

exp

(
F

(∑n
j=1

∣∣∣xi−xj

∣∣∣
n ,xi

))
+exp(F(xi ,xi))

(20)A =

Lx∑

i=1

ai · Vi
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PBMC-Zheng4k denotes the blood expression data from 
human. For the PBMC-Kang-A data, HiSeq 2500 data 
was used for sequencing of PBMC-Kang-A from SLE 
patients and 2 controls. 1  M cells were collected from 
frozen PBMC-Kang-A samples that were prepared using 
the 10 × single cell instrument according to standard pro-
tocol. PBMC -Kang-A, B, and C were prepared on the 
instrument directly following thaw.

F‑test based supervised selection of informative genes
In F-test based supervised learning, the scCompressSA 
approach employs the SelectKBest function to select top 
k features based on the F-value computed from single 
cell expression data. The AD-associated brain expression 
data, which was denoted as AD-brain, was collected from 
human brains of 12 individuals, yielding 13,214 high 
quality nuclei. For the AD-brain data, predicted distribu-
tions of cell types and the ground truths are visualized 
and compared by Fig. 2.

For AD-brain data, subpopulations of astrocyte and oli-
godendrocyte progenitor cells were hypothesized to play 
a crucial role in regulating disease progression. Shown 
in Fig.  2, F-test based supervised selection outperforms 
HVG-based selection. Compared with unsupervised 
learning, cell types detected by supervised clustering 
method show higher consistency with ground truths.

Meanwhile, the accuracy metrics of multiple cell clus-
tering approaches were demonstrated by Sankey plot. 
Using HVG and F-test based feature selection, Sankey 
plots of cell clustering for PBMC-Zheng4k data are com-
pared in Fig. 3.

For PBMC-Zheng4k data, clustering metrics obtained 
by F-test based supervised learning are computed as 
(ari = 0.824, nmi = 0.791, acc = 0.862) respectively, while 
the metrics obtained by HVG-based feature selection 
methods are (ari = 0.519, nmi = 0.645, acc = 0.669), using 
the same autoencoder framework. This improvement 

indicates that F-test supervised learning exhibited 
enhanced performance than conventional HVG-based 
method.

Integration of static gene–gene interactions
In the scCompressSA method, the coefficient compres-
sion (CC) block integrates gene-gene interactions and 
gene expression patterns to reconstruct input matrices. 
This CC block aims to capture static gene–gene interac-
tions by computing correlation values of transcript lev-
els between gene pairs. In this way, reconstructed input 
matrices contain two components of dynamic informa-
tion and will be fed into the deep neural network models 
to detect cell type-specific patterns. Two types of com-
pression methods, namely fixed-parameter CC, and self-
attention based CC, were considered. This section firstly 
investigates the fixed-parameter coefficient compression.

To explore the role of coefficients, the experiment con-
ducted multiple groups of cell clustering for the PBMC-
Zheng4k dataset using various fixed α values. Relevant 
results are depicted in the diagram below. Herein, α = 1 
corresponds to single data modality of gene expression.

In Fig.  4, significant disparity have been observed 
in the accuracy metrics obtained using different coef-
ficients. For two groups of scRNA-seq datasets, there 
existed optimal or sub-optimal combination of weights 
to balance gene expression dynamics and gene–gene 
interactions. In order to find the optimal combination 
of weights, the proposed scCompressSA method adopts 
self-attention (SA) mechanism in coefficient compression 
to integrate two types of dynamics, i.e. gene expression 
dynamics and gene–gene interactions. This dual-channel 
SA mechanism automatically assigns weights and obtains 
the reconstructed input to train deep autoencoder model.

Evaluation metrics obtained under two situations have 
demonstrated the effectiveness and advantages of SA-
based coefficient compression. Cell clustering using sin-
gle modeling perspective of RNA-seq data can capture 
local information about cell types.

Single-cell clustering performance has been enhanced 
by integrating static gene–gene interactions with coeffi-
cient compression.

Dual‑channel self‑attention based compression strategy
Although the coefficient compression (CC) block 
improves cell type detection accuracy to some extent, 
the process rely heavily on manually specified coef-
ficients, leading to computational inconvenience 
and unstable outcomes. In this sector, dual-channel 
self-attention (SA) mechanism is adopted automati-
cally allocates coefficients to two components, thus 
reconstructing input matrices for deep CAE networks. 

Table 1  Descriptions of benchmark scRNA-seq datasets with 
cell labels

Datasets Clusters Cells Genes Sample size Platform

Zeisel 9 3005 19972 115MB Illumina

Klein 4 2717 24047 249MB inDrop

Petropoulos 4 1529 21749 82.1MB Drop-seq

AD-brain 8 13214 10852 273MB Illumina

PBMC-Kang-A 8 11432 14504 316MB 10X

PBMC-Kang-B 8 12261 14473 339MB 10X

PBMC-Kang-C 8 11989 14222 325MB 10X

PBMC-Ding 10 7111 20428 557MB 10X

PBMC-Zheng4k 8 4340 33694 279MB 10X
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Fig. 2  Distributions of cell subclusters and ground truths of AD-brain data in the feature space with reduced dimension. Unsupervised 
and supervised learning were compared in cell clustering. a Ground truths of cell types in the AD-brain data; b Unsupervised clustering predicted 
distributions of cell sub-clusters; c HVG-based supervised selection; d F-test based supervised selection

Fig. 3  Sankey plots of cell clustering outcomes for the PBMC-Zheng4K dataset. a Cell types predicted by HVG-based gene selection; b Predictions 
of cell types by F-test based supervised learning
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During the coefficient compression, the dual-channel 
SA mechanism learns static functional interactions 
between different genes. It automatically assigns suit-
able weights according to transcript levels of gene 
pairs, with the purpose of capturing spatial informa-
tion underlying RNA-sequencing data. By multiplying 
the weights learned from the attention layer with count 
matrix of informative genes, the final reconstruction 
matrix is obtained.

This SA-based CC block reconstructs input matrix 
by integrating static gene–gene interactions and sub-
sequently fed into deep CAE model. Visualization of 
cell sub-populations demonstrates that predicted cell 
subpopulations that are highly consistent with ground 
truths. The ensuing diagram compares the performance 
of predicted cell types with the clustering outcomes 
obtained by temporal perspective only. Two groups of 
RNA-seq datasets, which were measured from human 
brain samples, have been employed to demonstrate the 
effectiveness and advantages of SA-based CC strategy.

In Table  2, ’Fixed CC’ denotes fixed-parameter com-
pression strategy. The weighted coefficient α was auto-
matically allocated to balance the contributions of 

temporal and topological perspectives, i.e. gene expres-
sion dynamics and gene–gene interactions. Under this 
circumstance, the dual-channel SA mechanism has 
played the role of searching the optimal balance point 
between two modeling perspectives. This SA-based CC 
block embedded in the scCompressSA method is able 
to automatically assign weights based on interactions 
between gene pairs, thus integrating topological features 
in single-cell data.

To further investigate the characteristics of dual-chan-
nel SA, SA-based CC and fixed-compression strategies 
(fixed CC) were implemented and compared. In ablation 
experiments, violin plots are used to illustrate the effec-
tiveness of SA-based CC strategy, shown in Fig. 5.

From Fig. 5, it can be found that the SA-based CC strat-
egy exhibits enhanced accuracy than fixed CC strategy in 
single-cell clustering tasks. The blue dashed line in violin 
plots represents the average of cell type detection using 
fixed CC strategy, while the red dashed line represents 
predictions obtained by SA-based CC. Although the SA 
mechanism yields sub-optimal solutions in specific cases, 
it still outperforms fixed CC strategy. In addition, fixed 
CC requires manually specifying coefficients, which is 
expected to consume considerable time costs.

Performance evaluation of cell clustering methods
In order to quantitatively evaluate the performance of 
cell clustering method, benchmark scRNA-seq datasets 
with cell labels have been employed in single-cell cluster-
ing experiments. In this study, total ten groups of labeled 
scRNA-Seq datasets including five PBMCs have been 
used as benchmarks. Multiple deep learning based clus-
tering approaches include Seurat, SC3, scCAEs methods 

Fig. 4  Impact of weight selection in data compression on clustering metrics for PBMC-Zheng4k and AD-brain datasets. a denotes clustering 
outcomes of PBMC-Zheng 4 k data, b corresponds to AD-associated brain expression data. Selection of weighted coefficients α has played 
an essential role in integrating two components in reconstructed input matrices

Table 2  Ablation study of SA-based compression strategies on 
two groups of AD-associated single-cell expression data

Datasets Strategy NMI ARI ACC​

NC-brain Fixed CC 0.756 0.591 0.677

SA-based CC 0.800 0.650 0.734
AD-brain Fixed CC 0.488 0.348 0.487

SA-based CC 0.542 0.413 0.515
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Fig. 5  Comparison of two compression strategies for AD-associated brain expression data. Experimental outcomes were obtained through 12 
replicate experiments on two groups of scRNA-seq datasets: a Healthy group expression data (HC-brain); b AD associated brain expression data 
(AD-brain). In violin plot, the label’fixed CC’ denotes the average indexes obtained by ten replicated experimental outcomes of fixed-parameter 
compression strategy, while SA-based CC represents the clustering indexes of dual-channel SA-based compression strategy

Table 3  Performance comparison of the scCompressSA method and other SOTA clustering approaches. Average clustering metrics 
and deviation values in replicate experiments have been recorded for multiple scRNA-seq datasets with cell type labels

Datasets Metrics Seurat SC3 scCAEs scCompressSA

Zeisel ARI 0.507 (± 0.071) 0.628 (± 0.198) 0.640 (± 0.075) 0.803 (± 0.025)
NMI 0.666 (± 0.019) 0.704 (± 0.061) 0.668 (± 0.045) 0.766 (± 0.016)
ACC​ 0.665 (± 0.054) 0.707 (± 0.145) 0.778 (± 0.054) 0.880 (± 0.020)

Klein ARI 0.528 (± 0.024) 0.586 (± 0.004) 0.725 (± 0.048) 0.732 (± 0.057)
NMI 0.743 (± 0.017) 0.774 (± 0.012) 0.731 (± 0.028) 0.745 (± 0.032)
ACC​ 0.574 (± 0.015) 0.641 (± 0.010) 0.746 (± 0.074) 0.774 (± 0.099)

Petropoulos ARI 0.332 (± 0.001) 0.363 (± 0.090) 0.434 (± 0.029) 0.463 (± 0.002)
NMI 0.554 (± 0.011) 0.572 (± 0.010) 0.378 (± 0.124) 0.573 (± 0.011)
ACC​ 0.482 (± 0.001) 0.458 (± 0.025) 0.607 (± 0.020) 0.712 (± 0.044)

NC-brain ARI 0.570 (± 0.004) 0.358 (± 0.011) 0.634 (± 0.019) 0.835 (± 0.015)
NMI 0.787 (± 0.003) 0.423 (± 0.002) 0.774 (± 0.015) 0.834 (± 0.016)
ACC​ 0.651 (± 0.008) 0.212 (± 0.016) 0.728 (± 0.028) 0.781 (± 0.031)

AD-brain ARI 0.270 (± 0.016) 0.352(± 0.039) 0.356 (± 0.034) 0.343 (± 0.054)

NMI 0.517 (± 0.004) 0.228 (± 0.005) 0.516 (± 0.011) 0.523 (± 0.025)
ACC​ 0.433 (± 0.006) 0.238 (± 0.012) 0.483 (± 0.020) 0.502 (± 0.013)

PBMC-Kang-A ARI 0.571 (± 0.056) 0.323 (± 0.025) 0.661 (± 0.079) 0.749 (± 0.107)
NMI 0.728 (± 0.019) 0.273 (± 0.063) 0.707 (± 0.035) 0.734 (± 0.019)
ACC​ 0.701 (± 0.043) 0.359 (± 0.058) 0.755 (± 0.046) 0.796 (± 0.042)

PBMC-Kang-B ARI 0.527 (± 0.045) 0.564 (± 0.009) 0.660 (± 0.050) 0.696 (± 0.026)
NMI 0.694 (± 0.016) 0.458 (± 0.004) 0.671 (± 0.046) 0.707 (± 0.019)
ACC​ 0.641 (± 0.049) 0.309 (± 0.007) 0.706 (± 0.038) 0.701 (± 0.015)

PBMC-Kang-C ARI 0.524 (± 0.003) 0.325 (± 0.010) 0.589 (± 0.008) 0.701 (± 0.028)
NMI 0.693 (± 0.002) 0.282 (± 0.020) 0.700 (± 0.017) 0.714 (± 0.007)
ACC​ 0.667 (± 0.032) 0.373 (± 0.034) 0.696 (± 0.016) 0.725 (± 0.009)

PBMC-Ding ARI 0.390 (± 0.009) 0.282 (± 0.070) 0.416 (± 0.026) 0.453 (± 0.015)
NMI 0.608 (± 0.004) 0.459 (± 0.056) 0.546 (± 0.005) 0.566 (± 0.008)

ACC​ 0.532 (± 0.001) 0.455 (± 0.022) 0.556 (± 0.055) 0.628 (± 0.020)
PBMC-Zheng4k ARI 0.629 (± 0.003) 0.577 (± 0.103) 0.663 (± 0.019) 0.664 (± 0.007)

NMI 0.756 (± 0.004) 0.706 (± 0.049) 0.761 (± 0.016) 0.763 (± 0.007)
ACC​ 0.718 (± 0.002) 0.649 (± 0.091) 0.750 (± 0.013) 0.749 (± 0.013)
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are used as SOTA methods. Evaluation metrics of the 
scCompressSA method and other SOTA algorithms are 
calculated and compared in Table 3.

For multiple groups of brain and blood expression 
datasets, the proposed scCompressSA method has dra-
matically improved clustering accuracy than previous 
deep learning models. For two groups of brain expression 
data, the scCompressSA method has obtained superior 
clustering performance over existing approaches. This 
phenomenon indicates that gene–gene interactions was 
valuable to explore distributions of neuronal cell types 
that are associated with Alzheimer’s disease. Evaluation 
metrics of ARI, NMI and ACC demonstrated that the 
scCompressSA method outperforms cutting-edge algo-
rithms such as scCAEs and SC3, in multiple datasets 
including brain expression and PBMCs datasets. Such 
enhanced capability of the scCompressSA method are 
crucial to conduct molecular diagnosis as well as disease 
progression modeling using single-cell transcriptomics 
profiles.

According to Table 3, topological features have played 
a unique role in downstream analysis of RNA-seq data. 
Such spatial dynamics could be integrated by the dual-
channel SA mechanism, which assigns weights to two 
components of reconstructed data matrix with regards to 
their contributions. Compared with deep CAE method, 
this scCompressSA method is highly computation-
ally efficient by implementing high-speed CAE network 
architecture. It seems that the scCompressSA method 
has achieved a balance between accuracy and efficiency 
in single-cell clustering tasks.

Discussion
F-test based supervised selection aims to select informa-
tive genes for downstream analysis of RNA-seq data. This 
supervised selection block is believed to provide high-
quality data matrices for subsequent model training by 
discarding low-quality cells. Reads that are obtained from 
the remaining cells are then normalized to compute the 
distance between cell pairs in feature space. During the 
training of scCompressSA, deep autoencoder architec-
ture has been employed to detect cell types by integrat-
ing temporal as well as topological features. In this work, 
topological features correspond to functional interac-
tions between genes.

However, there are also some inherent limitations 
to the original deep CAE model. This CAE architec-
ture may not perform well on data with complex global 
structures, as it tends to focus on local features. In addi-
tion, the biological meanings of learned representations 
are still unclear, as the filters in the convolutional layers 
may not correspond directly to meaningful features in 
the input data. According to experimental outcomes, the 

performance of deep CAE model seem depend heavily 
on the choice of hyper parameters, including the number 
of layers and the size of the filters, which are difficult to 
optimize.

According to experimental outcomes, the scCom-
pressSA method is able to alleviate these limitations 
encountered by conventional deep CAE models by 
introducing gene-gene interaction information with SA 
mechanism. The contribution of the proposed scCom-
pressSA method is three-folds: supervised selection of 
informative gene sets, integration of gene–gene inter-
actions, dual-channel SA-based CC. Dual-channel SA 
scheme was designed with regard to the characteristics 
of RNA sequencing data and has exhibited high com-
putational efficiency. In addition, this dual-channel 
SA-based CC effectively boosts detection performance 
in single-cell clustering than the fixed-parameter CC 
block.
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