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Abstract 

Background  The growth and development of organism were dependent on the effect of genetic, environment, 
and their interaction. In recent decades, lots of candidate additive genetic markers and genes had been detected 
by using genome-widely association study (GWAS). However, restricted to computing power and practical tool, 
the interactive effect of markers and genes were not revealed clearly. And utilization of these interactive markers is dif-
ficult in the breeding and prediction, such as genome selection (GS).

Results  Through the Power-FDR curve, the GbyE algorithm can detect more significant genetic loci at different levels 
of genetic correlation and heritability, especially at low heritability levels. The additive effect of GbyE exhibits high sig-
nificance on certain chromosomes, while the interactive effect detects more significant sites on other chromosomes, 
which were not detected in the first two parts. In prediction accuracy testing, in most cases of heritability and genetic 
correlation, the majority of prediction accuracy of GbyE is significantly higher than that of the mean method, regard-
less of whether the rrBLUP model or BGLR model is used for statistics. The GbyE algorithm improves the prediction 
accuracy of the three Bayesian models BRR, BayesA, and BayesLASSO using information from genetic by environmen-
tal interaction (G × E) and increases the prediction accuracy by 9.4%, 9.1%, and 11%, respectively, relative to the Mean 
value method. The GbyE algorithm is significantly superior to the mean method in the absence of a single environ-
ment, regardless of the combination of heritability and genetic correlation, especially in the case of high genetic 
correlation and heritability.

Conclusions  Therefore, this study constructed a new genotype design model program (GbyE) for GWAS and GS 
using Kronecker product. which was able to clearly estimate the additive and interactive effects separately. The 
results showed that GbyE can provide higher statistical power for the GWAS and more prediction accuracy of the GS 
models. In addition, GbyE gives varying degrees of improvement of prediction accuracy in three Bayesian models 
(BRR, BayesA, and BayesCpi). Whatever the phenotype were missed in the single environment or multiple environ-
ments, the GbyE also makes better prediction for inference population set. This study helps us understand the inter-
active relationship between genomic and environment in the complex traits. The GbyE source code is available 
at the GitHub website (https://​github.​com/​liu-​xinrui/​GbyE).
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Background
Genetic by environmental interaction (G × E) is crucial 
of explaining individual traits and has gained increasing 
attention in research. It refers to the influence of genetic 
factors on susceptibility to environmental factors. In-
depth study of G × E contributes to a deeper understand-
ing of the relationship between individual growth, living 
environment and phenotypes. Genetic factors play a role 
in most human diseases at the molecular or cellular level, 
but environmental factors also contribute significantly. 
Researchers aim to uncover the mechanisms behind 
complex diseases and quantitative traits by investigating 
the interactions between organisms and their environ-
ment. Common, complex, or rare human diseases are 
often considered as outcomes resulting from the interplay 
of genes, environmental factors, and their interactions. 
Analyzing the joint effects of genes and the environ-
ment can provide valuable insights into the underlying 
pathway mechanisms of diseases. For instance, research-
ers have successfully identified potential loci associated 
with asthma risk through G × E interactions [1], and have 
explored predisposing factors for challenging-to-treat 
diseases like cancer [2, 3], rhinitis [4], and depression [5].

However, two main methods are currently being 
used by breeders in agricultural production to increase 
crop yields and livestock productivity [6]. The first is to 
develop varieties with relatively low G × E effect to ensure 
stable production performance in different environments. 
The second is to use information from different environ-
ments to improve the statistical power of genome-wide 
association study (GWAS) to reveal potential loci of com-
plex traits. The first method requires long-term commit-
ment, while the second method clearly has faster returns. 
In GWAS, the use of multiple environments or pheno-
types for association studies has become increasingly 
important. This not only improves the statistical power of 
environmental susceptibility traits[7], but also allows to 
detect signaling loci for G × E. There are significant chal-
lenges when using multiple environments or phenotypes 
for GWAS, mainly because most diseases and quantita-
tive traits have numerous associated loci with minimal 
impact [8], and thus it is impossible to determine the 
effect size regulated by environment in these loci. The 
current detection strategy for G × E is based on complex 
statistical model, often requiring the use of a large num-
ber of samples to detect important signals [9, 10]. In GS, 
breeders can use whole genome marker data to identify 
and select target strains in the early stages of animal and 
plant production [11–13]. Initially, GS models, similar to 
GWAS models, could only analyze a single environment 
or phenotype [14]. To improve the predictive accuracy of 
the models, higher marker densities are often required, 
allowing the proportion of genetic variation explained by 

these markers to be increased, indirectly obtaining higher 
predictive accuracy. It is worth mentioning that the con-
sideration of G × E and multiple phenotypes in GS mod-
els [15] has been widely studied in different plant and 
animal breeding [16]. GS models that allow G × E have 
been developed [17] and most of them have modeled 
and interpreted G × E using structured covariates [18]. In 
these studies, most of the GS models provided more pre-
dictive accuracy when combined with G × E compared to 
single environment (or phenotype) analysis. Hence, there 
is need to develop models that leverage G × E informa-
tion for GWAS and GS studies.

This study developed a novel genotype-by-environ-
ment method based on R, termed GbyE, which lever-
ages the interaction among multiple environments or 
phenotypes to enhance the association study and predic-
tion performance of environmental susceptibility traits. 
The method enables the identification of mutation sites 
that exhibit G × E interactions in specific environments. 
To evaluate the performance of the method, simulation 
experiments were conducted using a dataset comprising 
282 corn samples. Importantly, this method can be seam-
lessly integrated into any GWAS and GS analysis.

Materials and methods
Support packages
The development purpose of GbyE is to apply it to 
GWAS and GS research, therefore it uses the genome 
association and prediction integrated tool (GAPIT) 
[19], Bayesian Generalized Linear Regression (BGLR) 
[20], and Ridge Regression Best Linear Unbiased Predic-
tion (rrBLUP) [21]package as support packages, where 
GbyE only provides conversion of interactive formats 
and file generation. In order to simplify the operation of 
the GbyE function package, the basic calculation pack-
age is attached to this package to support the opera-
tion of GbyE, including four function packages GbyE.
Simulation.R (Dual environment phenotype simula-
tion based on heritability, genetic correlation, and QTL 
quantity), GbyE.Calculate.R (For numerical genotype 
and phenotype data, this package can be used to process 
interactive genotype files of GbyE), GbyE.Power.FDR.R 
(Calculate the statistical power and false discovery rate 
(FDR) of GWAS), and GbyE.Comparison.Pvalue.R (GbyE 
generates redundant calculations in GWAS calculations, 
and SNP effect loci with minimal p-values can be filtered 
by this package).

Samples and sequencing data
In this study, a small volume of data was used for soft-
ware simulation analysis, which is widely used in testing 
tasks of software such as GAPIT, TASSEL, and rMPV. 
The demonstration data comes from 282 inbred lines of 
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maize, including 4 phenotypic data. In any case, there 
are no missing phenotypes in these data, and this data-
set can be obtained from the website of GAPIT (https://​
zzlab.​net/​GAPIT/​index.​html, accessed on May 1, 2022). 
Among them, our phenotype data was simulated using a 
self-made R simulation function, and the Mean and GbyE 
phenotype files were calculated. Convert this format to 
HapMap format using PLINK v1.09 and scripts written 
by oneself.

Simulated traits
Phenotype simulation was performed by modifying the 
GAPIT.Phenotype.Simulation function in the GAPIT. 
Based on the input parameter NQTN, the random 
selected markers’ genotype from whole genome were 
used to simulate genetic effect in the simulated trait. 
The genotype effects of these selected QTNs were ran-
domly sampled from a multivariate normal distribution, 
the correlation value between these normal distribution 
was used to define the genetic relationship between each 
environments. The additive heritability ( h2g ) was used to 
scale the relationship between additive genetic variance 
and phenotype variance. The simulated phenotype condi-
tions in this paper are set as follows: 1) The three levels 
of h2g were set at 0.8, 0.5, and 0.2, representing high ( h2h ), 
median ( h2m ) and low ( h2l  ) heritability; 2) Genetic correla-
tion were set three levels 0.8, 0.5, 0.2 representing high 
( Rh ), medium ( Rm ) and low ( Rl ) genetic correlation; 3) 20 
pre-set effect loci of QTL. The phenotype values in each 
environment were simulated together following above 
parameters.

Genetic by environment interaction model
The pipeline analysis process of GbyE includes three 
steps: data preprocessing, production converted, Associ-
ation analysis. Normalize the phenotype data matrix Y of 
the dual environment and perform GbyE conversion to 
generate phenotype data in GbyE.Y format. The genotype 
data format, such as hapmap, vcf, bed and other formats 
firstly need to be converted into numerical genotype for-
mat (homozygotes were coded as 0 or 2, heterozygotes 
were coded as 1) using software or scripts such as GAPIT, 
PLINK, etc. The environment (E) matrix is environment 
index matrix. The G (n × m) originally of genotype matrix 

was converted as GbyE.GD(2n × 2 m) G 0
G G

 during the 

Kronecker product, and the Y vector (n × 1) was also con-
verted as the GbyE.Y vector (2n × 1) after normalization. 
The duplicated data format indicated different environ-
ments, genetic effect, and populations. The genomic data 
we used in the analysis was still retained the whole 
genome information. The first column of E is the additive 
effect, which was the average genetic effect among envi-
ronments. The others columns of E are the interactive 
effect, which should be less one column than the number 
of environments. Because it need to avoid the linear 
dependent in the model. In the GbyE algorithm, we 
coded the first environment as background as default, 
that means the genotype in the first environment are 0, 
the others are 1. Then the Kronecker product of G and 
environment index matrix was named as GbyE.GD. The 
interactive effect part of the GbyE.GD matrix in the 
GWAS and GS were the relative values based on the first 
environment (Fig.  1). The GbyE environmental interac-
tion matrix can be easily obtained by constructing the 
interaction matrix E (e.g., Eq. 1) such that the genotype 
matrix G is Kronecker-product with the design interac-

tion matrix E (e.g., Eq. 2), in which 
[

G

G

]

 matrix is defined 

as additive effect and 
[

0
G

]

 matrix is defined as interactive 

effect. 
[

G 0
G G

]

 matrix is called gene by environment inter-

action matrix, hereinafter referred to as the GbyE matrix. 
The phenotype file (GbyE.Y) and genotype file (GbyE.
GD) after transformation by GbyE will be inputted into 
the GWAS and GS models and computed as standard 
phenotype and genotype files.

where G is the matrix of whole genotype and E is the 
design matrix for exploring interactive effects. GbyE 
mainly uses the Kronecker product of the genetic matrix 
(G) and the environmental matrix (E) as the genotype for 
subsequent GWAS as a way to distinguish between addi-
tive and interactive effects.

(1)E =

[

1 0
1 1

]

(2)G⊗ E =

[

G 0
G G

]

(See figure on next page.)
Fig. 1  The workflow pipeline of GbyE. The GbyE contains three main steps. (Step 1) Preprocessing of phenotype and genotype data,. The 
phenotype values in each environment was normalized respectively. Meanwhile, all genotype from HapMap, VCF, BED, and other types were 
converted to numeric genotype; (Step 2) Generate GbyE phenotype and interactive genotype matrix through the transformation of GbyE. In GbyE.
GD matrix, the blue characters indicate additive effect, and red ones indicate interactive effect; (Step 3) The MLM and rrBLUP and BGLR were used 
to perform GWAS and GS

https://zzlab.net/GAPIT/index.html
https://zzlab.net/GAPIT/index.html
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Fig. 1  (See legend on previous page.)
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Association analysis model
The mixed linear model (MLM) of GAPIT is used as the 
basic model for GWAS analysis, and the principal com-
ponent analysis (PCA) parameter is set to 3. Then the 
p-values of detection results are sorted and their power 
and FDR values are calculated. General expression of 
MLM (Fig. 1):

where Y is the vector of phenotypic measures (2n × 1); 
PCA and SNPi were defined as fixed effects, with a size 
of (2n × 2 m); Z is the incidence matrix of random effects; 
μ is the random effect vector, which follows the normal 
distribution μ ~ N(0, δ2

G
K) with mean vector of 0 and vari-

ance covariance matrix of δ2
G

K, where the δ2
G

 is the total 
genetic variance including additive variance and inter-
active variance, the K is the kinship matrix built with 
all genotype including additive genotype and interactive 
genotype; e is a random error vector, and its elements 
need not be independent and identically distributed, 
e ~ N(0,δ2e  I), where the δ2e  is the residual and environment 
variance, the I is the design matrix.

Detectivity of GWAS
In the GWAS results, the list of markers following 
the order of P-values was used to evaluate detectiv-
ity of GWAS methods. When all simulated QTNs were 
detected, the power of the GWAS method was con-
sidered as 1 (100%). From the list of markers, following 
increasing of the criterion of real QTN, the power values 
will be increasing. The FDR indicates the rate between 
the wrong criterion of real QTNs and the number of all 
un-QTNs. The mean of 100 cycles was used to consider 
as the reference value for statistical power compari-
son. Here, we used a commonly used method in GWAS 
research with multiple traits or environmental pheno-
types as a comparison[22]. This method obtains the mean 
of phenotypic values under different conditions as the 
phenotypic values for GWAS analysis, called the Mean 
value method, Compare the calculation results of GbyE 
with the additive and interactive effects of the mean 
method to evaluate the detection power of the GbyE 
strategy. Through the comprehensive analysis of these 
evaluation indicators, we aim to comprehensively evalu-
ate the statistical power of the GbyE strategy in GWAS 
and provide a reference for future optimization research.

Among them, the formulae for calculating Power and 
FDR are as follows:

(3)Y = PCA+ SNPi + Zµ+ e

(4)Power =

∑mr
i ni

mr

where ni indicates whether the i-th detection is true, true 
is 1, false is 0; mr is the total number of all true QTLs in 
the sample size; the maximum value of Power is 1.

where Ni represents the i-th true value detected in the 
pseudogene, true is 1, false is 0. and cumulative calcula-
tion; Mf is the number of all labeled un-QTNs in the total 
samples; the maximum value of FDR is 1.

Genomic prediction
To comparison the prediction accuracy of different GS 
models using GbyE, we performed rrBLUP, Bayesian 
methods using R packages. All phenotype of reference 
population and genotype of all population were used to 
train the model and predict genomic estimated breeding 
value (gEBV) of all individuals. The correlation between 
real phenotypes and gEBV of inference population was 
considered as prediction accuracy. fivefold cross-valida-
tion and 100 times repeats was performed to avoid over 
prediction and reduce bias. In order to distinguish the 
additive and interactive effects in GbyE, we designed 
two lists of additive and interactive effects in the "ETA" 
of BGLR, and put the additive and interactive effects into 
the model as two kinships for random objects. However, 
it was not possible to load the gene effects of the two 
lists in rrBLUP, so the additive and interactive genotypes 
together were used to calculate whole genetic kinship in 
rrBLUP (Fig. 1). Relevant parameters in BGLR are set as 
follows: 1) model set to "RRB"; 2) nIter is set to "12000"; 
3) burnIn is set to "10000". The results of the above oper-
ations are averaged over 100 cycles. We also validated 
the GbyE method using four other Bayesian methods 
(BayesA, BayesB, BayesCpi, and Bayesian LASSO) in 
addition to RRB in BGLR.

Partial missing phentoype in the prediction
In this study, we artificially missed phenotype values in 
the single and double environments in the whole popu-
lation from 281 inbred maize datasets. In the missing 
single environment case, the inference set in the cross-
validation was selected from whole population, and 
each individual in the inference were only missed phe-
notypes in the one environment. The phenotype in the 
other environment was kept. The genotypes were always 
kept. In the case of missing double environments, both 
phenotypes and genotypes of environment 1 and envi-
ronment 2 are missing, and the model can only predict 
phenotypic values in the two missing environments 
through the effects of other markers. In addition, the 
data were standardized and unstandardized to assess 

(5)FDR =

∑Mf
i Ni

Mf
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whether standardization had an effect on the estimation 
of the model. This experiment was tested using the "ML" 
method in rrBLUP to ensure the efficiency of the model.

Results
GWAS statistical power of models at different heritabilities 
and genetic correlations
Power-FDR plots were used to demonstrate the detec-
tion efficiency of GbyE at three genetic correlation and 
three genetic power levels, with a total of nine differ-
ent scenarios simulated (from left to right for high and 
low genetic correlation and from top to bottom for high 
and low genetic power). In order to distinguish whether 
the effect of improving the detection ability of genome-
wide association analysis in GbyE is an additive effect or 
an effect of environmental interactions, we plotted their 
Power-FDR curves separately and added the traditional 
Mean method for comparative analysis. As shown in 
Fig. 2, GbyE algorithm can detect more statistically sig-
nificant genetic loci with lower FDR under any genetic 
background. However, in the combination with low her-
itability (Fig.  2A, B, C), the interactive effect detected 
more real loci than GbyE under low FDR, but with the 
continued increase of FDR, GbyE detected more real 
loci than other groups. Under the combination with high 
heritability, all groups have high statistical power at low 
FDR, but with the increase of FDR, the statistical effect of 
GbyE gradually highlights. From the analysis of heritabil-
ity combinations at all levels, the effect of heritability on 
interactive effect is not obvious, but GbyE always main-
tains the highest statistical power. The average detection 
power of GWAS in GbyE can be increased by about 20%, 
and with the decrease of genetic correlation, the effect of 
GbyE gradually highlights, indicating that the G × E plays 
a role.

Resolution of additive and interactive effect
The output results of GbyE could be understood as reso-
lution of additive and interactive genetic effect. Hence, 
we created a combined Manhattan plots with Mean 
result from MLM, additive, and interactive results from 
GbyE. As shown in Fig. 3, true marker loci were detected 
on chromosomes 1, 6 and 9 in Mean, and the same loci 
were detected on chromosomes 1 and 6 for the additive 
result in GbyE (the common loci detected jointly by the 
two results were marked as solid gray lines in the figure). 
All known pseudo QTNs were labeled with gray dots in 
the circle. Total 20 pseudo QTNs were simulated in such 
trait (The heritability is set to 0.9, and the genetic correla-
tion is set to 0.1). Although the additive section in GbyE 
did not catch the locus on chromosome 9 yet (those 
p-values of markers did not show above the significance 
threshold (p-value < 3.23 × 10–6)), it has shown high 

significance relative to other markers of the same chro-
mosome. In the reciprocal effect of GbyE, we detected 
more significant loci on chromosomes 1, 2, 3 and 10, and 
these loci were not detected in either of the two previous 
sections. An integrate QQ plot (Fig. 3D) shows that the 
overall statistical power of the additive section in Mean 
and GbyE are close, nevertheless, the interactive section 
in the GbyE provided a bit of inflation.

Genomic selection in assumption codistribution
The prediction accuracy of GbyE was significantly higher 
than the Mean value method by model statistics of rrB-
LUP in most cases of heritability and genetic correlation 
(Fig. 4). The prediction accuracy of the additive effect was 
close to that of Mean value method, which was consistent 
with the situation under the low hereditary. The predic-
tion accuracy of interactive sections in GbyE remains at 
the same level as in GbyE, and interactive section plays 
an important role in the model. We observed that in h2l Rh 
(Fig.  4C), h2mRh (Fig.  4F), h2hRl (Fig.  4G), the prediction 
accuracy of GbyE was slightly higher than the Mean value 
method, but there was no significant difference overall. In 
addition, we only observed that the prediction accuracy 
of GbyE was slightly lower than the Mean value method 
in h2hRl (Fig.  4H), but there was still no significant dif-
ference between GbyE and Mean value methods. Under 
the combination of low heritability and genetic correla-
tion, the prediction accuracy of Mean value method and 
additive effect model remained at a similar level. How-
ever, with the continuous increase of heritability and 
genetic correlation, the difference in prediction accu-
racy between the two gradually increases. In summary, 
the GbyE algorithm can improve the accuracy of GS by 
capturing information on multiple environment or trait 
effects under the rrBLUP model.

Genomic selection in assumption un‑codistribution
The overall performance of GbyE under the ’BRR’ sta-
tistical model based on the BGLR package remained 
consistent with rrBLUP, maintaining high predictive 
accuracy in most cases of heritability and genetic relat-
edness (Fig. S1). However, when the heritability is set to 
low and medium, the difference between the prediction 
accuracy of GbyE algorithm and Mean value method 
gradually decreases with the continuous increase of 
genetic correlation, and there is no statistically signifi-
cant difference between the two. The prediction accu-
racy of the model by GbyE in h2hRl (Fig. S1G) and h2hRh 
(Fig. S1I) is significantly higher than that by Mean value 
method when the heritability is set to be high. On the 
contrary, when the genetic correlation is set to medium, 
there is no significant difference between GbyE and 
Mean value method in improving the prediction 
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accuracy of the model, and the overall mean of GbyE is 
lower than Mean. When GbyE has relatively high herit-
ability and low genetic correlation, its prediction accu-
racy is significantly higher than the mean method, such 
as h2mRl (Fig. S1D), h2hRl (Fig. S1G), and h2hRm (Fig. S1H). 
Therefore, GbyE is more suitable for situations with 
high heritability and low genetic correlation.

Adaptability of Bayesian models
Next, we tested a more complex Bayesian model. The 
GbyE algorithm and Mean value method were combined 
with five Bayesian algorithms in BGLR for GS analysis, 
and the computing R script was used for phenotypic 
simulation test, where heritability and genetic correla-
tion were both set to 0.5. The results indicate that among 

Fig. 2  The power-FDR testing in simulated traits. Comparing the efficacy of the GbyE algorithm with the conventional mean method in terms 
of detection power and FDR. From left to right, the three levels of genetic correlation are indicated in order of low, medium and high. From top 
to bottom, the three levels of heritability, low, medium and high, are indicated in order. (1) Inter: Interactive section extracted from GbyE; (2) AddE: 
Additive section extracted from GbyE; (3) h2l  , h

2
m , h2g : Low, medium, high heritability; (4) Rl , Rm , Rl : where R stands for genetic correlation, represents 

three levels of low, medium and high
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the three Bayesian models of RRB, BayesA, and Bayes-
LASSO, the predictive accuracy of GbyE is significantly 
higher than that of Mean value method (Fig. 5). In con-
trast, under the Bayesian models of BayesB and Bayes-
Cpi, the prediction accuracy of GbyE is lower than that 
of the Mean value method. The GbyE algorithm improves 
the prediction accuracy of the three Bayesian models 
BRR, BayesA, and BayesLASSO using information from 
G × E and increases the prediction accuracy by 9.4%, 
9.1%, and 11%, respectively, relative to the Mean value 
method. However, the predictive accuracy of the BayesB 
model decreased by 11.3%, while the BayescCpi model 
decreased by 6%.

Impact of all and partial environmental missing
We tested missing the environmental by using simulated 
data. In the case of the simulated data, we simulated a 
total of nine situations with different heritability and 
genetic correlations (Fig. 6) and conducted tests on single 
and dual environment missing. The improvement in pre-
diction accuracy by the GbyE algorithm was found to be 
significantly higher than the Mean value method in single 
environment deletion, regardless of the combination of 
heritability and genetic correlation. In the case of h2hRh , 
the prediction accuracy of GbyE is higher than 0.5, which 
is the highest value among all simulated combinations. 
When GbyE estimates the phenotypic values of Envi-
ronment 1 and Environment 2 separately, its predictive 
accuracy seems too accurate. On the other hand, when 
the phenotypic values of both environments are missing 
on the same genotype, the predictive accuracy of GbyE 

does not show a significant decrease, and even maintains 
accuracy comparable to that of a single environment 
missing. However, when GbyE estimates Environment 1 
and Environment 2 separately, the prediction accuracy 
significantly decreases compared to when a single envi-
ronment is missing, and the prediction accuracy of Envi-
ronment 1 and Environment 2 in h2l Rm is extremely low 
(Fig. 6B). In addition, the prediction accuracy of GbyE is 
lower than Mean values only in h2l Rh , whether it is miss-
ing in a single or dual environment.

Discussion
The phenotype of organisms is usually controlled by mul-
tiple factors, mainly genetic [23] and environmental fac-
tors [24], and their interactive factors. The phenotype of 
quantitative traits is often influenced by these three fac-
tors [25, 26]. However, based on the computing limita-
tion and lack of special tool, the interactive effect always 
was ignored in most GWAS and GS research, and it is 
difficult to distinguish additive and interactive effects. 
The rate between all additive genetic variance and phe-
notype variance was named as narrow sense heritability. 
The accuracy square of prediction of additive GS model 
is considered that can not surpass narrow sense herit-
ability. In this study, the additive effects in GbyE are 
essentially equivalent to the detectability of traditional 
models, the key advantage of GbyE is the interactive sec-
tion. More significant markers with interactive effects 
were detected. Detecting two genetic effects (additive 
and interactive sections) in GWAS and GS is a boost to 
computational complexity, while obtaining genotypes for 

Fig. 3  Manhattan statistical comparison plot. Manhattan comparison plots of mean (A), additive (B) and gene-environment interactive sections (C) 
at a heritability of 0.9 and genetic correlation of 0.1. Different colors are used in the diagram to distinguish between different chromosomes (X-axis). 
Loci with reinforcing circles and centroids are set up as real QTN loci. Consecutive loci found in both parts are shown as id lines, and loci found 
separately in the reciprocal effect only are shown as dashed lines. Parallel horizontal lines indicate significance thresholds (p-value < 3.23 × 10–6). D 
Quantile–quantile plots of simulated phenotypes for demo data from genome-wide association studies. x-axis indicates expected values of log 
p-values and y-axis is observed values of log p-values. The diagonal coefficients in red are 1. GbyE-inter is the interactive section in GbyE; GbyE-AddE 
is the additive section in GbyE
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genetic interactions by Kronecker product is an efficient 
means. This allows the estimation of additive and inter-
active genetic effects separately during the analysis, and 
ultimately the estimated genetic effects for each GbyE 
genotype (including additive and interactive genetic 
effect markers) are placed in a t-distribution for p-value 
calculation, and the significance of each genotype is con-
sidered by multiple testing. The GbyE also expanded the 
estimated heritability as generalized heritability which 
could be explained as the rate between total genetics var-
iance and phenotype variance.

The genetic correlation among traits in multiple 
environments is the major immanent cause of GbyE. 
When the genetic correlation level is high, then addi-
tive genetic effects will play primary impact in the total 
genetic effect, and interactive genetic effects with differ-
ent traits or environments are often at lower levels [27]. 
Therefore, the statistical power of the GbyE algorithm 
did not improve significantly compared with the tradi-
tional method (Mean value) when simulating high lev-
els of genetic correlation. On the contrary, in the case of 
low levels of genetic correlation, the genetic variance of 

Fig. 4  Box-plot of model prediction accuracy. The prediction accuracy (pearson’s correlation coefficient) of the GbyE algorithm was compared 
with the tradition al Mean value method in a simulation experiment of genomic selection under the rrBLUP operating environment. The effect 
of different levels of heritability and genetic correlation on the prediction accuracy of genomic selection was simulated in this experiment. Each 
row from top to bottom represents low heritability ( h2l  ), medium heritability ( h2m ) and high heritability ( h2h ), respectively; each column from left 
to right represents low genetic correlation ( Rl ), medium genetic correlation ( Rm ) and high genetic correlation ( Rh ), respectively; The X-axis shows 
the different test methods and effects, and the Y-axis shows the prediction accuracy
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additive effects is relatively low and the genetic variance 
of interactive effects is major. At this time, GbyE utilizes 
multiple environments or traits to highlight the statisti-
cal power. Since the GbyE algorithm obtains additive, 
environmental, and interactive information by encoding 
numerical genotypes, it only increases the volume of SNP 
data and can be applied to any traditional GWAS associa-
tion statistical model. However, this may slightly increase 
the correlation operation time of the GWAS model, but 
compared to other multi environment or trait models 
[28, 29], GbyE only needs to perform a complete tradi-
tional GWAS once to obtain the results.

In GS, rrBLUP algorithm is a linear mixed model-
based prediction method that assumes all markers pro-
vide genetic effects and their values following a normal 
distribution [30]. In contrast, the BGLR model is a lin-
ear mixed model, which assumes that gene effects are 
randomly drawn from a multivariate normal distribu-
tion and genotype effects are randomly drawn from a 
multivariate Gaussian process, which takes into account 
potential pleiotropy and polygenic effects and allows 
inferring the effects of single gene while estimating 
genomic values [31]. The algorithm typically uses Markov 
Chain Monte Carlo methods for estimation of the ratio 
between genetic variances and residual variances [32, 33]. 
The model has been able to take into account more bio-
logical features and complexity, and therefore the over-
all improvement of the GbyE algorithm under BGLR 
is smaller than Mean method. In addition, the length 
of the Markov chain set on the BGLR package is often 
above 20,000 to obtain stable parameters and to undergo 
longer iterations to make the chain stable [34]. GbyE is 
effective in improving the statistical power of the model 
under most Bayesian statistical models. In the case of the 

phenotypes we simulated, more iterations cannot be pro-
vided for the BayesB and BayesCpi models because of the 
limitation of computation time, which causes low predic-
tion accuracy. It is worth noting that the prediction accu-
racy of BayesCpi may also be influenced by the number of 
QTLs [35], and the prediction accuracy of BayesB is often 
related to the distribution of different allele frequencies 
(from rare to common variants) at random loci [36].

The overall statistical power of GbyE was significantly 
higher in missing single environment than in missing 
double environment, because in the case of missing sin-
gle environment, GbyE can take full advantage of the 
information from the phenotype in the second environ-
ment. And the correlation between two environments 
can also affect the detectability of the GbyE algorithm 
in different ways. On the one hand, a high correlation 
between two environments can improve the predictive 
accuracy of the GbyE algorithm by using the informa-
tion from one environment to predict the breeding 
values in the other environment, even if there is only 
few relationship with that environment [37, 38]. On 
the other hand, when two environments are extremely 
uncorrelated, GbyE algorithm trained in one environ-
ment may not export well to another environment, 
which may lead to a decrease in prediction accuracy 
[39]. In the testing, we found that when the GbyE algo-
rithm uses a GS model trained in one environment and 
tested in another environment, the high correlation 
between environments may result to the model cap-
turing similarities between environments unrelated to 
G × E information [40]. However, when estimating the 
breeding values for each environment separately, GbyE 
still made effective predictions using the genotypes 
in that environment and maintained high prediction 

Fig. 5  Relative prediction accuracy histogram for different Bayesian models. The X-axis is the Bayesian approach based on BGLR, and the Y-axis 
is the relative prediction accuracy. Where we normalize the prediction accuracy of Mean (the prediction accuracy is all adjusted to 1); the prediction 
accuracy of GbyE is the increase or decrease value relative to Mean in the same group of models
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accuracy. As expected, the additive effect calculates the 
average genetic effect between environments, and its 
predictive effect does not differ much from the mean 
method. The interactive effect, however, has one less 
column than the number of environments, and it calcu-
lates the relative values between environments, a com-
ponent that has a direct impact on the predictive effect. 
The correlation between the two environments may 
have both positive and negative effects on the detect-
ability of the GbyE, so it is important to carefully con-
sider the relationship between the two environments in 
subsequent in development and testing.

A key advantage of the GbyE algorithm is that it can 
be applied to almost all current genome-wide associa-
tion and prediction. However, the focus of GbyE is still 
on estimating additive and interactive effects separately, 
so that it is easy to determine which portion of the is 
playing a role in the computational estimation.. The 
GbyE algorithm may have implications for the design 
of future GS studies. For example, the model could 
be used to identify the best environments or traits to 
include in GS studies in order to maximize prediction 
accuracy. It is particularly important to test the model 
on large datasets with different genetic backgrounds 

Fig. 6  Prediction accuracy of simulated data in single and dual environment absence. The prediction effect of GbyE was divided into two parts, 
environment 1 and environment 2, to compare the prediction accuracy of GbyE when predicting these two parts separately. This includes 
simulations with missing phenotypes and genotypes in environment 1 only (A) and simulations with missing in both environments (B). The 
horizontal coordinates of the graph indicate the different combinations of heritabilities and genetic correlations of the simulations
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and environmental conditions to ensure that it can 
accurately predict genome-wide effects in a variety of 
contexts.

Conclusions
GbyE can simulate the effects of gene-environment 
interactions by building genotype files for multiple 
environments or multiple traits, normalizing the effects 
of multiple environments and multiple traits on marker 
effects. It also enables higher statistical power and pre-
diction accuracy for GWAS and GS. The additive and 
interactive effects of genes under genetic roles could 
be revealed clearly, which makes it possible to utilize 
environmental information to improve the statistical 
power and prediction accuracy of traditional models, 
thus helping us to better understand the interactions 
between genes and the environment.
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