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Abstract 

Goats have achieved global prominence as essential livestock since their initial domestication, primarily owing 
to their remarkable adaptability to diverse environmental and production systems. Differential selection pressures 
influenced by climate have led to variations in their physical attributes, leaving genetic imprints within the genomes 
of goat breeds raised in diverse agroecological settings. In light of this, our study pursued a comprehensive analysis, 
merging environmental data with single nucleotide polymorphism (SNP) variations, to unearth indications of selec-
tion shaped by climate-mediated forces in goats. Through the examination of 43,300 SNPs from 51 indigenous goat 
breeds adapting to different climatic conditions using four analytical methods: latent factor mixed models (LFMM), 
F-statistics (Fst), Extended haplotype homozygosity across populations (XPEHH), and spatial analysis method (SAM), 
A total of 74 genes were revealed to display clear signs of selection, which are believed to be influenced by climatic 
conditions. Among these genes, 32 were consistently identified by at least two of the applied methods, and three 
genes (DENND1A, PLCB1, and ITPR2) were confirmed by all four approaches. Moreover, our investigation yielded 148 
Gene Ontology (GO) terms based on these 74 genes, underlining pivotal biological pathways crucial for environ-
mental adaptation. These pathways encompass functions like vascular smooth muscle contraction, cellular response 
to heat, GTPase regulator activity, rhythmic processes, and responses to temperature stimuli. Of significance, GO terms 
about endocrine regulation and energy metabolic responses, key for local adaptation were also uncovered, includ-
ing biological processes, such as cell differentiation, regulation of peptide hormone secretion, and lipid metabolism. 
These findings contribute to our knowledge of the genetic structure of climate-triggered adaptation across the goat 
genome and have practical implications for marker-assisted breeding in goats.
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Background
The genetic evolution of species is profoundly shaped 
by the climate environment, representing a key factor in 
their sustained genetic adaptation [1]. Species distribu-
tion is affected by climate, and any climate alterations will 
affect the genetic variation of different populations [2]. 
Climate changes can impact species distribution, subse-
quently influencing genetic diversity within populations. 
Investigations across a spectrum of species, such as goats 
[3], sheep [4], and humans [5], have elucidated that cli-
mate fluctuations can give rise to divergences in both 
phenotype and genotype for populations and individu-
als. The examination of climate-driven selective pressure 
is a key focus in evolutionary biology, shedding light on 
the genetic mechanisms underlying local adaptation and 
speciation in the face of changing climates. Previous 
research has revealed instances of adaptation to climate 
in characteristics such as thermal response [6], body size 
[7], and pigmentation [8, 9]. In recent years, molecular 
biology, genetics, and bioinformatics have made great 
strides, which has strongly advanced animal genomics 
research. Significant advancements have been achieved 
in studying the environmental adaptation of domesti-
cated animals such as horses [10], sheep [11], goats [12], 
and cattle [13]. Key genes associated with economic 
traits and environmental resilience have been identified 
in this research. The history of livestock populations is 
characterized by domestication and selective breeding 
to enhance desirable production traits. This evolution-
ary process can be elucidated by comparing genomic 
patterns of SNP variability, particularly among different 
breeds. This has allowed for the identification of numer-
ous genomic regions and genes subjected to selection 
sweeps [14–16]. Many studies have used methods like 
Fst-based outliers and selective sweep tests to examine 
allele frequency variations [17, 18]. However, these inves-
tigations have not typically integrated genomic and envi-
ronmental data. As a result, it remains challenging to link 
selection signatures to specific spatially varying selective 
pressures, such as particular environmental variables. In 
recent years, landscape genomics has introduced sev-
eral approaches to detect adaptations to climatic condi-
tions by examining the relationship between SNP alleles 
and climate variables, such as the spatial analysis method 
(SAM) [19, 20] and latent factor mixed models (LFMM) 
[21, 22]. These approaches have their strengths and limi-
tations, rooted in their underlying assumptions. Through 
the application of these methods, several studies have 
effectively revealed genetic adaptation to various climatic 
pressures by investigating genome-environment correla-
tions in different organisms [4, 6].

Based on archaeological and genetic evidence, the initi-
ation of goat domestication can be dated back to around 

11,000  years ago in the Fertile Crescent region, with its 
roots connected to the distinct wild ancestor, the Bezoar 
(Capra aegagrus) [23]. Goats accompanied human 
migrations, spreading from Asia to Europe, Africa, the 
Americas, and Oceania [24]. Over millennia of migra-
tion and evolution, domestic goats have adapted to vari-
ous environments, from the frigid regions of northern 
Europe to the hot climates of Africa, the arid deserts of 
North Africa to the humid areas of Southeast Asia, and 
from low-altitude plains to high-altitude plateaus [25–
28]. These adaptations underline their remarkable ability 
to thrive in diverse climatic and environmental condi-
tions. Goats have played an essential role in human soci-
ety, offering valuable resources like cashmere, milk, and 
meat, contributing to agriculture, economy, and culture. 
Unfortunately, extreme temperatures and humidity can 
reduce livestock productivity, increasing mortality rates 
and causing economic losses to the livestock industry 
[29]. Therefore, extensive research on the climate adapt-
ability of goats can provide theoretical insights to protect 
and leverage their economically valuable traits, disease 
resistance, and other remarkable attributes, thus advanc-
ing the goat industry.

In this study, distinct strategies were employed to pin-
point regions undergoing artificial and environmental 
selection of goat breeds using the AdaptMap goat data-
set, which comprises over 3,000 animals collected glob-
ally and genotyped with the Caprine SNP50 BeadChip 
[24]. 51 native goat breeds were selected for selection 
tests, which were conducted using four methods, each 
operating on different assumptions. The study utilized 
genetic differentiation analysis of single nucleotide poly-
morphisms (SNPs) and investigated genetic-environ-
mental correlations by analyzing genomic data alone 
or in conjunction with environmental data. Our study 
aims to analyze the genetic legacy passed down through 
centuries of climate-induced adaptations by identify-
ing selection signatures on a genome-wide scale. These 
discoveries will contribute to our comprehension of the 
genetic foundation of adaptive evolution in reaction to 
climate changes, thus supporting functional genomics, 
selective breeding methodologies, and the formulation 
of conservation strategies to address rapid global climate 
changes in goats and other livestock.

Methods
Goat breeds and samples
From the 130 domestic goat breeds included in the 
AdaptMap goat dataset [24], 51 native breeds were spe-
cifically chosen (Fig.  1 and Table S1). These selected 
breeds underwent sampling and genotyping through 
the Illumina GoatSNP50 BeadChip, which encompasses 
53,347 SNPs. The selection process was guided by two 
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primary considerations: the breeds belong to old, autoch-
thonous breeds, and their alignment with environmental 
and genetic clustering. For each breed, kinship coeffi-
cients between individuals in pairs were calculated [30]. 
To reduce the influence of variations in sample sizes on 
the resulting estimates, the selection process involved 
choosing the 20 individuals with the lowest pairwise 
relatedness from breeds containing more than 20 samples 
[4]. Details of the number of samples, sampling locations, 
and coordinates are included in Table S1. The plink soft-
ware [31] was utilized to perform animal and SNP quality 
filtering based on following the criteria [24]: (1) individu-
als with a call rate < 96%; (2) SNP with a < 95% genotyping 
rate; (3) SNP with a minor allele frequency (MAF) > 0.05; 
(4) SNP with physical locations on autosomes. After 
eliminating SNP and individuals that did not meet the 
criteria, our dataset was comprised of 43,300 SNP (before 
quality control 53,347 SNPs) and 1,020 individuals from 
51 breeds.

PCA based on environmental variables
Data on environmental variables from the Climatic 
Research Unit of Norwich (CRU CLv.2.0), covering the 
period 1961 to 2001, was downloaded from the climate 
data set (https://​cruda​ta.​uea.​ac.​uk/​cru/​data/​hrg/, last 
accessed June 3, 2023) [32]. Climate data was composed 
of latitude/longitude grids with a resolution of 10  min, 
containing yearly mean and monthly values of eight vari-
ables across global land areas. Monthly parameters of 

the variables were included in this study to account for 
seasonal fluctuations, such as vegetation growth and 
lambing. The climate variables applied in this study were 
similar to the study by Lv et al. 2014, encompassing tem-
perature, ground frost, precipitation, relative humid-
ity, and sunshine [4] (Fig. 2 and Table S1). These climate 
data were acquired by utilizing a raster function in the R 
package based on the longitude and latitude coordinate 
data [26]. In addition, PCA was calculated to differentiate 
breeds based on a total of 104 environmental parameters 
using the princomp function of R software (Fig. 3A and 
B).

Population structure analysis
To address biases that may result from population struc-
ture, the genetic relationships among 51 goat breeds 
were examined to remove closely related breeds from the 
analysis. The Arlequin v3.11 software package [33] was 
employed to compute the pairwise Reynolds’ genetic dis-
tances between populations. The Reynolds’ genetic dis-
tance pairwise matrix was calculated using 22,861 SNPs, 
applying the LD pruning algorithm in the plink indep-
pairwise command (parameters: 50 5 0.05). This method 
entails assessing LD between SNPs in windows of 50 
markers and removing one SNP from each pair when the 
r2 LD index exceeds 0.05. Subsequently, a genetic rela-
tionship network was established among breeds through 
a neighbor-net analysis conducted with the SplitsTree 
package v4.12 [34] (Fig.  3C). Utilizing the program 

Fig. 1  Geographical distribution map of 51 goat breeds in this study

https://crudata.uea.ac.uk/cru/data/hrg/
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STRU​CTU​RE v2.3.4, a Bayesian clustering method was 
employed to evaluate genetic structure among popula-
tions [35]. This method utilizes multilocus genotypes for 
inferring population genetic structuring and determin-
ing the number of genetic clusters (K). 10 runs for each 
K value ranging from 3 to 5 were conducted, employing 
a model of admixture and correlated allele frequencies in 
the program (Fig.  4A). Moreover, principal component 
analysis on the individuals based on SNP data was per-
formed using the SmartPCA program (http://​www.​hsph.​

harva​rd.​edu/​alkes-​price/​softw​are/) from the EIGEN-
SOFT package (Fig. 4B).

Screening for SNPs and genomic regions under selection
To pinpoint genomic regions that may be under selec-
tion, Fst values were calculated using 43,300 SNPs. This 
analysis was applied to two clusters, cluster I and cluster 
II, which were distinctively determined by the PCA of 
environmental data, Reynold’s genetic distance and pop-
ulation structure analysis (Figs.  3 and 4). The Fst single 

Fig. 2  Climatic data used in this study. Maps display the geographical distribution of annual mean values for the eight climate variables. A Diurnal 
temperature range (DTR); B Coefficient of variation of monthly precipitation (PRCV); C Number of days with > 0.1 mm rain per month (RDO); D 
Percent maximum possible sunshine (SUN); E Frost day of frequency (FRS); F Precipitation in mm/month (PR); G Relative humidity (REH); H Mean 
temperature (TMP)

http://www.hsph.harvard.edu/alkes-price/software/
http://www.hsph.harvard.edu/alkes-price/software/
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locus analysis technique were utilized, as suggested by 
Weir and Cockerham (1984) to evaluate the degree of 
population differentiation [36]. Fst values was calcu-
lated with VCFtools, utilizing a non-window approach 
[37]. Significant markers were empirically determined 
to be the top 1% of SNPs in this study (Fig. 5A). In con-
trast to the Fst method, XPEHH operates as a haplotype-
based approach. SHAPEIT was utilized to construct 
haplotypes in each breed initially [38], and subsequently, 
SELSCAN was used to compute XPEHH statistics for 
each population pair [39]. After normalizing the XPEHH 
values, which approximately followed a normal distri-
bution. A significance test of the standard normal dis-
tribution (p < 0.05) was utilized to assess the differences 
in variations attributed to selection among populations. 
Selection is denoted by positive XP-EHH values in the 
observed population and negative values in the refer-
ence population. Additionally, the top 0.1% XPEHH 

values were identified as a potentially significant selec-
tion regions (Fig. 5B).

Landscape genomics analysis to identify 
environment‑associated SNPs
The identification of markers linked to environmental 
variables was conducted using MatSAM v1.0. Software 
[19]. Rather than relying on theoretical models in popu-
lation genetics, this spatial analysis employs spatial coin-
cidence to establish a connection between the genetic 
makeup of the goats under study and the environmen-
tal parameters derived from the geographic coordinates 
of their sampling sites. In the analysis, a matrix is used 
where each row represents an individual and their geo-
graphic coordinates of sampling [4, 20]. To examine how 
allele frequencies relate to environmental parameters, 
a univariate logistic regression analysis is carried out at 
the individual genotype level [19]. The significance of the 

Fig. 3  PCA of environmental variables and Genetic relationship of 51 native goat breeds. A Heat strips for each of the first three PCs are 
shown for the 51 goat breeds assigned to the two clusters (I and II). B the score plots of PC1 versus PC2 for the 51 native goat breeds: breeds 
from Africa and West Asia clustered together in Cluster I, and breeds from Europe, America, and Oceania formed Cluster II. C Genetic relationship 
between the 51 native goat breeds based on Reynolds’ genetic distance. Two clusters I and II are indicated in red and blue, respectively
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associations is determined using both the log-likelihood 
(G) test and a Wald test [20]. The Bonferroni correction 
is utilized to adjust for multiple comparisons [19]. By 
assessing the significance of models resulting from all 
potential pairwise combinations (allele vs. environmental 
parameter), statistically significant markers can be pin-
pointed. These specific loci are probable targets of selec-
tive sweeps driven by environmental adaptations [11].

Furthermore, an additional algorithm was utilized 
within the LFMM program to evaluate the relationships 
between SNPs and climate variables (http://​membr​es-​
timc.​imag.​fr/​Eric.​Frich​ot/​lfmm/​index.​htm) [21]. The 
LFMM method, a combination of population genomics, 
ecological modeling, and statistical learning, has been 
demonstrated to be successful in recognizing indica-
tions of local adaptation in genomes [4, 11, 26]. In addi-
tion, this method reduces the probability of false-positive 

associations caused by population structure and other 
random factors [40]. A principal component analy-
sis (PCA) of environmental variables was conducted. 
The first principal component (PC1) explained the 
most variance (70.78%) compared to the second com-
ponent (12.31%) (Fig. 3B). The first axis of the PCA was 
employed to summarize the variables. Subsequently, The 
Latent Factor Mixed Model (LFMM) algorithm was uti-
lized to determine z-scores for all single nucleotide poly-
morphisms (SNPs) after 100 burn-in sweeps and 1,000 
additional sweeps. Our approach involved incorporating 
K = 3 latent factors identified through population struc-
ture analyses carried out using the SmartPCA tool from 
the EIGENSOFT v5.0 package and the Bayesian cluster-
ing program STRU​CTU​RE v2.3.4 [4, 11].

Fig. 4  Population genetic structure among the 51 goat breeds with worldwide origins. A Bayesian analysis base on K = 3–5; Each animal is depicted 
by a solitary vertical line segmented into K colors, with K representing the assumed number of clusters. The colored section indicates the estimated 
proportion of the individual’s membership in that cluster, averaged across 10 runs for each K value ranging from 3 to 5. B Principal component 
analysis (PCA) using SmartPCA from the EIGENSOFT v5.0 package

http://membres-timc.imag.fr/Eric.Frichot/lfmm/index.htm
http://membres-timc.imag.fr/Eric.Frichot/lfmm/index.htm
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Identification of candidate genes associated with selection 
signature
Following the assessment of the results, SNPs that 
exceeded the top 0.1% percentile threshold from all four 
methods were subjected to the intersection of multiple-
selective signal analysis. Employing the BioMart tool 
[41] and the goat reference genome assembly (ARS1) 
[42], gene mapping in goats involved extracting 10  kb 
up- and downstream regions for each significant SNP 

in the overlapping regions. The protein-coding genes 
that overlap with regions experiencing positive selection 
have been pinpointed as potential candidate genes. The 
Database for Annotation, Visualization, and Integrated 
Discovery (DAVID) v6.8 was employed for gene enrich-
ment analyses to facilitate further examination [43]. This 
database permits the examination of the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway and Gene 
Ontology (GO) for biological processes. The significance 

Fig. 5  Genome-wide selection signatures identified through Fst, XPEHH, and LFMM tests. A The genetic differentiation between two clusters 
(I vs II) among 51 breeds evaluated by analyzing the genome-wide distribution of Fst values. Red color represent the top 1% candidate SNPs. B 
Genome-wide distribution of selection signatures detected by XPEHH using two clusters (I vs II). The red SNPs represents the threshold levels 
of top 1%. C The distribution of significance values (-log10(P)) examined for correlations between SNP frequencies and environmental variables 
in the LFMM test.; The red SNPs represents the threshold levels of top 1%
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of enriched GO biological processes, molecular func-
tions, and cellular components was determined using the 
Fischer test (p-value = 0.05). Furthermore, an exhaustive 
literature review was undertaken to elucidate the func-
tions of the identified genes.

Results
Relationships between breeds based on climate variables 
and genomic data
To identify a cluster of distantly related breeds adapted 
to extreme environments, Principal Component Anal-
ysis (PCA) was conducted using climatic variables 
(Fig. 3A and B) and genetic relationships based on Rey-
nold genetic distance between breeds (Fig.  3C). In this 
subset, it was anticipated that signs of climatic adapta-
tion would be more pronounced and readily discernible, 
while signals of common origin among breeds would be 
diminished. PCA effectively grouped the 51 native goat 
breeds based on their adapted environments. PC1 and 
PC2, the first two principal components, collectively 
accounted for over 80% of the total variance, with PC1 
explaining 70.78% and PC2 explaining 12.31% (Fig.  3B). 
PC1 distinguished between breeds based on the impacts 

of different environmental climate variables, while PC2 
and PC3 did not show evident geographical divergence 
associated with these variables (Fig. 3A). The PCA anal-
ysis revealed that 24 breeds from Africa and West Asia 
clustered together in Cluster I due to their negative PC1 
values, while 27 breeds from Europe, America, and Oce-
ania formed Cluster II with positive PC1 values (Fig. 3A 
and B). Furthermore, through the use of a Neighbor-Net 
graph and Reynolds genetic distance, the 51 goat breeds 
were divided into two distinct clusters, in accordance 
with existing research on the phylogeography of these 
breeds [24]. The PCA plot using environmental vari-
ables indicated that breeds in Cluster I had negative PC1 
values, while those in Cluster II had positive PC1 values 
(Fig. 3C).

Detection of selection signatures
To identify potential selection signatures across the 
genome, Fst and XPEHH tests were employed to analyze 
the distinctions between the goat populations in Cluster 
I and Cluster II. These tests have proven highly effec-
tive in detecting signatures with either nearly fixed or 
fully fixed alleles. The threshold for determining outliers 

Fig. 6  Venn diagram for SNPs and genes identified by Fst, XPEHH, LFMM, and SAM methods (A and B respectively) and GO and KEGG terms related 
to environmental adaptation (C)
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was set at the top 0.1% SNP values, with the threshold 
values being 0.429028 for Fst and 0.278427 for XPEHH 
(Tables S2 and S3; Fig. 5A and B). The Fst test revealed 24 
genes associated with various traits, including coat color, 
reproduction, feed intake, hair follicle development, 
heat adaptation, lipid metabolism, and neuronal devel-
opment. Similarly, the XPEHH test identified 23 genes 
linked to feed intake, heat adaptation, fat deposition, milk 
traits, and coat color ((Table S6). Remarkably, 14 SNPs 
were concurrently detected by both the Fst and XPEHH 
tests (Fig. 6A). A more detailed examination of overlap-
ping SNPs within a 5,000 bp range (SNP ± 5,000 bp) pin-
pointed 11 genes (DENND1A, ITPR2, PLCB1, PREX2, 
ASIP, DLG1, GFI1, TBC1D12, TP53BP1, WDR75, and 
UVRAG​) of particular significance (Fig. 6B and Table S6).

Among these, PLCB1 [44], WDR75 [45], and ITPR2 
[13] are associated with heat tolerance, while DLG1 
[46] and GFI1  [47] play roles in feed intake and glucose 
homeostasis, respectively. Furthermore, TP53BP1 [48], 
ASIP [48, 49], and PREX2 [50] genes are linked to coat 
color and hair follicle development. TBC1D12 is related 
to environmental stress [4, 51], UVRAG​ genes pertain to 
ultraviolet resistance [52], and DENND1A [14] is associ-
ated with reproduction (Table S6).

Signatures of genomic adaptation to local environments
Two distinct approaches, LFMM and SAM, were 
employed for landscape genomics analyses (LGA) using 
climatic variables representing the current climate. With 
the LFMM method, 22 genes were successfully identi-
fied from the top 0.1% SNP values (Fig.  5C, Tables S4, 
and S6). Notably, among these 22 genes, 10 genes (ASIP, 
DENND1A, DLG1, DNAJC16, GFI1, ITPR2, PLCB1, 
TBC1D12, TP53BP1, and WDR75) were also detected by 
the Fst and XP-EHH tests. These genes are essential for 
coat color, feed intake, immune response, and heat tol-
erance, which makes them vital for local goat breeds to 
adapt to their respective climates. In the case of SAM, the 
1000 highest WaldScore values were identified as poten-
tial SNPs, revealing 94 SNPs with significant associations 
to one or more climate variables (Fig.  6A and B, Tables 
S5 and S6). These 94 SNPs, considering a 5,000 bp range 
(SNP ± 5,000  bp), led us to the discovery of 42 genes. 
Importantly, three of these genes (DENND1A, PLCB1, 
and ITPR2) were also identified by LFMM, Fst, and 
XPEHH tests (Table S6).

GO enrichments and KEGG analysis
Applying Fst, XPEHH, LFMM, and SAM strategies, 74 
genes were identified, 32 of which were consistent and 
appeared in at least two of the techniques (Table S6). 
Subsequently, we used DAVID v6.8 to analyze these 
genes and discovered a variety of biological terms and 

pathways related to environmental adaptation (Fig.  6C 
and Table S6). Among the 148 GO and KEGG terms dis-
covered, "vascular smooth muscle contraction" stood out 
as the most significant (Fig. 6C and Table S7). This term 
encompasses six genes (BRAF, ITPR2, PRKG1, CALCRL, 
PLCB1, and ARHGEF12). Furthermore, numerous essen-
tial terms were found related to environmental adapta-
tion, such as "cellular response to heat" (including TRPV1, 
TFEC, ANO1), "GTPase regulator activity," "response to 
heat" (involving CHN1, TBC1D12, PLCB1, ARHGEF12, 
DENND1A, and PREX2), "rhythmic process" (with PDG-
FRA, SREBF1, USP2, ENOX1), and "response to tempera-
ture stimulus" (including TRPV1, TFEC, ANO1) (Fig. 6C 
and Table S7). Moreover, terms related to endocrine reg-
ulation and energy metabolic responses played a pivotal 
role in local adaptation. These included "fat cell differ-
entiation" (PDGFRA, SREBF1, PLCB1, NOC3L), "regula-
tion of peptide hormone secretion" (involving SLC2A2, 
SREBF1, PLCB1, ANO1), "regulation of hormone levels" 
(with GFI1, PDGFRA, SLC2A2, SREBF1, PLCB1, ANO1), 
"glucagon signaling pathway" (in which ITPR2, SLC2A2, 
and PLCB1 participated), "response to hormone" (includ-
ing ASIP, MAPK14, RBBP5, SREBF1, TRPV1, PLCB1, 
MMS19), and "negative regulation of lipid metabolic pro-
cess" (with ALK, GFI1, and SREBF1) (Fig.  6C and Table 
S7). These findings reveal the diverse biological path-
ways and processes implicated in the adaptation of goat 
populations to their local environments, offering valuable 
insights into the genetic mechanisms underpinning these 
adaptations.

Discussion
The study of goat environmental adaptation has histori-
cally been hampered by limited methodologies and data 
availability. Previous research often lacked comprehen-
sive environmental information or employed narrow 
approaches, particularly noticeable in studies focusing 
on African goat breeds [6, 26]. In contrast, our study uti-
lized four diverse strategies to identify genes related to 
adaptation in goats from Europe, Africa, Asia, America, 
and Oceania. Our genome scan has allowed us to analyze 
SNP variation in conjunction with environmental vari-
ables on a large scale, and provide a deeper insight into 
natural selection in response to climatic changes of goat 
breeds. In addition, the 51 goat breeds were divided into 
two clusters based on climatic factors. Cluster I encom-
passes primarily breeds from Africa and West Asia, 
where exhibit high temperatures, limited rainfall, and 
arid, hot conditions year-round. In contrast, Cluster II 
comprises mainly breeds from Europe, American, and 
Oceania, characterized by mild, rainy climates with warm 
winters, cool summers, and relatively high precipita-
tion. Thus this integration of genetic and environmental 
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data offers a more comprehensive understanding of the 
genetic mechanisms that potentially underlie the adapta-
tion of goat breeds to their specific local environments.

Firstly, these studies found the importance of coat color 
and hair follicles for goat adaptations to climate condi-
tions [8, 53]. Specifically, several important genes were 
identified, such as HOXC13, PDGFRA, ASIP, PREX2, 
and LDLRAD4 were associated with the development of 
coat color and hair follicles (Table S6). Notably, HOXC13 
showed a correlation with altitude and temperature vari-
ations in Tibetan cashmere goats [53]. Copy number var-
iations (CNVs) at the ASIP locus have been established 
as causal variants influencing coat color phenotypes 
across diverse animal species, including cattle [49], sheep 
[54], and goats [55]. The genetic determination of coat 
color holds adaptive significance concerning climatic 
variations. Differential thermoregulatory responses are 
observed across colors, with breeds exhibiting dark coats 
showing enhanced absorbed heat compared to those with 
lighter or white coats, reflecting 50% to 60% of direct 
solar radiation [9]. The skin penetration of this absorbed 
heat is contingent upon coat structure and coloration [3]. 
In cold climates, goats tend to possess a higher density of 
hair follicles, contributing to a denser and warmer coat, 
thus providing insulation against low temperatures [3].

Secondly, this study has identified several signifi-
cant genes associated with energy metabolism in goats 
(Fig.  6C). Notably, genes like DLG1, ENOX1, GPC5, 
DNAJC16, FTO, GFI1, and SLC2A2 play essential roles in 
regulating feed intake and glucose metabolism. Addition-
ally, genes like PAFAH1B2, STK32B, MIR33B, SREBF1, 
GPCPD1, and ACSM1 are involved in lipid metabolism, 
while WDR75, SCN7A, and PLCB1 contribute to thermo 
tolerance (Table S6). Our findings suggest that the accli-
matization of indigenous goat breeds to harsh climates 
is predominantly influenced by intricate, interconnected 
energy metabolic reactions, similar to those documented 
in sheep [4, 26]. Climate has a profound impact on ani-
mal physiology and fitness, particularly among ruminants 
[56]. Climate variables such as sunlight, precipitation, 
and temperature have an indirect influence on the digest-
ibility, quality, and quantity of forage, which subsequently 
has a significant impact on goats [57]. These climate vari-
ables can directly affect goats through thermoregulation 
[12], but the stronger effects are expected to operate indi-
rectly by regulating plant quality and biomass [58].

In response to thermal stress, animals regulate their 
energy metabolism by adjusting feed intake in terms of 
variety and quantity when they deviate from the opti-
mal body temperature range for cellular processes [59, 
60]. Moreover, animal morphology displays variations, 
including body size, that align with essential thermoreg-
ulatory principles to manage body energy in different 

climates effectively. For example, Sudanese and Egyptian 
desert goats have relatively large to medium body size, 
which helps for evaporative heat loss [61]. Goats display 
better heat stress resilience than cows and sheep, show-
casing adaptive feeding behaviors in warm climates. 
Specifically, Fawn goats demonstrate unique feeding hab-
its compared to Saanen x hair goats, which suffer from 
increased heat stress and insufficient nutrient consump-
tion [62]. Therefore, the energy metabolic adaptations 
of native goat breeds are strongly influenced by climate, 
encompassing both direct and indirect effects. These 
findings shed light on the intricate interplay between cli-
mate, energy metabolism, and breed-specific traits.

Moreover, our findings provide evidence for the 
selection of genes related to endocrine regulation (eg, 
response to hormone), rhythmic process (PDGFRA, 
SREBF1, USP2, and ENOX1), reproductive (DENND1A, 
ALK, KIF1B, and KHDRBS2) and nervous system (eg, 
presynapse) on goat physiology and evolutionary success 
(Fig.  6C and Table S7). The duration of daylight is cru-
cial for goats to adapt to seasonal cycles. Sunlight dura-
tion is often responsible for the production of endocrine 
hormones, consequently affecting physiological activi-
ties, for example, the timing of reproduction in mammals 
[63]. The majority of goat breeds are seasonal breeders, 
and the onset of this reproductive cycle is triggered by 
the input of sunlight [63, 64]. This light serves as a cue 
to initiate a sequence of physiological processes, culmi-
nating in the secretion of a gonadotropin hormone. Thus, 
sunlight is a pivotal factor in the priming of the neuroen-
docrine axis of goats for reproduction [63]. Recent rapid 
climatic changes have significantly altered the seasonal 
events of goats, particularly their reproduction, leading 
to selective pressures on the perception of sunlight and 
its hormonal regulation [56].

In addition, our study demonstrates that climate 
can indirectly impact the regulation of autoimmune 
responses in various goat breeds through its influence 
on their habitats [65, 66]. Several novel genes (LPP, 
DNAJC16, SUGT1, STARD10, STX2, CCR9, and BANK1) 
have been identified as being associated with disease 
resistance and immune response for goat populations. 
For example, LPP is implicated in paget disease [67], 
DNAJC16 plays a crucial role in coordinating immune 
responses [68], and SUGT1 provides resilience against 
Haemonchus contortus [69]. Additionally, STARD10 is 
linked to resilience against Paratuberculosis [70], STX2 
against Escherichia coli [71], CCR9 shows potential for 
treating inflammatory bowel disease [72], and BANK1 
regulates innate immune signaling in B cells [73].

The identification of identical candidate Single Nucleo-
tide Polymorphisms (SNPs), genes, and genomic regions 
under selection through different methodologies can 
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offer strong support for selective signatures [74]. Through 
the utilization of a strategy that merges complementary 
statistical methodologies, this study enables the identifi-
cation of alleles undergoing subtle frequency shifts due to 
selection, while concurrently mitigating the occurrence 
of false-positive associations [21]. This strategic approach 
allows for the identification of new loci where SNPs dis-
play subtle yet consistent patterns across populations. 
While it is acknowledged that false positives can occur, 
especially when employing various statistical methods, 
we believe that the occurrence of such false positives 
would be minimal. Our approach provides a more refined 
and nuanced perspective on the selective signatures pre-
sent in the genomic data, offering valuable insights into 
the genetic adaptations of the populations under study.

Our study is constrained by several limitations. The sig-
nals of natural selection that we observed are probably 
the result of both the direct and indirect influences of cli-
mate on the goat genome, given that several other envi-
ronmental variables are partially associated with climatic 
factors. The complexity of overlapping environmental 
and ecological variables makes it difficult to distinguish 
the causal selective pressures from other influences. 
When analyzing the data, it is crucial to recognize that 
the environment may vary for each breed within the 
habitat region, and it is worth noting that our SNP data is 
limited to a small portion of the goat genome. Therefore, 
to gain a better understanding, more detailed environ-
mental data and higher density SNPs are needed for each 
breed throughout the habitat region.

Conclusions
In summary, our study explored the genetic basis of 
climate-induced adaptations in goat breeds through 
genome-wide scanning. This research pinpointed 74 can-
didate genes associated with local adaptation in goats, 
enriched in key Gene Ontology terms related to energy 
metabolism, endocrine regulation, rhythmic processes, 
and heat response. These findings enhance our knowl-
edge of the genetic framework of climate-driven adaptive 
evolution. Moreover, they hold significant implications 
for the formulation of conservation strategies to tackle 
the impacts of swift global climate change on goat and 
other related livestock species.
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