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Abstract 

Background Alzheimer’s disease (AD) is a heritable neurodegenerative disease whose long asymptomatic phase 
makes the early diagnosis of it pivotal. Blood U-p53 has recently emerged as a superior predictive biomarker for AD 
in the early stages. We hypothesized that genetic variants associated with blood U-p53 could reveal novel loci 
and pathways involved in the early stages of AD.

Results We performed a blood U-p53 Genome-wide association study (GWAS) on 484 healthy and mild cognitively 
impaired subjects from the ADNI cohort using 612,843 Single nucleotide polymorphisms (SNPs). We performed 
a pathway analysis and prioritized candidate genes using an AD single-cell gene program. We fine-mapped the inter-
genic SNPs by leveraging a cell-type-specific enhancer-to-gene linking strategy using a brain single-cell multimodal 
dataset. We validated the candidate genes in an independent brain single-cell RNA-seq and the ADNI blood transcrip-
tome datasets. The rs279686 between AASS and FEZF1 genes was the most significant SNP (p-value = 4.82 ×  10–7). 
Suggestive pathways were related to the immune and nervous systems. Twenty-three candidate genes were prior-
itized at 27 suggestive loci. Fine-mapping of 5 intergenic loci yielded nine cell-specific candidate genes. Finally, 15 
genes were validated in the independent single-cell RNA-seq dataset, and five were validated in the ADNI blood 
transcriptome dataset.

Conclusions We underlined the importance of performing a GWAS on an early-stage biomarker of AD and leverag-
ing functional omics datasets for pinpointing causal genes in AD. Our study prioritized nine genes (SORCS1, KIF5C, 
TMEFF2, TMEM63C, HLA-E, ATAT1, TUBB, ARID1B, and RUNX1) strongly implicated in the early stages of AD.
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Introduction
Dementia has a prevalence of about 7.1% among Europe-
ans [1]. The most common type of dementia (50–70% of 
cases) is Alzheimer’s disease (AD) [2]. AD is a progressive 
neurodegenerative disease whose asymptomatic phase 
begins decades before the onset of symptoms [3, 4]. AD is 
a multifactorial disease, and several risk factors, such as 
cardiovascular diseases, oral infection, sleep disturbance, 
aging, genetic susceptibility, traumatic brain injuries, and 
air pollution, have been proposed for it [5]. Regarding the 
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beginning of the pathological process years before the 
onset of AD symptoms, early diagnosis of people at high 
risk for AD is pivotal.

Although the exact pathophysiological mechanisms 
of AD are not fully understood, the Amyloid-beta (Aβ) 
hypothesis has been the dominant one in describing 
AD pathogenesis. According to this hypothesis, aging 
causes excessive accumulation of Aβ peptide in the brain 
which eventually leads to the accumulation of toxic brain 
plaques and the onset of symptoms of AD. Genetic stud-
ies have also shown that in rare cases of AD, there are 
mutations in genes related to Aβ metabolism, strength-
ening the Aβ hypothesis [6]. However, this hypothesis has 
been subjected to a closer examination in recent years. 
Indeed, it has been questioned to some extent because 
new drugs based on antibodies against Aβ have poorly 
improved the symptoms of patients with mild and mod-
erate forms of AD [7–9]. Therefore, there may be other 
biological pathways involved in the early stages of AD.

Based on the observed drawbacks of the Aβ hypoth-
esis, various models have been proposed to describe 
the underlying mechanisms of AD. One of the pro-
posed mechanisms for AD is a defect in the antioxidant 
response system and the role of the p53 protein in this 
process [10]. In addition to playing a role in tumor sup-
pression in the body, the p53 protein can prevent the pro-
gress of neurodegeneration through various pathways, 
such as synaptic function, neurite outgrowth, protection 
from oxidative agents, and axonal regeneration [11–14]. 
For the first time in 2002, there were reports of observ-
ing a conformationally changed structure of p53 protein 
in the peripheral cells of patients with AD [15]. This pro-
tein, called unfolded p53 (U-p53), was not seen in other 
diseases, such as cancer and other neurodegenerative 
diseases, and seemed specific to AD. In the following 
years, it was suggested that the oxidative agents, chronic 
subtoxic oxidative stress, and sublethal Aβ concentra-
tions may increase the expression of the U-p53 protein 
[16, 17]. It is worth noting that brain is an essential source 
of oxidative agents’ production since it consumes more 
than 20% of the body’s oxygen [18–20]. The rise of oxida-
tive substances in the body causes various alterations in 
post-translational modification, the tertiary structure, and 
physiological functions of the p53 protein [15]. Moreo-
ver, the Aβ peptide can also cause similar changes in the 
p53 structure [21–23]. Conversely, the p53 protein can 
also affect Aβ concentration [24]. Additionally, oxidative 
agents can also lead to the phosphorylation of tau protein, 
which is one of the pathological hallmarks of AD. Hence, 
pathways related to oxidative stress could play key roles in 
the early stages of neurodegeneration [25, 26].

In recent years, there has been a growing interest in 
developing blood biomarkers for the early diagnosis of 

AD [27]. Developing biomarkers for AD has two main 
advantages: First, aiding in early diagnosis of the disease; 
Second, helping to develop new drugs for AD. The second 
advantage is precious since the development of effective 
drugs for AD has slowed, and the available drugs mostly 
have little effect on improving or delaying the symptoms 
of this disease [28]. However, most AD biomarkers have 
not yet entered the official diagnostic protocols of the 
disease [29]. Recently, an antibody has been developed to 
identify the blood U-p53 protein, which had a promising 
performance in identifying people at high risk for AD in 
the asymptomatic and symptomatic stages of the disease 
[30]. In a recent study, the blood U-p53 protein has been 
proposed as a robust biomarker outperforming other 
well-known AD biomarkers, such as Aβ PET scan, for 
identifying people at risk of developing AD 6 years before 
the onset of symptoms (AUC > 98%) [14].

According to several studies, the heritability of AD 
is estimated between 60–80% [31]. So far, multiple 
genome-wide association studies (GWAS) have been 
performed on AD, which have led to the discovery of 
numerous single nucleotide polymorphisms (SNPs) and 
genes [32]. However, the exact mechanism of the disease 
remains unknown. GWAS studies focusing on AD as a 
phenotype encounter numerous challenges due to two 
primary reasons: First, the clinical diagnostic accuracy of 
AD is poor. Second, due to the influence of age on AD, it 
is recommended to utilize age-matched control groups in 
GWASs conducted on this disease. However, the feasibil-
ity of obtaining such control groups is often limited [33]. 
To overcome these challenges, an alternative approach 
involves conducting GWAS on early-stage biomarkers of 
AD and utilizing these biomarkers as endophenotypes. 
This approach allows for the identification of novel genes 
and SNPs associated with the biological pathways under-
lying the early stages of the disease [34]. Compared to 
traditional GWASs performed on binary phenotypes, this 
approach has several advantages: First, continuous quan-
titative phenotypes, such as U-p53 concentration, repre-
sent real laboratory measurements rather than subjective 
binary clinical diagnoses. Second, this approach enhances 
the statistical power of GWAS even with smaller sample 
sizes compared to studies focusing on binary phenotypes. 
Third, early-stage endophenotypes could capture slight 
differences in susceptibility to disease that could not be 
detected with clinical binary phenotypes. So far, several 
GWASs have been conducted on various AD biomark-
ers, such as Aβ, tau protein, phosphorylated tau protein, 
and sTREM concentrations of cerebrospinal fluid (CSF), 
which has led to the discovery of novel genes and path-
ways involved in AD [34, 35].

Considering the role of the U-p53 protein in the early 
stages of AD and the high performance of this biomarker 
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in predicting AD in the asymptomatic and early stages 
of this disease, we decided to conduct a GWAS on this 
biomarker as one of the AD endophenotypes to reveal 
novel genes and biological pathways involved in the 
early stages of AD. Our primary hypothesis was that the 
SNPs associated with blood U-p53 variation among older 
adults could shed light on novel loci involved in pathways 
related to the early stages of AD. By employing single-cell 
RNA-seq and multimodal datasets, as well as leveraging 
a single-cell enhancer-to-gene mapping strategy, we were 
able to establish connections between non-coding SNPs 
identified in our GWAS and their corresponding cell-
specific target genes. This approach enabled us to gain 
deeper insights into the specific genes within brain cells 
that are causally implicated in the pathogenesis of AD.

Methods
Study design
We used the ADNI cohort for our research. In summary, 
ADNI is a cohort launched by Michael W. Weiner, MD, 
in 2003. The primary goal of this cohort is to gather vari-
ous types of biomarkers, including body fluid biomark-
ers, neuroimaging, and genetic data, for developing tools 
for early diagnosis of AD. This cohort includes 3 phases: 
ADNI1, ADNIGO/2, and ADNI3. All samples have been 
collected using the relevant guidelines. A consent form 
has been obtained from all the cohort participants, and 
the regional ethics committees have also approved this 
cohort. The details of this cohort can be found on its 
website (http:// adni. loni. usc. edu/). By personal commu-
nications, we had permission to access the database via 
the https:// ida. loni. usc. edu/.

Participants
To carry out our GWAS, we first used the file “DIA-
DEM_V2_08_30_22.csv” which contains a dataset of 
U-p53 concentration in the blood plasma of 584 subjects 
from the ADNI GO/2 phase. The genotypic data of the 
ADNI GO/2 phase participants are available in 2 dis-
tinct PLINK files (“ADNI_GO_2_OmniExpress.zip” and 
“ADNI_GO2_2nd.tar.gz files”). The first file has the gen-
otypic data of 432 subjects and the second one consists 
of the genotypic data of 361 subjects. In the next step, 
we merged these two files using the PLINK 1.9 software 
(https:// www. cogge nomics. org/ plink/) which yielded a 
single file containing genotypic data of 793 subjects. We 
also used the “ADNIMERGE.csv” file which contains 
demographic data of the participants of the ADNI 1, 
GO/2, and 3 phases.

Quality control and merging
To perform the GWAS, we conducted several stages of 
quality control on the samples with available genotypic 

information. We utilized ADNI GO/2 subjects geno-
typed by the Illumina HumanOmniExpress BeadChip in 
2014. The genomic quality control steps were performed 
using the PLINK 1.9 software. First, we excluded partici-
pants with a missing genotype rate exceeding 5% and a 
heterozygosity rate deviating more than three standard 
deviations from the mean. Additionally, we assessed the 
concordance between participants’ ascertained gender 
and the estimated inbreeding coefficient calculated by the 
PLINK software to identify potential gender mismatches. 
Next, we merged the output file with our phenotype file 
to extract subjects with both genotypic and phenotypic 
data. Subsequently, we excluded SNPs located on the 
sex chromosomes. SNPs with a minor allele frequency 
(MAF) less than 2%, a missing genotype rate exceeding 
5%, and a Hardy–Weinberg equilibrium (HWE) p-value 
less than  10–6 were also excluded.

Phenotype
Blood samples of 593 participants from the ADNI 
cohort were analyzed using the AlzoSure® Predict 
method to measure the blood plasma concentration of 
U-p53 protein, from June 16 to July 12, 2022, in more 
than eight rounds. In summary, the AlzoSure® Pre-
dict method is a diagnostic laboratory method that uses 
LC–MS/MS or Ion Trap on protein-depleted plasma 
samples. This method is particularly relevant for indi-
viduals over 50 years old with a family history of AD, a 
documented genetic predisposition, and signs of mild 
cognitive impairments (MCI). It aims to predict the pro-
gression from MCI to AD. During each round of analy-
sis, approximately 54–77 samples from ADNI subjects 
were included. Additionally, at least three quality con-
trol samples from the Australian Imaging, Biomarkers 
and Lifestyle (AIBL) biobank, previously analyzed and 
covering the full range of U-p53 protein expression dur-
ing the early stages of AD progression, were included 
as well. Out of the 593 samples, nine samples were dis-
carded from the analysis despite undergoing two rounds 
of analysis due to the inability to obtain results. Detailed 
information regarding the methodology of laboratory 
tests and quality control procedures can be found on the 
ADNI website.

Genome‑wide association analysis
To account for population substructures as a potential 
confounding factor, we utilized the PLINK software to 
compute the principal components (PCs) of the geno-
typic data. The top 3 PCs were selected and incorporated 
as covariates in the analysis. This approach enabled us to 
control for genetic relatedness and address any potential 
biases introduced by population substructures [36]. To 
perform GWAS analysis, we used the linear regression 
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model with the “–assoc –linear” commands in the 
PLINK 1.9 software. Also, we used age and gender as two 
other covariates. To calculate the significant and sugges-
tive p-value thresholds, we used the “–indep –pairwise” 
command in the PLINK software (window size = 50 Kb, 
Linkage disequilibrium (LD) r2 > 0.8, and step size = 5) to 
calculate the number of independent SNPs. To evaluate 
the degree of genomic inflation for adjusting population 
substructures, we computed the λ-statistic. We also high-
lighted the observed versus expected p-values in the Q-Q 
plot using the qqman package in R. Power calculation 
was performed using the “genpwr” package in R. Accord-
ing to our calculation, our study has 80% power at the 
alpha = 2 ×  10–7 (the significant threshold of our GWAS) 
to detect effect sizes of 0.14 and 0.32 when the MAF of 
SNPs is 0.50 and 0.05, respectively. Note that power is 
the probability of avoiding a type II error or false negative 
predictions, in which we are especially interested.

Pathway analysis
We used the Pathway Scoring Algorithm (Pascal) soft-
ware developed by David Lamparter et  al. to perform 
pathway analysis using our GWAS summary statistic. In 
short, Pascal is fed with the SNP p-values derived from 
the GWAS analysis. We selected the “sum” option which 
takes the average of association signals (p-values) of all 
SNPs around ± 50 Kb of each gene. The maximum num-
ber of SNPs considered for averaging the chi-squared 
statistics of each gene was set to 3000. We set the MAF 
cut-off value to 0.01. We also used the European popula-
tion of the 1000 Genome Project phase 3 for calculating 
LD. The merge distance option was set to 1. More details 
about the Pascal methodology have been described 
elsewhere [37]. We explored the KEGG, Biocarta, and 
Reactome pathway databases, to identify the biological 
pathways that are significantly enriched with the SNP-
associated genes.

Positional mapping of coding SNPs and step 1 fine 
mapping of intergenic SNPs using an AD single‑cell gene 
program
Coding SNPs were simply annotated to their respec-
tive residing genes. For mapping intergenic SNPs, we 
employed a 2-step approach. At the step1, we first imple-
mented a simple positional mapping approach by anno-
tating intergenic SNPs to two nearest genes on the left 
and right sides of SNPs. Then, to produce a more AD-
related comprehensive list of risk genes, we used an 
AD single-cell gene program constructed by Karthik A. 
Jagadeesh et.al. [38]. They used a single-nucleolus RNA-
seq of the prefrontal cortex of 48 healthy and AD subjects 
from the ROS-MAP cohort omics project to construct 
this gene program. In summary, they computed a 

gene-level nonparametric Wilcoxon’s rank-sum statis-
tic to identify the differentially expressed genes (DEGs), 
between cells from healthy and AD tissues for each cell 
type. Then, the gene weighting in the AD gene program 
was determined by transforming the gene p-values for 
each cell type. This transformation involved converting 
the p-values to X =  − 2log(p-value), which follows a χ2 
distribution. The transformed values were then normal-
ized to a grade between 0 and 1 using the min/max nor-
malization formula g = (X – min(X))/(max(X) – min(X)). 
This process resulted in a relative weighting of genes in 
the AD gene program.

To associate our significant intergenic SNPs with 
nearby genes, we utilized the UCSC human genome build 
38 and the MAGMA software (https:// ctg. cncr. nl/ softw 
are/ magma). We annotated the SNPs to genes within 
a ± 500 Kb window. From the generated list of genes, we 
specifically selected those that overlapped with weights 
greater than 0.30 in any of the AD single-cell gene pro-
gram for each cell type. These selected genes were then 
used for the subsequent fine mapping in step 2.

Exploring SNPs with high LD at intergenic genomic risk loci
In order to identify all the SNPs in LD with our sugges-
tive and significant intergenic SNPs, we used the FUMA 
software (https:// fuma. ctglab. nl/) and NIH LDlink webt-
ool (https:// ldlink. nih. gov/? tab= ldpro xy). In FUMA, the 
SNP2GENE function was utilized to identify SNPs in LD 
with our suggestive and significant intergenic SNPs of 
interest. Additionally, the LDlink webtool was utilized 
to assess LD using the European population of the 1000 
Genome Project phase 3 as the reference genome panel. 
A threshold of r2 > 0.6 was chosen to determine high LD 
for SNPs, except for the major histocompatibility com-
plex (MHC) region on chromosome 6, where a higher 
threshold of r2 > 0.9 was adopted due to its complex LD 
structure.

Step 2 fine mapping of intergenic SNPs using an AD 
and healthy brain tissue multimodal dataset
In order to pinpoint potential risk genes more accurately, 
we sought to link our non-coding significant SNPs to their 
cell-type specific target genes using a brain tissue multi-
modal dataset. First, we downloaded a multimodal dataset 
isolated from post-mortem dorsolateral prefrontal cortex 
(DLPFC) tissues of seven AD and eight healthy controls 
from the GEO database (GSE214637). This dataset has 
simultaneously profiled the chromatin accessibility (sin-
gle-cell assay for transposase-accessible chromatin with 
sequencing, or ATAC-seq) and gene expression (single-
cell RNA-seq) from the same cells. More details about the 
samples of the original study can be found elsewhere [39]. 
We used the Seurat package to create an object containing 
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both single-cell ATAC-seq and RNA-seq sparse matrices. 
In the next step, we used a recently introduced Single-
cell Enhancer Target gene mapping (SCENT) method to 
link our significant intergenic SNPs to their target genes. 
In summary, the SCENT method applies the Poisson 
regression to model the effect of chromatin accessibility 
on gene expression in order to identify potential enhanc-

ers and silencers for each gene in a cell-type specific man-
ner. More details about the SCENT package can be found 
elsewhere [40]. Our primary hypothesis was that our sig-
nificant non-coding SNPs or their proxy SNPs might be 
located in enhancers or silencers and regulate the expres-
sion of potential risk genes. So, we first explored the 
intersection of position of our significant SNPs or their 
proxies with ATAC-seq peaks using the UCSC human 
genome build 38 version. Then at each intersected region, 
we used the SCENT package to investigate the potential 
association of that ATAC-seq peak region signals with the 
expression level of candidate genes produced in the step 1 
fine mapping. We also used log-normalized RNA counts, 
percentage of mitochondrial reads in each cell, age, and 
gender as covariates. The p-value less than 0.05 was cho-
sen as the threshold indicating significant results.

Validating differential expression of final mapped genes 
between AD and healthy controls using an independent 
single‑cell RNA‑seq dataset
We obtained a single-cell RNA-seq dataset from an inde-
pendent cohort with accession number GSE174367. The 
dataset consists of nuclei isolated from the prefrontal cor-
tex of post-mortem brain tissues, including 11 late-stage 
AD samples and seven age-matched healthy control sam-
ples. The original study by Samuel Morabito et al. [41] pro-
vides complete details on this dataset. Briefly, the MAST 
package (v1.12.0) was applied to identify DEGs between 
AD and control samples in this single-cell RNA-seq data-
set. The resulting DEG list was generated, with p-values 
adjusted using the Bonferroni correction method. Supple-
mentary data 1 of Samuel Morabito et al. [41] also provides 
the DEG list between AD and control samples. We pro-
ceeded to identify the genes that were common between 
the DEGs from Samuel Morabito et al. [41] and our final 
mapped genes obtained from the previous steps.

Validating association of the mapped genes with blood 
U‑p53 at transcription level using ADNI whole blood 
transcriptomics
To validate some of the potential genes associated with 
the concentration of U-p53 and possibly early AD, 

we performed a linear regression analysis to examine 
the relationship between the concentration of U-p53 
(dependent variable) and the expression of our candidate 
genes (independent variables), in blood. Age and gender 
were included as covariates in the analysis. The regres-
sion model can be represented as follows:

For each candidate gene, Eq.  (1) was fitted to the 
U-p53 concentration and candidate gene expression 
data obtained from the ADNI dataset. To achieve this, 
we downloaded the “Microarray_Gene_Expression_Pro-
file_Data.csv” file from the ADNI cohort which contains 
microarray transcriptome of 811 participants from the 
ADNI 1 and GO/2 phases. Briefly, the transcriptome pro-
filing of 811 participants was performed at Bristol-Myers 
Squibb (BMS) laboratory using the peripheral blood 
samples. The Affymetrix Human Genome U219 Array 
(www. affym etrix. com) was used to determine the tran-
scriptome profile. More details about the quality control 
steps and laboratory methods can be found on the ADNI 
website. When fitting Eq.  (1) to the gene expressions 
from ADNI, the Wald statistic was calculated for the β1 
as the coefficient of the candidate gene expression. The 
p-value, derived from the Wald statistic, was then used to 
assess the significance of the association, with a thresh-
old of p-value less than 0.01 considered as indicative of 
significance.

The all steps performed in our study are graphically 
depicted in Fig. 1.

Results
Quality control and genome wide association results
Merging two genotypic files of the ADNIGO/2 phase 
yielded genotypic data of 793 subjects (425 men and 
368 women) on 730,525 SNPs. Twenty participants 
were excluded due to a heterozygosity rate of more than 
three standard deviations from the mean. There was no 
discordance between the subject’s ascertained gender 
information with gender estimation based on genotypes. 
Missing genotype rates of all participants were less than 
5%. Among 773 remaining subjects, 484 were kept since 
they had both genotypic and blood U-p53 data. 79,777 
SNPs with MAF of less than 2% were excluded. 16,483 
SNPs were excluded due to a missing genotype rate of 
more than 5%. 255 SNPs with Hardy–Weinberg p-value 
less than  10–6 were also excluded. 21,167 SNPs on sex 
chromosomes were also excluded. Finally, the genotypic 
data of 612,843 SNPs among 484 participants passed all 
the quality control steps. The total genotypic rate was 

(1)
U−p53 concentration ∼ α + β1 × candidate gene expression + β2 × age + β3 × sex

http://www.affymetrix.com
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Fig. 1 Graphical depiction of all of the steps performed in the study. The figure shows the GWAS pipeline used in our study. The upper part 
of the figure shows the datasets, GWAS and pathway analyses. The middle part of the pipeline shows the steps for positional and functional 
fine-mapping of SNPs using brain single-cell RNA-seq and multimodal datasets. Lastly, the lower part of the figure shows the validated candidate 
genes in the independent single-cell RNA-seq and ADNI blood microarray transcriptome datasets
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0.9986. Among the 484 participants of our study, there 
were 190 cognitively normal (CN) subjects (121 healthy 
subjects and 69 subjects with subjective memory com-
plaints) and 363 patients with MCI (200 subjects with 
early mild cognitive impairments (EMCI) and 94 sub-
jects with late mild cognitive impairments (LMCI)). The 
mean age of our study participants was 71.78 (± 6.97). 
Finally, GWAS was performed on 484 subjects (260 male 
and 224 female). The λ-statistic indicating the degree of 
genomic inflation due to population structures was low 
in our analysis (λ = 0.99184). The Manhattan and Q-Q 
plot of blood U-p53 GWAS are shown in Fig. 2. To check 
the robustness of our GWAS results, we performed lin-
ear mixed modeling to account for genetic relatedness 
using the Genome-wide Complex Trait Analysis (GCTA) 
software [42] (https:// yangl ab. westl ake. edu. cn/ softw are/ 
gcta/# Overv iew), following the approach suggested by 
Junhao Wen et al. in their study [43]. The results obtained 
from the GCTA software align accurately with our final 
reported results obtained from the PLINK software. The 
GWAS summary statistics obtained from both software 
are provided in the Supplementary File 1.

We retained the independent SNPs by excluding 
188,013 dependent SNPs (LD R2 > 0.8 at 50  Kb win-
dow) from the total SNPs. Then, our GWAS’s signifi-
cant and suggestive thresholds were calculated based 
on the number of independent SNPs (424,830 SNPs). 
So, we chose 2 ×  10–7 (~ 0.05/424,830) and 3 ×  10–5 
(~ 200 × 0.05/424,830) as significant and suggestive 
p-value thresholds for our GWAS.

Among 612,843 SNPs, 38 were considered suggestive 
SNPs (2 ×  10–7 < p-value < 3 ×  10–5). These 38 suggestive 
SNPs were located at 27 genomic risk loci. None of the SNPs 
reached the significant threshold level (p-value < 2 ×  10–7). 
The rs279686 had the smallest p-value and nearly reached 
the significant threshold (p-value = 4.82 ×  10–7). Among 38 
suggestive SNPs, 19 were intergenic.

Pathway analysis results
The GWAS results provided genome-wide SNP p-val-
ues, which were subsequently used in Pascal package 
for gene scoring and pathway enrichment analysis. Pas-
cal aggregates SNP signals within ± 50  Kb of each gene 
and employs these per-gene aggregated signals for the 
pathway enrichment analysis. In brief, we examined the 
KEGG, Biocarta, and Reactome pathways to identify 
significant enrichments of genes associated with SNPs. 
For more information see Methods. Our pathway analy-
sis revealed six suggestive biological pathways associ-
ated with U-p53, with p-values below 0.01, as plotted 
in Fig.  3. Top biological pathway was REACTOME_
NFKB_ACTIVATION_THROUGH_FADD_RIP1_
PATHWAY_MEDIATED_BY_CASPASE_8_AND10 

(p-value = 7.16 ×  10–4). The other 5 suggestive pathways 
were REACTOME_NCAM_SIGNALING_FOR_NEURITE _  
OUT _GROWTH (p-value = 4.32 ×  10–3), BIOCARTA_IL17_
PATHWAY (p-value = 5.47 ×  10–3), REACTOME_NCAM1_ 
INTERACTIONS (p-value = 6.85 ×  10–3), BIOCARTA_
PTEN_ PATHWAY (p-value = 7.27 ×  10–3), and REACTOME_
AXON_GUIDANCE (p-value = 9.46 ×  10–3).

Positional mapping of coding SNPs and step 1 fine 
mapping results
First positional mapping of coding SNPs was performed 
based on the human genome hg38 version, which resulted 
in mapping 15 genes. In the next step, positional mapping 
and functional gene mapping of intergenic SNPs using the 
AD single-cell gene program yielded 36 genes in various 
brain cell types. The results of all suggestive SNPs and 
their step 1 mapped genes are summarized in Table 1.

Step 2 fine mapping results
None of our suggestive intergenic SNPs were located in 
ATAC peaks, but using LD information at the suggestive 
intergenic loci, we could identify seven loci out of 14 sug-
gestive loci that contain at least one SNP that is both in LD 
with the suggestive SNPs (r2 > 0.6) and is located in ATAC 
peaks of the multimodal dataset used in our analysis. At 
each seven loci, we investigated the association of each 
identified ATAC peak with the expression level of the can-
didate genes obtained from step 1 fine mapping, at each 
eight brain cell types using the SCENT method. At five 
loci out of the seven, we could map the suggestive non-
coding SNPs to their putative target risk genes in five brain 
cell types. The fine-mapped genes and their target cell-
type resulted from this step were: EPC2 (p-value = 0.01 in 
Microglial cells and 3.62 ×  10–6 in Oligodendrocyte progen-
itor cells (OPCs)), KIF5C (p-value = 8.94 ×  10–3 in OPCs), 
TMEFF2 (p-value = 1.33 ×  10–11 in excitatory neurons), 
ARID1B (p-value = 0.002 in excitatory neurons), HLA-E 
(p-value = 0.03 in Microglial cells), ATAT1 (p-value = 0.01 
in excitatory neurons), TRIM26 (p-value = 0.02 in excita-
tory neurons), TUBB (p-value = 0.001 in OPCs, 0.01 in 
Astrocytes, and 0.02 in inhibitory neurons), and RUNX1 
(p-value = 0.002 and 0.03 in Microglial cells). At loci 7 
and 16, expression of no candidate genes was significantly 
associated with the ATAC peak signal of that region. The 
results of the significant genes with their related cell types 
are summarized in Table 2.

Validating differential expression of final mapped genes 
between AD and healthy controls in an independent 
single‑cell RNA‑seq dataset results
There were 15 genes common between our final 23 
mapped genes and the DEG list obtained from the Mora-
bito et  al. [41] dataset. These 15 genes included: ALK, 

https://yanglab.westlake.edu.cn/software/gcta/#Overview
https://yanglab.westlake.edu.cn/software/gcta/#Overview
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KIF5C, TMEFF2, CLSTN2, GABBR1, HLA-E, ATAT1, 
TUBB, ARID1B, GNA14, SORCS1, TMEM63C, PIEZO2, 
RUNX1, and MRTFA.

Validating association of the mapped genes with blood 
U‑p53 at the transcription level in ADNI whole blood 
transcriptome dataset results
By merging ADNI whole blood microarray transcriptome 

Fig. 2 Manhattan and Q-Q plot of the blood U-p53 GWAS. A Manhattan plot of the blood U-p53 GWAS. Only six suggestive loci with strong 
evidence of involvement in AD pathogenesis in our analyses are shown. B Q-Q plot of the blood U-p53 GWAS results showing low genomic 
inflation due to the population substructures (λ = 0.99184)
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dataset with the U-p53 data, 322 subjects had both blood 
transcriptome and the blood U-p53 data. All probes of 
the 15 genes associated with blood U-p53 obtained from 
previous mapping steps were derived from ADNI whole 
blood transcriptome microarray dataset to investigate 
their possible association of expression level with blood 
U-p53. Among these genes, five genes were replicated at 
the blood transcript level. These 5 genes were SORCS1 
(p-value = 2.89 ×  10–5), HLA-E (p-value = 4.37 ×  10–4), 
ATAT1 (p-value = 2.20 ×  10–3), KIF5C (p-value = 2.38 ×  10–3), 
and TMEM63C (p-value = 9.93 ×  10–3).

Discussion
To our knowledge, this is the first GWAS on blood U-p53 
as one of AD’s novel, specific and sensitive biomarkers. 
Using a single-cell multimodal and two single-cell RNA-
seq datasets for fine mapping of risk SNPs, we prior-
itized KIF5C, EPC2, TMEFF2, HLA-E, ATAT1, TUBB, 
ARID1B, and RUNX1 as potential risk genes with strong 
evidence of involvement in the early stages of AD. We 
also suggested the SORCS1 gene as the other important 
gene involved in AD, with robust evidence at genotypic 
and blood transcript levels. Aβ processing (SORCS1 and 
TMEFF2) and axonal transportation (KIF5C, TUBB, 
ATAT1) were two potential common biological pathways 
among the identified genes. A graphical illustration of 
results of multiple analyses sources across three loci are 
shown in Fig. 4.

We identified six suggestive biological pathways asso-
ciated with blood U-p53 and possibly involved in AD. 
Two of them (NFKB activation through FADD and 
RIP1 pathway mediated by CASPASE 8 and 10 and IL17 
pathway) highlight the importance of immune system 
involvement in AD. Indeed, the NFKB is an inflammatory 

transcription factor that has important roles in AD 
pathogenesis [44]. Interestingly, another two suggestive 
pathways were related to the nervous system (NCAM 
signaling for neurite outgrowth and Axon guidance). We 
identified three SNPs at locus 18, residing in the SORCS1 
gene. Additionally, there was a strong and inverse asso-
ciation between the SORCS1 gene blood expression and 
blood U-p53 (p-value = 2.89 ×  10–5). SORCS1 belongs to 
the Sortilin family of vacuolar protein sorting-10 (Vps10) 
domain-containing proteins. The SORL1 gene, one of 
the other genes of this family, is one of the most famous 
and replicated loci in multiple AD GWASs to date [45]. 
Wei Xu et al. suggested that rs10884402 and rs950809 in 
intron 1 of the SORCS1 gene were associated with late-
onset AD in the Chinese Han population [46]. It has 
been shown that the SORCS1 gene alters the Amyloid 
beta precursor protein (APP) processing [47]. It also has 
been shown that overexpression of the SORCS1 gene in 
cultured cells lowers Aβ generation [48]. Recently, Alfred 
Kihoon Lee et al. proposed an important role for SORCS1 
in rescuing Aβ oligomers-induced Neurexin dysfunction 
and synaptic pathology [49].

The rs4853647 SNP at locus four was significantly asso-
ciated with blood U-p53 in our study. This SNP resides 
between CAVIN2 and TMEFF2 genes. By using enhancer-
to-gene linking strategy, it was revealed that this region 
was strongly associated with the TMEFF2 gene expression 
in excitatory neurons (p-value = 1.33 ×  10–11). TMEFF2 
(Transmembrane Protein With EGF Like And Two Follista-
tin Like Domains 2) gene belongs to the tomoregulin fam-
ily of transmembrane proteins. Based on the Protein atlas 
database, it is highly expressed in brain and prostate tissues. 
Although, to date, this locus has never been reported to be 
associated with AD in previous GWASs, Hyun-Seok Hong 

Fig. 3 Bar plot for the − log10 of the p-value of selected pathways that are enriched with SNP-associated genes. A − log10(p-value) greater than 2 
corresponds to pathways that are significantly enriched, with corresponding p-values less than 0.01, as determined using the Pascal package
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et al., for the first time, showed that the TMEFF2 protein 
is related to Aβ metabolism and toxicity and could pro-
tect neurons from Aβ-induced toxicity [50]. This example 
highlights the power of an endophenotype-based GWAS in 
identifying novel loci previously reported to be related to 
the disease mechanisms in experimental studies.

At locus 3, there were three suggestive intergenic 
SNPs between the MBD5 and EPC2 genes. Interestingly, 
in a 2011 GWAS on AD CSF biomarkers among ADNI 
cohort subjects, the rs4499362 SNP between EPC2 and 
KIF5C genes at this locus was associated with CSF total 
tau protein [51]. The authors proposed the EPC2 gene 

Table 1 Blood U-p53 GWAS summary statistics of suggestive SNPs and their potential candidate genes

Locus number SNP Ref. allele Alt. allele Chr Frequency p‑value Position Candidate genes 
based on position 
(Intragenic SNPs)

Candidate 
genes based on 
AD single‑cell 
gene program 
(intergenic SNPs)

1 rs6673974 A G 1 0.04 2.47 ×  10–5 EGLN1-TSNAX - EGLN1

1 rs7519365 A G 1 0.04 1.075 ×  10–6 TSNAX TSNAX -

1 rs11122309 T C 1 0.04 8.031 ×  10–6 TSNAX-DISC1 - EGLN1

2 rs10171094 C T 2 0.03 5.365 ×  10–6 ALK ALK -

3 rs3936439 A G 2 0.33 7.373 ×  10–6 MBD5-EPC2 - EPC2, KIF5C, MBD5

3 rs16828910 T G 2 0.32 5.48 ×  10–6 MBD5-EPC2 - EPC2, KIF5C, MBD5

3 rs921243 T G 2 0.33 2.481 ×  10–6 MBD5-EPC2 - EPC2, KIF5C, MBD5

4 rs4853647 G A 2 0.09 2.317 ×  10–6 CAVIN2-TMEFF2 - TMEFF2

5 rs4462908 C T 3 0.05 7.825 ×  10–6 CLSTN2 CLSTN2 -

6 rs4624543 G A 3 0.42 1.69 ×  10–5 KCNMB2 KCNMB2 -

6 rs9844737 G A 3 0.42 1.69 ×  10–5 KCNMB2 KCNMB2 -

7 rs1482699 T C 4 0.06 8.079 ×  10–6 IGFBP7-ADGRL3 - ADGRL3

8 rs10520544 C A 4 0.04 1.674 ×  10–6 DCTD-WWC2 - TENM3

9 rs9405684 T C 6 0.13 1.94 ×  10–5 FAM50B-PRPF4B - -

10 rs3025642 C T 6 0.05 2.05 ×  10–5 GABBR1 GABBR1 -

11 rs9393999 A G 6 0.14 2.97 ×  10–5 TRIM26-TRIM39 - -

11 rs12174823 T C 6 0.12 4.958 ×  10–6 TRIM26-TRIM39 - -

11 rs2240058 A G 6 0.12 4.653 ×  10–6 TRIM39 TRIM39 -

12 rs2444783 A G 6 0.14 2.89 ×  10–5 NOX3-ARID1B - ARID1B

12 rs2250759 C T 6 0.13 2.77 ×  10–5 NOX3-ARID1B - ARID1B

13 rs2159808 C A 7 0.30 8.384 ×  10–6 DGKB-AGMO - DGKB

14 rs279686 A G 7 0.27 4.82 ×  10–7 AASS-FEZF1 - PTPRZ1

15 rs4732990 C T 8 0.15 2.44 ×  10–5 DUSP4-SARAF - SARAF

16 rs1158989 A G 9 0.27 2.88 ×  10–5 SMARCA2-VLDLR - SMARCA2, VLDLR, 
KCNV2

17 rs7860549 A G 9 0.07 2.80 ×  10–5 GNA14 GNA14 -

18 rs7071222 A G 10 0.11 1.32 ×  10–5 SORCS1 SORCS1 -

18 rs2245123 T C 10 0.09 1.02 ×  10–5 SORCS1 SORCS1 -

18 rs17121635 A G 10 0.10 3.307 ×  10–6 SORCS1 SORCS1 -

19 rs17184650 C T 14 0.11 1.02 ×  10–5 TMEM229B TMEM229B -

20 rs1508299 T G 14 0.02 1.33 ×  10–5 TMEM63C TMEM63C -

21 rs7166440 T C 15 0.04 2.54 ×  10–5 SLC28A1 SLC28A1 -

22 rs12444974 G A 16 0.07 1.44 × 10–5 GCSH GCSH -

23 rs196956 A G 18 0.25 2.65 × 10–5 PIEZO2 PIEZO2 -

24 rs8109900 C T 19 0.21 2.89 × 10–5 ZNF816-ZNF321P ZNF816-ZNF321P -

25 rs2835119 A G 21 0.02 9.048 × 10–6 RUNX1-SETD4 - RUNX1, SETD4, CBR1

26 rs3787909 G A 21 0.03 2.51 ×  10–5 ERG-ETS2 - ETS2

27 rs6001930 T C 22 0.09 2.11 ×  10–5 MRTFA MRTFA -

27 rs6001931 G A 22 0.09 2.11 ×  10–5 MRTFA MRTFA -
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as a novel gene involved in AD pathogenesis. This locus 
contains three genes (MBD5, EPC2, KIF5C), all highly 
expressed in the brain, making fine-mapping of this locus 
more challenging. Using the enhancer-to-gene linking 
approach, we could map the suggestive region to KIF5C 
and EPC2 genes in OPC and EPC2 gene in microglial 
cells. However, unlike the KIF5C gene, the EPC2 gene 
was not differentially expressed between AD and healthy 
controls in an independent RNA-seq dataset. Addi-
tionally, our analysis revealed that there was a signifi-
cant direct association between blood expression of the 
KIF5C gene and blood U-p53. So, these two genes may 
be involved in AD pathogenesis in a cell-specific man-
ner. Although the exact function of the EPC2 (enhancer 
of polycomb homolog 2) gene has not been fully char-
acterized, it may relate to AD pathogenesis through the 
regulation of epigenetic mechanisms and chromatin 
remodeling [51]. The KIF5C (Kinesin Family Member 
5C) is required for anterograde axonal transportation. 
Axonal transportation defects play important roles in AD 
pathophysiology [52].

We identified three SNPs along with many SNPs which 
had subthreshold p-values at locus 11. We could fine-map 

this region to 4 genes across various brain cell types; 3 
(HLA-E, ATAT1, TUBB) were differentially expressed 
between AD and healthy cells. Interestingly, ATAT1 and 
TUBB are involved in axonal transportation. HLA-E is 
involved in immune pathways. Interestingly, the blood 
expression of both ATAT1 and HLA-E genes were also 
significantly associated with blood U-p53. This example 
highlights the challenges of fine mapping of GWAS SNPs 
and complexity of potential shared enhancers regulat-
ing multiple genes in different cell types in some of the 
risk loci identified in GWASs. Future studies based on 
CRISPR technology may unravel this complexity and pin-
point the true causal genes.

At locus 12, we identified two SNPs between NOX3 and 
ARID1B genes. In a study in 2014, V K Ramanan et  al. 
showed that the rs938448 SNP at this locus was associ-
ated with amyloid deposition in the brain [53]. Although 
at first glance, the NOX3 gene seems to be the potential 
causal gene due to its involvement in oxidative agents’ 
production, our single-cell enhancer-to-gene linking 
analysis revealed that the region is significantly associ-
ated with the expression of the ARID1B gene in excitatory 
neurons. ARID1B (AT-Rich Interaction Domain 1B) gene 

Table 2 SCENT package Summary statistics of blood U-p53 candidate genes at intergenic risk loci

Locus num Significant Genes Suggestive SNPs Proxy SNPs LD  R2 ATAC peak region SCENT
p‑value

Brain cell types

3 EPC2 rs3936439 rs11687034 0.77 Chr2:148,614,153–148,614,910 3.62 ×  10–6 OPC

3 EPC2 rs3936439 rs11687034 0.77 Chr2:148,614,153–148,614,910 0.01 Microglia

3 KIF5C rs3936439 rs11687034 0.77 Chr2:148,614,153–148,614,910 8.94 ×  10–3 OPC

4 TMEFF2 rs4853647 rs72912394, rs72912395 0.68 Chr2:191,864,620–191865537 1.33 ×  10–11 Excitatory

11 HLA-E rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.03 Microglia

11 ATAT1 rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.01 Excitatory

11 TUBB rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.02 Inhibitory

11 TUBB rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.01 Astrocyte

11 TUBB rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.001 OPC

11 TRIM26 rs12174823 rs9391807, rs9391806 0.91 Chr6:30,259,185–30260006 0.02 Excitatory

12 ARID1B rs2250759 rs2603438 0.87 Chr6:157,507,177–156507907 0.002 Excitatory

25 RUNX1 rs2835119 rs73365738 0.96 Chr21:35,720,219–35721068 0.002 Microglia

25 RUNX1 rs2835119 rs12481979 0.81 Chr21:35,696,977–35,697,804 0.03 Microglia

(See figure on next page.)
Fig. 4 Graphical illustration of GWAS results at multiple levels across three loci with strong evidence of their involvement in AD pathogenesis. 
A The locus number 4 between CAVIN2 and TMEFF2 genes showing two SNPs (rs72912394, rs72912395) with LD r2 = 0.68 with the suggestive 
SNP (rs4853647) located within ATAC peak regions across endothelial, excitatory neuron, and pericyte cells. Our analysis revealed that this 
regulatory intergenic region is a potential silencer of the TMEFF2 gene in excitatory neuron cells. B The locus number 18 shows the suggestive SNP 
(rs17121635) within the SORCS1 gene. The left bottom picture shows the risk effect of the alternative allele G of this polymorphism by increasing 
the U-p53 concentration in blood. The right bottom picture shows the significant inverse association between the blood SORCS1 gene expression 
and the blood U-p53. C The locus number 25 showing two SNPs (rs73365738, rs12481979) with LD r2 = 0.96 and LD r2 = 0.81 with the suggestive 
SNP (rs2835119) located within two distinct ATAC peak regions in the microglia cells. Our analysis revealed that both intergenic regions regulate 
the expression of the RUNX1 gene in microglia cells
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Fig. 4 (See legend on previous page.)
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is a subunit of the mammalian SWI/SNF complex. It has 
an important role in chromatin remodeling. Although the 
exact mechanisms of this gene in AD pathogenesis are 
unclear, ARID1B mutations have been reported as mono-
genic causes of autism spectrum disorder (ASD) and 
intellectual disabilities. It has been shown that ARID1B 
haploinsufficiency can impair inhibitory synaptic func-
tion and increase excitation to inhibition (E/I) balance in 
the brain [54]. This example highlights the challenges of 
finding target genes of intergenic SNPs based solely on 
potential disease-related biological mechanisms.

At locus 25, the rs2835119 SNP, located between 
RUNX1 and SETD4 gene, was associated with blood 
U-p53. Analyzing two different open chromatin regions 
harboring two SNPs with high LD with the rs2835119 
revealed that both regions were potential enhancers and 
silencers of the RUNX1 gene in microglial cells. Ashok 
Patel et  al. showed that variants (rs4816501) in RUNX1 
were associated with AD among patients with Down syn-
drome [55]. The RUNX1 (RUNX Family Transcription 
Factor 1) gene encodes a transcription factor regulat-
ing the expression of numerous genes involved in nor-
mal hematopoiesis. It has been shown that RUNX1 is 
involved in the regulation of TLR1/2 and TLR4 signaling 
pathways and inflammatory cytokine production [56]. 
The relevance of this gene in AD pathogenesis may be 
through immune system pathways. Future experimental 
studies are needed to uncover this.

Among intragenic SNPs that their relevant genes were dif-
ferentially expressed between AD and healthy cells, prod-
ucts of some genes like GABBR1 and CLSTN2 are located 
in synapses. Among the other genes, it has been shown 
that overexpression of the MRTFA gene reduces the accu-
mulation of Aβ peptide [57]. Heterozygous deletion of the 
other gene, GNA14, has been reported in an early-onset AD 
patient [58]. By studying the 3xTg-AD and tauC3 mouse AD 
models, Jisu Park et al. proposed that the ALK gene has a 
crucial role in tau-mediated neurodegeneration [59].

At the proteomics level, we investigated whether there 
are significant differences in the protein levels of our pro-
posed genes between the brain tissues of AD patients and 
control subjects. To achieve this, we utilized the Neuro-
Pro database (https:// neuro pro. biome dical. hosti ng/) [60], 
which has compiled a comprehensive list of differentially 
expressed proteins by conducting a meta-analysis of 38 
brain proteomic studies across different stages of AD. 
Among the 15 proposed genes in our final list, protein 
levels of six genes were differentially expressed between 
brain tissues of AD and control subjects. Interestingly, the 
protein levels of TMEFF2 and TMEM63C were upregu-
lated in the frontal cortex of patients with preclinical 
stages of AD compared to the controls [61]. This suggests 
that TMEFF2 and TMEM63C may serve as novel target 

genes for early-stage intervention and should be further 
investigated in future studies, as they have received less 
attention in the context of AD. The other four proteins, 
including the SORCS1, CLSTN2, TUBB, and GABBR1, 
were differentially expressed between patients with AD 
and healthy controls.

Although using a quantitative phenotype in our GWAS 
increased the power of our study, due to their high cost 
and laboratory challenges, GWASs on endophenotypes 
always suffer from relatively small sample sizes compared 
to traditional GWASs [45]. Future studies are needed 
to increase the sample sizes for various AD biomarkers, 
such as U-p53. However, our study highlights the power 
of leveraging two approaches in AD GWASs: First, it 
showed using a powerful early-stage biomarker of AD as 
an endophenotype in AD GWASs can lead to identifying 
novel loci and genes involved in the early stages of AD. 
Second, it showed that integration of GWAS results with 
single-cell datasets and leveraging powerful enhancer-to-
gene linking strategies can pinpoint the true causal genes 
in a cell-specific manner.

Conclusions
In conclusion, through the integration of GWAS results 
on U-p53 as a reliable early-stage AD biomarker with 
brain single-cell RNA-seq and multimodal datasets, we 
have identified several significant genes associated with 
blood U-p53 and potentially with AD, particularly among 
non-demented subjects. These genes include SORCS1, 
TMEFF2, TMEM63C, KIF5C, HLA-E, TUBB1, ATAT1, 
ARID1B, and RUNX1. We believe that these proposed 
candidate genes hold substantial value for further explora-
tion in future experimental studies, both in terms of their 
functional and structural aspects, due to their potential 
roles in the early stages of AD. For instance, genes like 
TMEFF2 and TMEM63C have received comparatively 
less attention in the context of AD, but there are some evi-
dences indicating that their protein expression levels are 
altered in the preclinical stages of the disease. This high-
lights the importance of investigating these genes further. 
Furthermore, our results could provide valuable insights 
for the design of future drug targets.

Given the limited availability of cohorts where blood 
U-p53 has been measured, conducting GWASs on this 
biomarker across additional cohorts in the future would 
be feasible and could offer novel insights into the patho-
genesis of AD. Using continuous endophenotypes like 
U-p53 in neurodegenerative diseases produces various 
benefits compared to traditional binary trait GWASs, 
such as increasing the statistical power of GWASs, reduc-
ing the disease heterogeneity which is often observed in 
complex diseases, and providing specific biological con-
text for the associated genes [62].

https://neuropro.biomedical.hosting/
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