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Abstract

Background: We have identified a differential gene expression profile in neural crest stem cells
that is due to deletion of the norepinephrine transporter (NET) gene. NET is the target of
psychotropic substances, such as tricyclic antidepressants and the drug of abuse, cocaine. NET
mutations have been implicated in depression, anxiety, orthostatic intolerance and attention deficit
hyperactivity disorder (ADHD). NET function in adult noradrenergic neurons of the peripheral and
central nervous systems is to internalize norepinephrine from the synaptic cleft. By contrast, during
embryogenesis norepinephrine (NE) transport promotes differentiation of neural crest stem cells
and locus ceruleus progenitors into noradrenergic neurons, whereas NET inhibitors block
noradrenergic differentiation. While the structure of NET und the regulation of NET function are
well described, little is known about downstream target genes of norepinephrine (NE) transport.

Results: We have prepared gene expression profiles of in vitro differentiating wild type and
norepinephrine transporter-deficient (NETKO) mouse neural crest cells using long serial analysis
of gene expression (LongSAGE). Comparison analyses have identified a number of important
differentially expressed genes, including genes relevant to neural crest formation, noradrenergic
neuron differentiation and the phenotype of NETKO mice. Examples of differentially expressed
genes that affect noradrenergic cell differentiation include genes in the bone morphogenetic
protein (BMP) signaling pathway, the Phox2b binding partner Tix2, the ubiquitin ligase Prgja2, and
the inhibitor of Notch signaling, Numbl. Differentially expressed genes that are likely to contribute
to the NETKO phenotype include dopamine-f3-hydroxylase (Dbh), tyrosine hydroxylase (Th), the
peptide transmitter 'cocaine and amphetamine regulated transcript' (Cart), and the serotonin
receptor subunit Htr3a. Real-time PCR confirmed differential expression of key genes not only in
neural crest cells, but also in the adult superior cervical ganglion and locus ceruleus. In addition to
known genes we have identified novel differentially expressed genes and thus provide a valuable
database for future studies.

Conclusion: Loss of NET function during embryonic development in the mouse deregulates
signaling pathways that are critically involved in neural crest formation and noradrenergic cell
differentiation. The data further suggest deregulation of signaling pathways in the development and/
or function of the NET-deficient peripheral, central and enteric nervous systems.
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Background

The NET is a Na* and Cl- dependent transporter, which is
expressed by noradrenergic neurons. NET function in adult
noradrenergic neurons is the clearing of secreted NE from the
synaptic cleft via selective high-affinity uptake [1,2]. Drugs
that block NE transport, such as the tricyclic antidepressant
desipramine and the drug of abuse, cocaine, inhibit NE trans-
port [1,2] and differentiation of cultured neural crest cells into
noradrenergic neuroblasts [3,4]. NETKO mice have reduced
body temperature (~1°C) and reduced body weight (~20%),
they are supersensitive to psychostimulants, such as cocaine
and amphetamine, they have reduced intracellular NE,
increased NE synthesis and elevated extracellular NE [5]. In
humans, abnormal NET function leads to orthostatic intoler-
ance and is involved in depression, anxiety, attention deficit
hyperactivity disorder (ADHD), and autonomic dysfunction
[6-8]. NET may have additional functions during noradrener-
gic cell differentiation, as NET protein is expressed in a variety
of different tissues in avian and mouse embryos [9]. NET
expression in mouse embryonic neural crest cells is regulated
by the autocrine growth factors, neurotrophin-3 (NT-3),
fibroblast growth factor-2 (FGF-2) and transforming growth
factor-B1 (TGF-B1; ref. [10]). The role of NET and the regula-
tion of its function in noradrenergic homeostasis and NE sig-
naling are well established. NET function is regulated by
extracellular and intracellular signaling pathways that involve
several associated proteins, including the SNARE protein syn-
taxin 1A, protein phosphatase 2A (PP2A) catalytic subunit
(PP2A-C), PICK]1, Hic-5, and PP2A anchoring subunit (PP2A-
Ar) [11-13]. Little is known, however, on how absence of the
NET gene affects differentiation of neural crest stem cells into
noradrenergic cells.

Here we report results obtained with LongSAGE gene
expression profiling and analyses on differentiating
noradrenergic neurons/progenitors from the embryonic
neural crest, the adult superior cervical ganglion and the
locus ceruleus. SAGE has been developed by Velculescu et
al [14] as a tool to quantify the transcriptome. It is based on
the isolation and sequencing of unique sequences (tags)
from defined positions at the 3' end of each mRNA mole-
cule. SAGE has the advantage of high-efficient gene identi-
fication, which allows for unbiased and comprehensive
analysis of a large number of differentially expressed genes
without prior knowledge of the genes. The principle of
LongSAGE is the same as in the original approach, except
that it uses another type IIS restriction enzyme, Mmel, to
generate 17 bp tags, rather than the 10 bp tags in conven-
tional SAGE [15]. Thus LongSAGE allows for annotation of
a larger portion of tags than SAGE.

Results and discussion

Time course of mouse NET gene expression and function
during wild type neural crest cell differentiation in vitro
To determine the optimal stage of in vitro development
for RNA collection, we performed a time-course of NET
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expression and function in wild type mouse neural crest
cell cultures. Both, NET mRNA (Fig. 1A, B) and high affin-
ity 3H-norepinephrine uptake-positive cells (Fig. 1C) were
first detected on culture day 5 in a subset of neural crest
cells. At culture day 5, uptake-positive cells lacked proc-
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Time course of expression of NET mRNA and NET
function in cultured mouse neural crest cells. (A)
Semi-quantitative RT-PCR of NET mRNA on culture days 4 —
8 (upper) and Hprt (lower) at 28, 30 and 32 cycles each.
Based on these results NET was subsequently amplified at 30
cycles. (B) Ratio Net/Hprt in triplicate during culture days 4 —
9 at 30 cycles of amplification. Data are expressed as average
of three samples; error bars represent standard deviation.
(C) Morphology of 3H-NE uptake-positive cells at day 3 of
culture resembles immature neural crest cells. (D) At day 7
of culture, many 3H-NE uptake-positive cells have the mor-
phology of mature sympathetic neuroblasts (arrow); NET
uptake positive cells with undifferentiated morphology were
still present (arrowhead). These observations indicated that
at day 7, culture contain NE uptake-positive progenitors as
well as neuroblasts with a functional NET. They are multipo-
lar and extend long processes. Bar, (C, D) 100 um.
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esses and showed the morphology of undifferentiated
neural crest cells (Fig. 1C). By culture day 7, many 3H-NE
uptake-positive cells were multipolar with long processes
and they tended to form aggregates (Fig. 1D arrow),
whereas others showed a functional NET but had undif-
ferentiated morphology as determined by the absence of
processes (Fig 1D, arrowhead). Expression of catecho-
lamine biosynthetic enzymes in mouse neural crest cell
cultures starts around culture day 5 and newly catecho-
lamine-positive cells continue to appear in progressively
larger numbers, as stem cells persist for several more
weeks in culture, self-renew and their progeny continue to
differentiate. Thus day 7 cultures capture all stages of in
vitro development. They contain neural crest stem cells,
undefined NET-negative progenitor cells, cells with NET
function and immature morphology, as well as cells with
NET function and neuronal morphology as judged by the
elaboration of long processes (Fig. 1D). For this reason
day 7 cultures were chosen as a source of RNA for gene
expression profiling. For the purpose of the present study
we use expression of catecholamine biosynthetic enzymes
and elaboration of processes as measures for neuronal dif-
ferentiation. Among cells with morphology of differenti-
ated cells, 3H-NE uptake-positive cells with neuronal
morphology were observed only, indicating that in these
cultures functional NET was limited to differentiating
neuroblasts/neuronal progenitors. This notion is sup-
ported by the complete absence in the longSAGE libraries
of differentially expressed genes that are characteristic for
non-neuronal neural crest derivatives, such as smooth
muscle cells, bone/cartilage cells or pigment cells.

Summary of LongSAGE libraries and LongSAGE tag-to-
gene mapping

We collected at total of 25,958 long-tags from NETKO
neural crest RNA (Table 1). The library has been deposited
in Gene Expression Omnibus (GEO) at http://
www.ncbi.nlm.nih.gov/projects/geo/ under GEO acces-
sion number GSE11788. The wild type library has been
deposited previously and has been included by NCBI in
the present series.

The wild type library consisted of 16,054 unique long-
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LongSAGE tags (Table 1). These unique tags were matched
to the LongSAGE  database  (NCBIL  ftp://
ftp.ncbi.nlm.nih.gov/pub/sage/mappings/) for gene iden-
tification. Only 167 (1.1%) LongSAGE tags in the wild
type library and 125 (1.00%) LongSAGE tags in the
NETKO library were present in more than 20 copies
(Table 1). Ninety-five percent of LongSAGE tags in the
wild type library and 95.4% LongSAGE tags in the NETKO
library were represented by 5 or fewer copies (Table 1).
This distribution is consistent with that observed in other
cell types with conventional SAGE [16,17].

Of the unique LongSAGE tags, 10,536 (65.6%) tags in the
wild type library and 8,657 (68.6%) tags in the NETKO
library could be matched to known expressed sequences.
5,518 (34.4%) tags in the wild type library and 3,961
(31.4%) tags in the NETKO library were tags without
matches to known sequences. They could represent novel
genes or sequencing errors. Of the matched LongSAGE
tags, 8,652 (82.1%) LongSAGE tags in the wild type
library and 7,622 (88%) LongSAGE tags in the NETKO
library were single-matched tags. Sequences that matched
to more than one sequence located in different Unigene
clusters, 1,884 (17.9%) LongSAGE tags in the wild type
library and 1,035 (12%) in the NETKO library, were
excluded from analysis.

Quality and equality of the wild type and NETKO
LongSAGE libraries

Several lines of evidence show the quality and equality of
the two LongSAGE libraries. First, the tag distribution
between the two libraries and the LongSAGE tag-to-gene
mapping in both libraries were similar (Table 1). Second,
as expected, most genes expressed by in vitro differentiat-
ing neural crest cells in day 7 cultures were unchanged
because of the deletion of the NET gene (Table 1). As an
additional quality control, we have analyzed the top 100
tags of both libraries (Additional files 1 and 2; top 50 tags
shown). These tags accounted for 18.28% in the wild type
library and 18.56% in the NETKO library. Eighty-five of
the top 100 tags, and 42 of the top 50 tags, were common
to both libraries (Additional files 1 and 2). Third, the
expression of common house keeping genes, such as beta-

tags, whereas the NETKO library contained 12,618 unique  actin, glyceraldehyde-3-phosphate ~ dehydrogenase
Table I: LongSAGE Tags distribution in WT and NETKO neural crest cell LongSAGE libraries.
WT NETKO
Unique Tags Total Tags Unique Tags Total Tags
Total 16,054 34,404 12,618 25,958
Count | 11,993 (74.7%) 11,993 (34.9%) 9,494 (75.2%) 9,494 (36.6%)
Count 2-5 3,262 (20.3%) 8,772 (25.5%) 2,550 (20.2%) 6,916 (26.6%)
Count 6-19 632 (3.9%) 5,786 (16.8%) 449 (3.6%) 4,208 (16.2%)
Count > 20 167 (1.1%) 7,853 (22.8%) 125 (1.0%) 5,340 (20.6%)
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(GAPDH), hypoxanthine guanine phosphoribosyl trans-
ferase (HPRT), ribosomal protein L13, beta-2 microglob-
ulin, and ubiquitin C were expressed at similar levels in
both libraries (p > 0.1; Table 2).

Comparative analysis according to stringent criteria (> 1.5
fold difference and p < 0.05) identified 180 differentially
expressed genes; 113 sequences were up-regulated in
NETKO neural crest cells and 67 sequences were down-
regulated (Additional files 3 and 4). Taken together, we
provide a high quality NETKO LongSAGE gene expression
library of medium size. By comparing it to an equivalent
wild type library according to stringent criteria, we have
identified a number of differentially expressed genes.

Differential expression of noradrenergic biosynthetic
enzymes

Deletion of the NET gene affects expression of noradren-
ergic biosynthetic enzymes [5] and NET function has been
implicated in noradrenergic cell differentiation [3,4]. We
validated by real-time PCR the differential expression of
genes relevant to catecholamine metabolism in embry-
onic neural crest cells and in the adult locus ceruleus and
superior cervical ganglion (Table 3). Dopamine-f-hydrox-
ylase (Dbh) and tyrosine hydroxylase (Th), were signifi-
cantly up-regulated in NETKO tissue in all three locations
(Table 3), confirming equivalent data by Xu et al. [5].
Monoamine oxidase-A (MAO-A) was down regulated in
all three tissues, whereas catechol O-methyltransferase
(COMT) was not significantly affected (Table 3).

The morphology and percentage of NETKO and wild type
in vitro differentiating noradrenergic neural crest-derived
cells differed (Fig. 2). In wild type neural crest cultures,
many cells were DBH-immunoreactive and showed long
processes (Fig. 2B), whereas DBH-immunoreactive
NETKO cells had no processes or short extensions only
(Fig. 2A). Furthermore, NETKO neural crest cultures con-
tained only about half the number of DBH-immunoreac-
tive cells per area compared to wild type cultures (Fig. 2C).
The reduced numbers of in vitro differentiating NETKO
neural crest-derived noradrenergic cells is in agreement
with our earlier observations that NE uptake by the NET
promoted noradrenergic differentiation, whereas NET
blockers were inhibitory [3,4]. Taken together the data

Table 2: Abundance of house keeping genes in both libraries.
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suggest that fewer neural crest cells differentiated into
noradrenergic cells in the absence of NET, but that the
cells that did become noradrenergic expressed higher tran-
script levels of biosynthetic enzymes that lead to the pro-
duction of norepinephrine.

Differential expression of Cart, Htr3a and Tix2

Cocaine and amphetamine regulated transcript (Cart; cur-
rently Cartpt, Mm.75498), the serotonin receptor subunit,
Htr3a (Mm.4831) and the T-cell leukemia homeobox 2
(TIx2; Mm.37) were significantly more abundant in the
NETKO LongSAGE library compared to the wild type
library (Tables 3 and Additional file 3). Altered expression
of all three genes may contribute to the NETKO pheno-

type.

One aspect of the NETKO phenotype is hyper-responsive-
ness to psychostimulants, such as cocaine or ampheta-
mine [5]. CART is a putative neurotransmitter, or co-
transmitter, in the brain, in the adrenal gland and in neu-
ral crest-derived enteric ganglia [18-20]. Cart expression is
up-regulated in response to acute administration of psy-
chostimulants [21]. CART peptide co-localizes with
noradrenergic neurons in the locus ceruleus, in noradren-
ergic C1 neurons and in the nodose ganglion [19-22]. The
CART peptide modulates the activity of the striatal
noradrenergic and the corticostriatal and hypothalamic
serotonergic systems in the rat brain and it is involved in
feeding, emotional and locomotor behavior [21]. It can
produce anxiety-like effects in rodents [23]. We confirmed
differential expression and co-localization of Cart by real-
time PCR and at the protein level by immunocytochemis-
try in embryonic neural crest cultures, in the adult supe-
rior cervical ganglion and in the adult locus ceruleus
(Table 3; Fig. 3). It is conceivable that elevated Cart
expression in NETKO mice causes their hyper-responsive-
ness to psychostimulants. While there also seemed to be
an increase in intensity of immunofluorescence for DBH
and CART in NETKO tissue, we did not pursue quantifica-
tion of fluorescence.

The A subunit of the 5-HT3 receptor, Htr3a, is 11-fold
more abundant in the NETKO library than in the wild
type library (Table 3; Additional file 3). We confirmed by
real-time PCR this up-regulation of Htr3a in NETKO neu-

Description Unigene WT(TPM) NETKO(TPM) P value
actin, beta, cytoplasmic Mm.133292 4234 4875 0.12
glyceraldehyde-3-phosphate dehydrogenase Mm.5289 1131 1794 0.24
hypoxanthine guanine phosphoribosyl transferase Mm. 18675 232 273 0.48
ubiquitin C Mm.331 406 507 0.27
beta-2 microglobulin Mm.163 87 117 0.69
ribosomal protein LI13 Mm.42578 812 975 0.38
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Table 3: Confirmation by quantitative PCR of differential expression of noradrenergic neuron-relevant genes.

Quantitative PCR (ratio KO/WT)

-6.97 £ 1.8 (p = 0.021)

Genes Unigene Number LongSAGE

WT KO Day 7 NCC
TH Mm.1292 2 9 42+ 04 (p=0.001)
DBH Mm. 167781 4 14 4.1 £0.5 (p = 0.004)
MAO-A Mm.21108 2 0 0.6 £ 0.0 (p = 0.006)
COMT Mm. 100940 0 | 1.1 £0.0 (p=0.1)
Htr3a Mm.4831 | I 2.6 0.6 (p = 0.004)
CART Mm.75498 12 22 2.0+ 0.2 (p = 0.004)
NET Mm.57040 | 0 Not detected in KO
Pja2 Mm.41711 | 12 7.0+ 1.8 (p=0.04)
Numb | Mm.458153 0 7 3.5+ 0.5 (p = 0.006)
Hdac2 Mm. 19806 12 |
TIx2 Mm.37 0 9

7.63 £ 12 (p = 0.04)

Adult LC

24+0.2 (p=0.04)
3.1 £ 0.2 (p = 0.000)
0.5 £ 0.0 (p = 0.002)
1.7+05(p=0.2)
3.5+ 0.3 (p<0.0001)
3.9+0.2 (p <0.0001)
Not detected in KO
N/A

N/A

N/A

N/A

Adult SCG

44+0.2 (p=0.03)
6.8+ 0.8 (p=10.001)
0.9 £ 0.1 (p=0.04)
1.4 £0.1 (p=0.05)
4.0+ 0.3 (p =0.001)
4.7 £ 0.3 (p =0.001)
Not detected in KO
N/A

N/A

N/A

N/A

For determining mRNA levels, the 2-2A4C_ method was used as described. For a given target, AC was computed by subtracting C; for HPRT from
each primer pair. C;and AAC were computed by subtracting AC; for WT from AC; for NETKO. The difference of the expression level for each
gene was expressed as 2-2AC, Statistical analysis was performed using the Student's t test. qPCR data are presented as mean + S.E.M,, and significant

differences between KO and WT reported at the p < 0.05 level; n = 3.

ral crest, locus ceruleus and superior cervical ganglion
cells (Table 3). Serotonin (5-hydroxytryptamine) is a neu-
rotransmitter that interacts with multiple receptors to
mediate a wide range of effects, including involvement in
anxiety and depression [24]. Additionally, Htr3a mRNA is
present both in submucosal and myenteric ganglia in
enterochromaffin cells of the gut, which activate the 5-

NET KO

Wild type

Genotype Percent DBH-positive
cells per area + S.E.M.

Wild type 37.6£8.5

NETKO 18.1+2.8

Note: P-value, 0.002. Total number of cells were scored using DAPI
stain; number of DBH* cells using DAPI/fluorescein overlay.

Figure 2

Altered morphology and reduced numbers of DBH-
immunoreactive cells in day 7 NETKO neural crest
cultures. (A) NETKO neural crest cells have no or short
processes only (e.g., arrow). (B) By contrast, wild type DBH-
positive cells have long processes (e.g., arrow). (C) Quantifi-
cation of the number of DBH-immunoreactive cells
expressed in day 7 wild type and NETKO neural crest cul-
tures. Approximately half the number of DBH-positive cells
is expressed in NETKO cultures compared to wild type cul-
tures. Bar, (A, B) 100 um.

HT3A receptor in extrinsic primary afferent neurons
[25,26]. The 5-HT3A receptor is thus a link between gut
and brain. Since 5-HT3A antagonists cause constipation,
the function of the 5-HT3A receptor is considered impor-
tant for normal enteric motility [27-29]. Htr3a over-
expression therefore could affect serotonin signaling and
thus peristalsis. In our present study, Nsg2 (neuron spe-
cific gene family member 2; Mm.3304) and Cart were sig-
nificantly more abundant in the NETKO library than in
the wild type library (Table 3; Additional file 3). Interest-
ingly, both genes were found to be down-regulated in the
Ret-deficient enteric nervous system [30]. Together, the
two studies suggest that Net and Ret are upstream of Nsg2
and Cart, and that they have opposing effects on Nsg2 and
Cart expression. This is of interest, as Ret-deficient mice
have Hirschsprung's syndrome, i.e. absence of distal
enteric ganglia.

T-cell leukemia homeobox 2 (Tix2; aliases, Enx, Hox11L.1,
Hox1111, NCX, Nex1, Tix111, and Tlx112) was 12-fold more
abundant in the NETKO LongSAGE library than in the
wild type library (Table 3; Additional file 3). TIx2 encodes
a transcription factor downstream of BMP signaling,
which is essential for the development of sympathetic
neurons, as it is activated by, and binds to, Phox2B [31].
An imbalance between TIx2 and Phox2b expression may
affect autonomic nervous system development, as Phox2b
is essential for the differentiation of neural crest cells into
autonomic neurons [32].

In addition to Htr3a, Cart and TIx2 are also expressed in the
gastrointestinal tract. Cart is expressed in enteric neurons
and is thought to serve a modulatory function in the enteric
nervous system [33]. TIx2 knock-out mice demonstrate
lethal intestinal pseudo-obstruction and colonic hypergan-
glionosis, similar to human intestinal neuronal dysplasia
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Figure 3

Co-localization of CART and DBH immunoreactivities in wild type and NETKO neural crest cells, superior
cervical ganglion and locus ceruleus. (A, A', B, B'), NETKO and wild type neural crest cultures, respectively, at day 7. (C,
C', D, D'), superior cervical ganglion of 10 week-old mice; (E, E', F, F'), Locus ceruleus from |10-week old wild type and NETKO
mice. Wild type cells express CART at low levels. DBH and CART immunoreactivities co-localize in all three tissues. CART
and DBH immunoreactivity appear somewhat brighter in NETKO tissue than in wild type tissues, suggesting increase in
expression not only at the RNA but also at the protein level. It needs to be noted that immunofluorescence was not quantified.

Bar, (A —F') 100 pum.

[34-36]. Since TIx2 is not only expressed in neural crest-
derived enteric neurons, but also in visceral smooth muscle
cells [37], perturbation of gastrointestinal function may not
be limited to enteric nervous system dysfunction, but also
be due to defects in the enteric smooth musculature.

Taken together, over-expression of Cart, Htr3a and/or Tix2, is
likely to cause a perturbation in noradrenergic cell differentia-
tion and in enteric nervous system function in NETKO mice.
Differential expression of the alpha(2A)-noradrenergic recep-
tor, alpha(2C)-noradrenergic receptor [38] and neurotrophin-
3 [39] were observed by Bonisch and collaborators by real-
time PCR and at the protein level. We did not capture these
genes in our libraries. The discrepancy could be due to differ-
ences in the starting material used, as we have collected RNA
from embryonic neural crest stem cells, whereas in the other
two studies [38,39] adult brain tissue was used. Conversely,
these transcripts may have escaped detection in our libraries.
The latter possibility is unlikely, as we have not observed the
three genes in any of our 4 neural crest longSAGE libraries (ref
[40] and this study).

Differential expression of members of the Notch pathway
in NETKO neural crest cells

Numbl (Numb-like) and APP (beta amyloid precursor
protein) repress Notch activity [41]. Both Numbl and App

were significantly increased in the NETKO library (Table
3; Additional file 3), suggesting decreased Notch signaling
in NETKO cells. The Notch pathway is, however, essential
for induction of the neural crest. It is required for initia-
tion of BMP-4 expression, and thus neural crest identity,
in cells at the boundary between somatic and neural ecto-
derm [42]. Notch signaling is involved in neural crest for-
mation and noradrenergic cell differentiation, as well as
in many other systems. Loss of Numbl function leads to a
premature depletion of neuronal progenitor cells [43,44].
Since Numbl transcripts are significantly more abundant
in NETKO neural crest cells (Table 3; Additional file 3),
this result suggests that deletion of the NET gene causes
noradrenergic precursor cells, such as neural crest cells, to
preferentially remain in the neuronal progenitor cell com-
partment. The notion of decreased differentiation due to
persisting progenitor state is supported by the 12-fold
decrease in the expression of histone deacetylase 2
(Hdac2; Tables 3; Additional file 4). Overall, our data indi-
cate perturbations in the Notch signaling pathway in
NETKO cells, which is likely to affect neural crest forma-
tion and subsequent noradrenergic cell differentiation.

Deregulation of the TGF-£ and BMP signaling pathways
TGEF-B signaling inhibits proliferation of neural crest cells
and promotes their differentiation into autonomic neurons
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[45,46]. Praja2 (Pja2; neurodegeneration associated pro-
tein 1, Mm.41711), a RING H-2 protein with E2-depend-
ent E3 ubiquitin ligase activity, is 12-fold more abundant in
the NETKO library (Additional file 3) and 7-fold increased
according to qPCR (Table 3). Praja2 ubiquitinates the
Smad adaptor protein, Elf, which subsequently leads to its
degradation and a decrease in Smad4 expression [47].
Smad4 is a critical member of TGF-f signaling, as it forms a
complex with a receptor-regulated Smad (Samd1, Smad2).
The complex subsequently serves as a transcripton factor
for Tgf-p target genes [48]. In summary, elevated Pja2
expression can inhibit TGF-p signaling and therefore is
likely to maintain neural crest cells in their progenitor state
by blocking their differentiation into noradrenergic cells.
Yet another important family of growth factors involved in
noradrenergic differentiation are bone morphogenetic pro-
teins (BMPs). BMP4 was found to be required for noradren-
ergic differentiation in chick embryos [49]. In agreement
with this notion we found in the present study that BMP6
is significantly down-regulated in NETKO neural crest cells
(Additional file 4).

Conclusion

NET is an important gene in the central, autonomic and
enteric nervous systems, as mutations in the NET gene
have been shown to have profound influences in homeos-
tasis and cognition. In this study we have primarily
focused on the role of NET in embryonic neural crest
development, but also have validated selected data in
adult brain and peripheral nervous system tissues. Specif-
ically, we have provided evidence that high-affinity
uptake of norepinephrine through NET affects expression
of genes that are involved in neural crest formation and in
noradrenergic differentiation as measured by expression
of catcholamine biosynthetic enzymes and elaboration of
processes. The data further suggest changes in enteric
nervous system function and possibly brain develop-
ment/function in the absence of NET function. We have
confirmed that expression of noradrenergic biosynthetic
enzymes is altered in NETKO mice. Other pertinent differ-
entially expressed genes addressed in detail in this work
include Htr3a, Numbl, App, Praja2 and Tlx2. We have iden-
tified differentially expressed genes that are likely to con-
tribute to the NETKO phenotype, that is over-expression
in NETKO cells of Th, Dbh, Cart, Htr3a and Tix2. Interest-
ingly these genes are not only expressed in the neural
crest-derived autonomic nervous system and in the brain,
but they also have key functions in another neural crest
derivative, the enteric nervous system. Other differentially
expressed transcripts, as for instance Tgfb2 and Hoxal0
(Additional file 3), as well as Cdc51 and Hoxb9 (Addi-
tional file 4), play important roles in cell proliferation and
differentiation but have not been addressed in the current
study. Overall, we provide a valuable database for future
investigations into NET function.

http://www.biomedcentral.com/1471-2164/10/151

Methods

Genotyping of embryos and neural crest cell primary
cultures

The animals were maintained in the transgenic mouse
facility at the Medical College of Wisconsin, and all exper-
iments were conducted in accordance with the "Guide-
lines for the Care and Use of Animals" approved by the
Medical College of Wisconsin. Embryos were obtained
from timed-pregnant females. The day vaginal plugs were
observed was defined as day 0.5 of gestation. Genotyping
was performed by PCR as described by Xu et al [5]. The
NETKO strain has been back-crossed to the C57BL/6]J
background. Thus, C57BL/6] mice from the Jackson Lab-
oratory were used for wild type cultures.

Neural crest cell primary cultures were prepared from
embryos at day 9.5 of gestation, as we have described pre-
viously [9,40,45,50,51]. The dorsal trunk region posterior
to the hind limb buds was dissected and treated with 1%
trypsin (Difco, 1:250; Becton Dickinson, Sparks, MD).
The neural tube was separated from other tissues of the
trunk by gentle trituration. Forty-eight hours post-explan-
tation, the neural tubes were carefully detached from the
dishes and discarded. The neural crest cells, which
remained on the collagen substratum were incubated at
37°Cin a humidified atmosphere of 5% CO, and 10% O,
[12]. The culture medium consisted of 75% alpha-MEM,
10% fetal bovine serum and 5% day 11 chicken embryo
extract, and it was supplemented with 2.5 ng/ml basic
fibroblast growth factor (FGF-2, Upstate Biotechnology,
Lake Placid, NY), 10 ng/ml neurotrophin-3 (NT-3,
Promega, Madison, WI), 100 ng/ml mouse stem cell fac-
tor (R&D System, Minneapolis, MN), and 10 nM artere-
nol (Sigma, St. Louis, MO) at. The culture medium and
supplements was exchanged daily.

High-affinity norepinephrine uptake

Neural crest cells with a functional norepinephrine trans-
porter were identified in situ exactly as we have described
previously [3,4]. Briefly, the cultures were rinsed with
Hanks' balanced salt solution (HBSS) containing 1%
bovine serum albumin (BSA). They were then incubated
for 2 hours at 37°C with 0.5 ml of 0.5 uM [3H]-norepine-
phrine (40.8 Ci/mmol, Amersham Biosciences, Piscata-
way, NJ) in HBSS that also contained 1 mM ascorbic acid
(Sigma, St. Louis, MO) and 0.1 mM of the monoamine
oxidase inhibitor, pargyline (Sigma, St. Louis, MO), Sub-
sequently, uptake of radioactive NE was terminated by
rinsing the cultures 3 times with HBSS that contained 24
mM non-radioactive norepinephrine (d, l-arterenol;
Sigma, St. Louis, MO), fixed with 4% paraformaldehyde
in calcium-magnesium-free PBS for 20 min at room tem-
perature, and rinsed again. The cultures were dried in a
stream of cold air, coated in the dark with NTB2 emulsion
(Kodak, Rochester, NY) for 2.5 min, and air dried in the
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dark. After 10 days of exposure at 4°C, autoradiographs
were developed with D-19 (Kodak, Rochester, NY) and
fixed with Rapid Fix (Kodak; Rochester, NY), mounted
with mineral oil and a coverslip. They were then observed
with a light microscope. Under these conditions, the NET
inhibitor, desipramine, blocks uptake [3,4].

LongSAGE library construction and data analysis

The RNA of 60 wild type and 60 NETKO neural crest cell
cultures was isolated at culture day 7. Total RNA was iso-
lated using TRIzol reagent (Invitrogen, Carlsbad, CA)
according to the manufacturer's protocol. To avoid poten-
tial contamination with genomic DNA, total RNA was
treated with DNase (Invitrogen, Carlsbad, CA). The Long-
SAGE libraries were constructed using the I-SAGElong kit
(Invitrogen, Carlsbad, CA) according to manufacture's
instructions. In brief, mRNAs were bound to Dynal
oligo(dT) magnetic beads of the cDNA synthesis module,
Invitrogen, Carlsbad, CA), mRNA transcripts were con-
verted to cDNAs with biotinylated oligo(dT)18 as the
primer (cDNA synthesis module, Invitrogen, Carlsbad,
CA). The cDNA were digested with Nla III, and the 3' ends
were recovered and bound to LS-adapter 1 and 2. Subse-
quently, the restriction enzyme, Mmel, was used to release
the tags, which were ligated to form ditags. Ditags were
amplified by PCR, the amplified ditags were isolated by
using 12% polyacrylamide gel electrophoresis (PAGE)
and digested again with Nla III to release the 34 bp Long-
SAGE ditags, which were purified by 12% PAGE. The dit-
ags were concatemerized at their Nla III overhangs.
Concatemers with minimum size of 500 bp were
obtained by gel electrophoresis purification. They were
ligated into the cloning vector pZEro-1 plasmid and trans-
formed into TOP10 bacteria by electroporation. High-
throughput sequencing was performed by Agencourt Bio-
science Corporation (Beverly, MA). Both the 17 bp Long-
SAGE and the corresponding 10 bp SAGE tags were
provided by Agencourt. Additional information about
SAGE and LongSAGE technique can be found at http://

www.sagenet.org.

LongSAGE data were analyzed with the SAGE2000 v 4.5
software (Invitrogen). Tags corresponding to linker
sequences were discarded, and duplicate dimers were
counted once only. Both 17 bp LongSAGE tags and corre-
sponding 10 bp SAGE tags were extracted for further anal-
ysis. All tags were mapped to their corresponding genes
using SAGEmap data from the National Center for Bio-
technology Information (NCBI; ftp://
ftp.ncbi.nlm.nih.gov/pub/sage/mappings/). After tag-to-
gene mapping, putative function was annotated using the
gene ontology (GO) database http://geneontology.org.
All genes were annotated according to biological process.
The libraries were normalized using the SAGE2000 soft-
ware. Comparisons between the two LongSAGE libraries

http://www.biomedcentral.com/1471-2164/10/151

was carried out using statistical functions available in the
SAGE2000 software for p-value calculation and Monte
Carlo simulations. Tags with multiple matches were
excluded, and tags that matched to the same Unigene clus-
ter were combined. A p-value of <0.05 was considered sig-
nificant.

Real-time RT-PCR and semi-quantitative RT-PCR

For RT-PCR, mouse neural crest cell primary cultures and
dissected tissue from adult mice (superior cervical gan-
glion and pontine brain stem containing the locus ceru-
leus) were dissolved with TRIzol reagent (Invitrogen,
Carlsbad, CA). Total RNA was treated with DNase I (Inv-
itrogen, Carlsbad, CA) to remove any traces of genomic
DNA. First-strand cDNA was synthesized using the Super-
Script III First-strand synthesis system for RT-PCR (Invit-
rogen, Carlsbad, CA), and primed by using oligo(dT)
according to manufacturer's instructions.

The time course of NET gene expression in cultured neural
crest cells was determined by semi-quantitative RT-PCR.
Aliquots of the PCR products were resolved on 2% agarose
gel containing ethidium bromide, and bands were visual-
ized under UV illumination. The signal intensity was ana-
lyzed by computerized densitometry using the Molecular
Dynamics STORM scanning system (Amersham Bio-
sciences) as a ratio of a target gene over Hypoxanthine
guanine phosphoribosyl transferase (Hprt).

Real-time PCR was performed in an Icycler (Bio-Rad, Her-
cules, CA) using Platinum SYBR green qPCR SuperMix
UDG (Invitrogen, Carlsbad, CA), according to manufac-
turer's instructions. For each PCR product, a single narrow
peak was obtained by melting curve analysis at the specific
melting temperature, and a single band of the predicted
size was observed by agarose gel electrophoresis. HPRT,
which was expressed at nearly identical levels in both
libraries, was used for normalization. For determining
mRNA levels, the 2-4AC. method was used as described
[52]. The amplification efficiency of each target was eval-
uated from the cycle threshold (C;, the number of cycles
to reach threshold) numbers obtained for serial cDNA
dilution. For a given target, AC; was computed by sub-
tracting C for HPRT from each primer pair C;, AAC; was
computed by subtracting AC; for WT from AC; for
NETKO. The difference of expression level for each gene
expressed as 2-24C.. Standard curves were plotted for all
primer sets with serial tenfold dilution of the cDNA sam-
ples. Overall efficiencies (E) of PCR were calculated from
the slopes of the standard curves according to the equa-
tion: E = 10(-1/slope), Target and reference genes showed
similar efficiencies (>92%). Statistical analysis was per-
formed with Student's t test, Data are presented as means
+ S.E.M., and significant differences reported at the p <
0.05 level. Primer sequences are listed in Additional file 5.
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Immunocytochemistry

For immunocytochemistry, small tissue pieces and cell
cultures were fixed with 4% paraformaldehyde in the cold
overnight or for 30 minutes, respectively. Ten um cryosec-
tions, or culture plates, were rinsed in phosphate buffered
saline (PBS; 3 x 20 min), incubated with 4% normal goat
serum (NGS) in PBS for 30 min, and subsequently incu-
bated overnight at 4°C with rabbit anti-DBH antibody
(Protos Biotech, New York) and chicken anti-CART anti-
body (Chemicon, Temecula, CA) respectively in PBS that
contained 1% NGS and 0.1% Triton-X100 (Sigma). The
secondary antibody (fluorescein-conjugated goat anti-
rabbit IgG, and donkey anti-chicken IgG; Jackson Immu-
noResearch Laboratory, PA) was diluted in 4% normal
goat serum in PBS, added to the cultures and incubated in
the dark for 1 hour at room temperature. Nuclei were
stained with DAPI. The images were taken under the same
exposure settings.

Abbreviations

APP: beta amyloid precursor protein; DBH: dopamine-f3-
hydroxylase; Cart/Cartpt: catecholamine and ampheta-
mine regulated transcript; FGF-2: fibroblast growth factor-
2; Hdac2: histone deacetlylase 2; Htr3a: serotonin recep-
tor subunit 3a; LC: locus ceruleus; 1ongSAGE: long serial
analysis of gee expression; NCSC: neural crest stem cell;
NE: norepinephrine; NT-3: neurotrophin-3; NET: nore-
pinephrine transporter; Numbl: Numb-like; Pja2: Praja2;
SCG: superior cervical ganglion; TH: tyrosine hydroxylase;
TGF-BTgfb2: transforming growth factor-beta; TIx2: T-cell
leukaemia homeobox2.
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