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Abstract
Background: Motor proteins have extensively been studied in the past and consist of large
superfamilies. They are involved in diverse processes like cell division, cellular transport, neuronal
transport processes, or muscle contraction, to name a few. Vertebrates contain up to 60 myosins
and about the same number of kinesins that are spread over more than a dozen distinct classes.

Results: Here, we present the comparative genomic analysis of the motor protein repertoire of
21 completely sequenced arthropod species using the owl limpet Lottia gigantea as outgroup.
Arthropods contain up to 17 myosins grouped into 13 classes. The myosins are in almost all cases
clear paralogs, and thus the evolution of the arthropod myosin inventory is mainly determined by
gene losses. Arthropod species contain up to 29 kinesins spread over 13 classes. In contrast to the
myosins, the evolution of the arthropod kinesin inventory is not only determined by gene losses
but also by many subtaxon-specific and species-specific gene duplications. All arthropods contain
each of the subunits of the cytoplasmic dynein/dynactin complex. Except for the dynein light chains
and the p150 dynactin subunit they contain single gene copies of the other subunits. Especially the
roadblock light chain repertoire is very species-specific.

Conclusion: All 21 completely sequenced arthropods, including the twelve sequenced Drosophila
species, contain a species-specific set of motor proteins. The phylogenetic analysis of all genes as
well as the protein repertoire placed Daphnia pulex closest to the root of the Arthropoda. The
louse Pediculus humanus corporis is the closest relative to Daphnia followed by the group of the
honeybee Apis mellifera and the jewel wasp Nasonia vitripennis. After this group the rust-red flour
beetle Tribolium castaneum and the silkworm Bombyx mori diverged very closely from the lineage
leading to the Drosophila species.

Background
Nearly each single cell in eukaryotes hosts particular pro-
teins, which are responsible for intracellular transport.
These molecular motor molecules are highly conserved
among the different species of eukaryotes and evolved

slowly over time [1,2]. This property grants them the role
of an appropriate candidate to carry out evolutionary
studies. The three superfamilies of transporting motor
proteins are the myosins, kinesins, and dyneins. Attached
to the cytoskeletal networks (microtubules and actin) they
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transport all kinds of organelles and vesicles [3], and
organize and remodel the cytoskeleton and developmen-
tal processes in eukaryotes [4]. The energy for their unidi-
rectional cargo transport on one of the filamentous
cytoskeletal tracks is derived from ATP hydrolysis [5]. Out
of the three superfamilies only the members of the kinesin
superfamily are found in all eukaryotes, whereas members
of the dynein [6] and myosin [7] superfamilies are lacking
in particular eukaryotic lineages.

The members of the actin-based myosin family have their
origin early in eukaryotic evolution. Based on the latest
analysis, the myosins are grouped into 35 classes [7].
Myosins consist of three regions, the motor (or head)
domain, a neck domain, and the tail, which comprises all
C-terminal domains as well as domains N-terminal to the
motor domain. The motor domain is highly conserved
and contains both the ATP and actin binding site, where
the force generation resides. This energy-transducing
motor domain is coupled to a regulatory neck region (hel-
ical region), which is able to bind calmodulin or calmod-
ulin-like light chains. Linked to the neck region most
myosins have tail domains. Contrary to the head domains
the tail domains show high variability in sequence and
length, reflecting their functional diversity. The functions
range from cytokinesis, organellar transport, cell polariza-
tion to signal transduction [8-10]. Some of the myosin
classes also contain large domains at the N-terminus of
the motor domains [7].

The second molecular motor protein family is kinesin
(members also known as KRPs, KLPs, or KIFs) [11]. The
members of this superfamily are microtubule-based and
facilitate movement in both directions (either plus or
minus end-directed) [12]. For their movement along the
microtubules they utilize ATP similarly to the other motor
proteins. The classical kinesin forms a tetramer with two
kinesin heavy chains (KHCs) and two kinesin light chains
(KLCs). Like in myosins the head domain is well con-
served and responsible for the movement, whereas the
stalk and tail domains play fundamental roles in the inter-
action with other subunits of the holoenzyme or with
cargo molecules such as proteins, lipids or nucleic acids
[13]. The region between the head and the stalk is family-
specific and determines the direction of movement [14].
Kinesins bind a variety of cargoes and perform tasks such
as vesicle and organelle transport, spindle formation and
elongation, chromosome segregation, and microtubule
organization [15,16].

The members of the dynein superfamily are minus end-
directed motor proteins [17]. Thus they are responsible
for the retrograde transport of cargoes along microtu-
bules. They are involved in many processes like spindle
formation, chromosome segregation, and the transport of

a variety of cargoes like viruses, RNAs, signaling mole-
cules, and organelles [18]. Dyneins are multi-subunit pro-
tein complexes with two or three heavy chains (DHCs),
light chains, light intermediate, and intermediate chains
[19]. Supported by an activator protein called dynactin,
which consists of 11 subunits, dynein is able to move and
bind to membranes or further cargoes [20-22].

The genome of Drosophila melanogaster was the third
eukaryotic genome to be completely sequenced [23].
Since then, the number of sequenced organisms has
increased rapidly. Of the Arthropoda phylum, the
genomes of the mosquitos Anopheles gambiae [24] and
Aedes aegyptii [25], the silkworm Bombyx mori [26,27], the
beetle Tribolium castaneum [28], the waterflea Daphnia
pulex (this special series in BMC journals), and eleven of
the Drosophila species group [29,30] have been published.
The draft genome sequences of Culex pipiens quinquefascia-
tus, Nasonia vitripennis, and Pediculus humanus corporis
have been finished recently. The phylogenetic relation-
ship of the twelve sequenced Drosophila species has been
described in detail [29].

Here, we present the analysis of the phylogenetic relation-
ship of 21 completely sequenced arthropods based on the
sequences and inventory of their motor proteins.

Results
Identification and annotation of the motor proteins
The arthropod motor protein genes were identified by
TBLASTN searches against the corresponding genome
data of the different species. Species, that missed certain
orthologs in the first instance, were searched again with
supposed-to-be orthologs of the other species. In this iter-
ative process all motor proteins have been identified or
their absence in certain species have been confirmed. The
species analyzed were the mosquitos Aedes aegyptii (Aea),
Culex pipiens quinquefasciatus (Cpq), and Anopheles gambiae
(Ang), the silkworm Bombyx mori (Bm_b), the honeybee
Apis mellifera (Am), the jewel wasp Nasonia vitripennis
(Nav), the waterflea Daphnia pulex (Dap), the rust-red
flour beetle Tribolium castaneum (Tic), the body louse
Pediculus humanus corporis (Pdc), twelve Drosophila species
(Drosophila ananassae (Da), Drosophila erecta (Der), Dro-
sophila grimshawi (Dg), Drosophila melanogaster (Dm), Dro-
sophila mojavensis (Dmo), Drosophila persimilis (Dp),
Drosophila pseudoobscura (Drp), Drosophila sechellia (Dse),
Drosophila simulans (Dss_a), Drosophila virilis (Dv), Dro-
sophila willistoni (Dw) and Drosophila yakuba (Dy)), and the
mollusc Lottia gigantea (Lg), which we used as outgroup.
The sequences were assigned by manual inspection of the
genomic DNA sequences. Exons have been confirmed by
the identification of flanking consensus intron-exon
splice junction donor and acceptor sequences [31]. The
genomic sequences of Drosophila virilis, Apis mellifera, and
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especially Bombyx mori contain several gaps. Many of the
gaps have been filled by analyzing EST data.

Analysis of the arthropod myosins
All myosins have been classified based on the phyloge-
netic analysis of their motor domains together with the
motor domains of the already grouped myosins [7] (Fig-
ure 1). All myosins belong to previously defined classes
except one myosin from Nasonia that has a very similar
domain organization to the class-V myosins but a consid-
erably different motor domain. Except for class-XXI, all
myosin classes are shared between arthropods and mam-

mals suggesting that their common ancestor already con-
tained these classes [7]. Daphnia, which roots the insect
phylogeny, possesses the largest repertoir of myosins.
Although the taxon sampling is very limited in this study,
it is likely that the evolution of the arthropods was accom-
panied by taxon- and species-specific losses of certain
myosin classes. Daphnia still contains a class-XIX myosin,
that all other analyzed arthropods have lost, and four
class-I myosins. Class-XIX myosins have also been found
in Deuterostomia and Cnidaria. Also, all other arthropods
have lost at least one of the class-I myosins. However, the
remaining variants differ between the analyzed species,

Myosin repertoire of the arthropodsFigure 1
Myosin repertoire of the arthropods. This chart shows the myosin repertoire for all species in the analysis. To the left is a 
schematic phylogenetic tree, depicting the relationships (no scale). The identifiers in the boxes indicate protein classes/variants. 
"O" means orphan class. Colored boxes mean the class/variant exists in this species. Grey boxes mean the class/variant was 
not found. Columns marked with stars were included in the phylogenomic analysis.
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which means that they lost the class-I variants after sepa-
rating from the next closest species. For example, Apis and
Nasonia both have lost the class-I myosin variant C, that
their closest relative Pediculus still has. Pediculus, however,
specifically lost the variants B and D, respectively. All
arthropods contain a non-muscle as well as a muscle
myosin heavy chain gene (class-II myosins). The alterna-
tively spliced muscle myosin heavy chain genes have been
described elsewhere [32]. The Drosophila species and Tri-
bolium have lost the class-3 myosin. The Drosophila mela-
nogaster NinaC protein has previously been classified as a
class-III myosin. Based on the analysis of more than 2000
myosins the NinaC protein does not group to the verte-
brate class-III myosins and all arthropod homologs of
NinaC have been grouped into a new class, class-XXI [7].
Surprisingly, Nasonia does not contain a class-VI myosin,
that all other Metazoa contain, that have been analyzed so
far,. The lack of the class-VI myosin might be a specific
characteristic of Nasonia vitripennis, or due to sequencing
and assembly problems, which are, however, unlikely
given the high coverage of the Nasonia genome sequence.
Finishing of the sequencing of the other two Nasonia
genomes, which is in progress at the Baylor College of
Medicine, will either confirm the lineage specific loss of
the class-VI myosin or reveal sequencing problems of the
Nasonia vitripennis genome. Daphnia, Pediculus, and Apis
have lost the variant B of the class-VII myosin. The class-
VII myosin, which they contain, is a clear homolog of the
class-VII variant A myosins of the other arthropods.
Another scenario would be, that the ancestor of Apis,
Nasonia, and the clade containg the mosquito and Dro-
sophila species has gained the class-VII myosin variant B
via gene duplication of the variant A myosin. In this case,
Apis specifically lost its class-VII myosin variant B. The
Drosophila lineage has also completely lost the class-IX
myosin. All arthropod genomes contain a class-XV, a
class-XVIII, a class-XX, and a class-XXI myosin. The class-
XXII myosin has independently been lost by several sub-
lineages of the Drosophila species. The Drosophila species,
that have been marked as having lost their class-XXII
myosin, all still contain some of the exons of the ancient
class-XXII myosin but spread over several hundred thou-
sands of base pairs so that it is highly improbable that
these pieces might belong to still functional genes.

The domain organizations of the arthropod myosins are
identical to those found for other members of the respec-
tive classes [7]. Figure 2 shows diagrams of the Daphnia
myosins that have the largest diversity of the arthropod
myosins. The class-XXI and the class-III myosins have an
identical domain organization, although the phylogenetic
analysis of their motor domains reveals two distinct
classes. It is highly probable, that the class-XXI myosins
are the result of an arthropod specific gene duplication of
the ancient class-III myosin followed by the divergence of

the new duplicate. The class-XXII myosins and the class-
VII myosins have similar domain organizations. In con-
trast to the class-VII myosins, the class-XXII myosins lack
the N-terminal SH3-like domain, they contain three
instead of five IQ-motifs for the binding of calmodulin-
like light chains, they have a longer coiled-coil regions
containing domain till the first MyTH4 domain, and they
lack the SH3 domain of the C-terminal tail.

Analysis of the arthropod kinesins
For their classification, the kinesin motor domains have
been used in a phylogenetic analysis together with the
motor domains of the human kinesins [11,33]. The
sequences have been named according to the standard-
ized kinesin nomenclature [34] leaving some kinesins
unclassified (Figure 3). Orphan kinesins, that are clear
homologs, got the same variant designation to allow for
better comparison. In general, all analyzed species contain
species-specific sets of kinesins. Except for Drosophila
pseudoobscura and Drosophila persimilis, which have iden-
tical sets of kinesins, even closely related species like the
twelve analyzed Drosophila species have different kinesin
inventories. Thus, it is likely that the evolution of the
kinesin inventories of the analyzed arthropods is strongly
determined by species-specific gene duplications and gene
losses. Given the limited taxon and species sampling it is
impossible to identify lineage-specific duplication and
loss events. Some gene duplications and gene losses are
especially interesting. In this respect, we will not consider
the kinesin inventory of Bombyx mori because the genome
has not been sequenced with high coverage and is highly
fragmented. The Drosophila ananassae genome does not
contain a kinesin-2C that all other arthropods have. Dro-
sophila willistoni does not contain a kinesin-4A, but two
class-VI kinesins and two species-specific kinesins that
have not been classified yet, kinesin-D and kinesin-E.
While most arthropods contain only one kinesin-5, Tribo-
lium contains a set of four class-V kinesins. The Pediculus
genome does not encode a class-VII kinesin, but encodes
a kinesin-9 that is otherwise only found in Apis. None of
the analyzed arthropods contains a kinesin-10. Nasonia
does not contain a kinesin-12 that all other arthropods
have. The set of class-XIII kinesins in the arthropods
ranges from one to four homologs. Tribolium, Apis, Naso-
nia, Pediculus, and Daphnia contain one or two additional
kinesins that could not be grouped to any of the known
classes.

The Daphnia kinesins mainly consist of the kinesin motor
domain and long coiled-coil regions in the tail (Figure 4).
Only the class-III kinesins contain further domains that
have been characterised and named. A characteristic of
almost all class-III kinesins is an FHA domain following
C-terminal to the motor domain. The class-III variant A
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kinesins also contain a CAP-Gly domain at the C-termi-
nus, while the variant B kinesins contain a PH domain.

The dynein/dynactin motor protein complex of the 
arthropods
All arthropods contain members of all the cytoplasmic
dynein subunits (Figure 5). The dynein heavy chain pro-
teins belong to the longest proteins in eukaryotes having
lengths of 3,500 to 5,000 amino acids. The genes of the
dynein heavy chains have not been analysed and classi-
fied yet because their large size in combination with the
high degree of fragmentation of many genomes render
their complete identification and assembly impossible.

All arthropods contain one intermediate chain. Except for
Tribolium, the arthropods contain two light-intermediate
chains. In addition, Drosophila pseudoobscura and Dro-
sophila persimilis both contain a third light-intermediate
chain. The sets of dynein light chains are very divergent in
all analysed arthropods, although one of each of the LC8,
Roadblock, and TcTex light chains is common to all spe-
cies. In addition to these common light chains, all species
have different numbers and variants of dynein light
chains. It is remarkable that the Drosophila species have
the largest number and most divergent set of light chains.
Especially, they have five to eight additional light chains
of the Roadblock family. The list of TcTex light chains also

Domain organisation of the Daphnia pulex myosinsFigure 2
Domain organisation of the Daphnia pulex myosins. The sequence name is given in the motor domain of the respective 
myosin. A colour key to the domain names and symbols is given on the right except for the myosin domain that is coloured in 
blue. The abbreviations for the domains are: C1, Protein kinase C conserved region 1; DIL, dilute; FERM, band 4.1, ezrin, 
radixin, and moesin; IQ motif, isoleucine-glutamine motif; MyTH1, myosin tail homology 1; MyTH4, myosin tail homology 4; 
PDZ, PDZ domain; Pkinase, Protein kinase domain; RA, Ras association (RalGDS/AF-6) domain; RhoGAP, Rho GTPase-activat-
ing protein; SH3, src homology 3.

0 500 1000 1500 2000 aa2500 3000

Myo7

Dappu-Myo22

Myo5

Myo3

Myo15

Myo21

Myo1D

Mhc2

Mhc1

Myo6

Myo19

Myo20

Myo9

Myo18

IQ motif

SH3

C1

Coiled-coil

MyTH4

MyTH1

FERM

DIL

Pkinase

RhoGAP

N-terminal SH3-like

RA

PDZMyo1C

Myo1B

Myo1A

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-

Dappu-
Page 5 of 15
(page number not for citation purposes)



BMC Genomics 2009, 10:173 http://www.biomedcentral.com/1471-2164/10/173
includes the ones that are associated with the axonemal
dynein heavy chain. Because of their diversity it is not pos-
sible to specify, which of the TcTex light chains are associ-
ated with the cytoplasmic dynein heavy chain. Therefore,
all TcTex homologs are listed.

Similar to the mammals, the arthropods contain one gene
of each of the subunits of the dynactin complex (Figure
6). Only the genomes of the Drosophila species encode
another version of the dynactin p150 subunit. These genes
are close homologs to the well described Glued (dynactin
p150) gene in Drosophila melanogaster [35] but have not
been identified previously. We did not find any splice var-
iants of any of the dynactin transcripts of the arthropods,
although different splice forms exist for all of the mamma-
lian dynactin subunits.

Arthropod phylogeny
First, we calculated the phylogenetic tree of each of the
protein families. When inspecting the phylogenetic tree of
each protein family, it can be stated that three clades and
their internal topologies are constant: The Drosophila
clade, a clade of Apis mellifera and Nasonia vitripennis, and
the clade of Aedes aegypti, Culex pipiens quinquefasciatus,

and Anopheles gambiae. Only in the tree of the LC8 pro-
teins (see Additional File 1), the clade of Anopheles, Aedes
and Culex is placed within the Drosophila clade. All other
species were placed at varying branches. The discrepancy
among the phylogenetic trees based on the dynein and
dynactin subunits was higher when compared to the ones
based on myosins and kinesins (see Additional File 1).
The trees calculated from myosins and kinesins only disa-
gree in the positions of Bombyx mori, Tribolium castaneum
and Pediculus humanus corporis.

As has been found, when analysing the phylogeny of sev-
eral homologs in a set of species, each homolog might
result in a different phylogeny. This might result from the
different rates of evolutionary change for different genes,
from long-branch-attraction artifacts, or from sampling
unrecognized paralogs [36]. Concerning unrecognized
paralogs, we are confident that we were able to distinguish
paralogs and orthologs since we have used very large data-
sets of protein sequences for the classification of the
motor proteins with a wide taxonomic sampling ([7];
Kollmar, unpublished data). In order to compensate for
this asynchronous evolution, a phylogenomics approach
was used to infer the phylogeny of the 21 arthropods. For

Kinesin repertoire of the arthropodsFigure 3
Kinesin repertoire of the arthropods. This chart shows the kinesin repertoire for all species in the analysis as in Figure 1.
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Domain organisation of the Daphnia pulex kinesinsFigure 4
Domain organisation of the Daphnia pulex kinesins. The sequence name is given next to the respective kinesin. A col-
our key to the domain names and symbols is given on the right except for the kinesin domains that are coloured in dark-green. 
The abbreviations for the domains are: CAP-Gly, Cytoskeleton-associated protein-Gly; FHA, forkhead homology associated; 
PH, pleckstrin homology.
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each protein family, the classes/variants, for which a
homolog exists in every species, were concatenated result-
ing in more representative sequences by averaging out dif-
ferent rates of evolutionary change. For the dynein,
dynactin and ARP (actin-related protein) proteins, only
one of the homologs was found in all species, whereas
eight of the myosins and ten of the kinesins are shared by
all analysed arthropods (marked with stars in Figures 1, 3,
5, and 6). Thus, for each of the 22 species, 31 homologs
were used, amounting to 682 motor protein sequences.
The resulting trees are shown in Figure 7. Except for the
placement of Tribolium, all four phylogenomics trees show
identical phylogenies. All branches are supported by very
high bootstrap values and are therefore reliable within the
limits of the method. The placement of Pediculus depends
on the method used. In the trees generated with neigh-
bour joining (see Additional File 2), Pediculus forms a
clade with Nasonia and Apis, whereas with maximum like-
lihood, only Nasonia and Apis are monophyletic and
Pediculus is more closely related to Daphnia.

The phylogenetic tree inferred from the occurrence of
classes/variants has a limited resolution and agrees only
in some respects with the maximum likelihood tree: Dro-

sophila form a clade, Drosophila pseudoobscura and Dro-
sophila persimilis are monophyletic, Drosophila virilis,
Drosophila mojavensis and Drosphila grimshawi are mono-
phyletic and Culex, Aedes and Anopheles are monophyletic.

Discussion
Most of the myosins that we discuss here have been iden-
tified and annotated in the course of the annotation of
over 2000 myosins from more than 300 organisms [7].
Since then, the genome sequences of the arthropod spe-
cies Culex pipiens quinquefasciatus and Pediculus humanus
corporis have been finished as well as that of the mollusc
Lottia gigantea, which we used as outgroup. All myosins
have been grouped into 35 classes. The arthropods encode
members of 13 of these classes, namely members of the
classes I, II, III, V, VI, VII, IX, XV, XVIII, XIX, XX, XXI, and
XXII. It has been found, that the Drosophila melanogaster
NinaC protein, which has previously been classified as
class-III myosin, is part of the new class-XXI [7]. Most
arthropod genomes contain a real ortholog to the mam-
malian class-III myosins. Although both class-III and
class-XXI myosins have an N-terminal kinase domain, the
phylogenetic tree of the motor domain sequences clearly
shows that both classes are distinct. Daphnia pulex con-

Dynein repertoire of the arthropodsFigure 5
Dynein repertoire of the arthropods. This chart shows the dynein repertoire for all species in the analysis as in Figure 1. *
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tains the largest diversity of myosins, while the Drosophila
species seem to have lost several classes, namely the mem-
bers of class-III, class-IX, and class-XIX. Most of the Dro-
sophila species have also lost their class-XXII myosin. Class-
XXII myosins have two tandem repeats of MyTH4 and
FERM domains like the class-VII myosin, but they miss the
N-terminal SH3-like domain as well as the SH3 domain in
the C-terminal tail. The specific function of a member of
the class-XXII myosin has not been analyzed yet.

Of the kinesin superfamily the arthropods have members
of all 14 specified classes [34] except for class-X. Class-IX
kinesins have only been identified in Apis mellifera and
Pediculus humanus corporis. However, the function of class-
IX kinesins in not clear yet [11]. In addition to the kines-
ins, that could be classified, each of the analyzed arthro-
pod species contains two or more kinesin homologs that
could not be grouped to any of the known classes. Two of
these orphan kinesins have been identified in all arthro-

Arp/Dynactin repertoire of the arthropodsFigure 6
Arp/Dynactin repertoire of the arthropods. This chart shows the Arp/dynactin repertoire for all species in the analysis as 
in Figure 1.
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Phylogenomics and Class OccurrenceFigure 7
Phylogenomics and Class Occurrence. The trees illustrate the phylogenetic relationship between the arthropod species. 
The phylogenomic trees are based on a total of 682 concatenated protein sequences. Methods are indicated. The class occur-
rence tree was constructed using Bayesian inference based on the presence or absence of protein classes/variants as indicated 
in the inventory (Figures 1, 3, 5, and 6). The average standard deviation of split frequencies was 0.0087.
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pod species except Daphnia, but some arthropods contain
further species-specific kinesins. Notably, Drosophila willis-
toni contains two further kinesins, of which homologs
have not been identified in any of the other sequenced
arthropod genomes. Compared to the myosin repertoire,
the kinesin inventory of the arthropods is far more varied.
Although the analyzed arthropods have members of
almost all classes, there are prominent differences in the
subclass composition. Even the Drosophila species have
different sets of kinesins. Thus, it is likely that the evolu-
tion of the kinesin diversity in arthropods is strongly
determined by taxon- and species-specific gene losses and
gene duplication events.

The arthropods contain a highly variable set of cytoplas-
mic dynein subunits. The dynein motor protein complex
is build of dynein heavy chains, intermediate chains,
light-intermediate chains, and the light chain 8, the Road-
block, and the TcTex light chains. All arthropods encode
one dynein intermediate chain and a dynein light-inter-
mediate chain. In addition, the closely related species Dro-
sophila pseudoobscura and Drosophila persimilis contain
another dynein light-intermediate chain. Of the light
chains, the arthropods share one of each of the different
types, the LC8, the Roadblock, and the TcTex light chains.
All arthropods contain different numbers of further
homologs of these light chains. Thus, they can build very
specific cytoplasmic dynein complexes. For example, if all
members of the Roadblock light chain family are also
members of the cytoplasmic dynein complex the Dro-
sophila species could build up to nine different cytoplas-
mic dynein complexes just by exchanging light chains of
the Roadblock family. These different Roadblock light
chains might bind different cargoes and by tissue specific
or developmentally regulated expression of these Road-
block genes the Drosophila species might be able to fine
tune their dynein mediated transport processes. Thus,
there are far more possibilities to adjust cargo binding by
combining different light chains than by using the dynein
activator complex, dynactin. The arthropods contain one
of each of the eleven dynactin subunits. Alternative splice
forms have not been identified. Only the Drosophila spe-
cies contain a further homolog of the p150 (Glued) subu-
nit, that has not been identified and characterized yet.

It has been observed, given heterogeneous evolutionary
rates, that the results of the maximum likelihood method
are statistically more robust than the ones produced by
neighbour joining [37]. Therefore we conclude that Apis,
Nasonia, and Pediculus are not monophyletic, but that
Pediculus is more closely related to Daphnia. The class
occurrence tree shows that the classification system we
used for the protein families does not contradict the find-
ing of the sequence-based phylogenetic inference.

Our study suggests the following phylogeny: The Dro-
sophila clade is composed of the Drosophila simulans/Dro-
sophila sechella clade which forms a clade with Drosophila
melanogaster. This clade together with the Drosophila
yakuba/Drosophila erecta clade forms the melanogaster
subgroup. This subgroup together with Drosophila ananas-
sae forms the melanogaster group. The melanogaster
group is most closely related to the obscura group, a clade
that consists of Drosophila pseudoobscura and Drosophila
persimilis. The closest relative to the obscura group is Dro-
sophila willistoni. All of the before mentioned species form
the subgenus Sophophora. Its sister subgenus is Dro-
sophila, consisting of the clade of Drosophila virilis/Dro-
sophila mojavensis and Drosophila grimshawi (taxonomy as
in [29]). The phylogeny of the Drosophila clade is in exact
agreement with what has been found in an analysis based
on the complete genome sequences of the twelve species
[29].

The closest relatives to the Drosophila clade are Aedes
aegypti and Culex pipiens, forming one clade, and Anopheles
gambiae. All these species belong to the Diptera. The plac-
ing of the remaining species, that have been analyzed
here, is mainly in accordance with an analysis of 128
arthropod species that was based on 275 morphological
variables as well as 18S and 28S rDNA data [38]. In
accordance with this study, the Lepidoptera, to which
Bombyx mori belongs, are the closest relatives to the Dip-
tera forming the Mecopteroidea. Also in aggreement with
the morphological data, the Hymenoptera (Nasonia vitrip-
ennis/Apis mellifera) are basal to the Mecopteroidea
together forming the Holometabola, and the Phthiraptera
(Pediculus humanus corporis) are basal to the Holometab-
ola. The main difference between our study and the anal-
ysis of the morphological data is the placement of
Tribolium castaneum, a Coleoptera species. Our study
placed Tribolium closer to the Mecopteroidea while the
other study placed the Coleoptera outside the Hymenop-
tera and Mecopteroidea. Daphnia pulex, a Crustacea spe-
cies, diverged earlier to all the other Hexapoda species.

Conclusion
In this analysis, we were able to resolve the phylogenetic
relationship of 21 completely sequenced arthropod spe-
cies based in their motor proteins. A large number of
sequences were used that have been checked manually.
We have systematically analyzed the protein inventory of
all species as well as the domain composition of all mem-
bers of the four protein families in Daphnia pulex. When
inferring phylogenetic trees from the sequence data, vari-
ations in evolutionary speed were accounted for by using
a phylogenomics approach. This analysis produced a phy-
logenetic tree that is highly resolved and that has statisti-
cally well supported branchings. Our findings are in
accordance with results from studies based on whole
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genome and rDNA sequences as well as morphological
variables. We can conclude that from all arthropods ana-
lyzed, Daphnia pulex is the most basal one. Pediculus
humanus corporis is the closest relative to Daphnia, fol-
lowed by the clade of Apis mellifera and Nasonia vitripennis.
Next, Tribolium castaneum and Bombyx mori diverged, fol-
lowed by the mosquito species and the Drosophila clade.

Methods
Identification and annotation of the arthropod myosins, 
kinesins, and dynein/dynactin subunits
The genes for Aea, Ang, Am, Bm, Cpq, Da, Der, Dg, Dm,
Dmo, Drp, Dp, Dse, Dss, Dv, Dy, Dw, Nav, Pdc, and Tic have
been obtained by TBLASTN searches against the insects
section of the NCBI wgs database [39]. The Dap sequences
have been obtained by TBLASTN searches against the 8.7×
coverage Dappu v1.1 draft genome sequence assembly
(September, 2006) provided by the DOE Joint Genome
Institute [40] and the Daphnia Genomics Consortium
[41]. All hits were manually analysed at the genomic DNA
level. The correct coding sequences were identified with
the help of the multiple sequence alignments of the corre-
sponding proteins. In this process, the sequence align-
ments of all proteins contained in our in-house version of
CyMoBase have been used. As the amount of protein
sequences increased (especially the number of sequences
in classes with few representatives), many of the initially
predicted sequences were reanalysed to correctly identify
all exon borders. Where possible, EST data available from
the NCBI EST database has been analysed to help in the
annotation process. All sequence related data (names, cor-
responding species, GenBank ID's, alternative names, cor-
responding publications, domain predictions, and
sequences) and references to genome sequencing centers
are available through the CyMoBase [42,43].

Building trees
The phylogenetic trees based on protein sequences were
generated using two different methods: 1. Neighbour
joining using the GONNET substitution matrix with boot-
strapping (1,000 replicates) using ClustalW 2.0 [44]. 2.
Maximum likelihood (ML) [45] using a JTT model with
estimated proportion of invariable sites and bootstrap-
ping (1,000 replicates) using PHYML [46].

The sequence data, which was used for the analyses, were
multiple sequence alignments consisting either of single
homologous sequences from each species or multiple
concatenated homologous sequences from each species
(phylogenomics approach). For comparison, multiple
sequence alignments were used including columns with
gaps or with columns containing gaps removed.

The class occurrence tree was generated using Bayesian
inference with a binary model using MrBayes 3.1.2 [47].

For each species the existence/non-existence of a protein
class/variant was used as a binary character as depicted in
Figure 7. Using this encoding, each species is represented
by a series of binary characters, one for each protein class/
variant. Constant rates were used whereas gamma-distrib-
uted rates gave very similar results. The tree was generated
using 1.000.000 generations and a burnin of 500.000 gen-
erations since at that point the average standard deviation
of split frequencies fell below 0.011.

Domain and motif prediction
Protein domains were predicted using the SMART [48,49]
and Pfam [50,51] web server. The prediction of protein
motifs (coiled coils, leucine zipper, etc.) is mainly based
on the results of the predict-protein server [52,53]. The
IQ-motifs and N-terminal domains of the myosins were
predicted manually based on the homology to similar
domains of other myosins included in the multiple
sequence alignment of the myosins. The recognition
motifs included in the SMART and Pfam databases are too
restrictive, as the motifs have been created based on the
small datasets available some years ago.
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