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Abstract

Background: Fertility is one of the most critical factors controlling biological and financial performance
of animal production systems and genetic improvement of lines. The objective of this study was to identify
molecular defects in the sperm that are responsible for uncompensable fertility in Holstein bulls. We
performed a comprehensive genome wide analysis of single nucleotide polymorphisms (SNP) for bull
fertility followed by a second-stage replication in additional bulls for a restricted set of markers.

Results: In the Phase | association study, we genotyped the genomic sperm DNA of |0 low-fertility and
10 high-fertility bulls using Bovine SNP Gene Chips containing approximately 10,000 random SNP markers.
In these animals, 8,207 markers were found to be polymorphic, 97 of which were significantly associated
with fertility (p < 0.01). In the Phase Il study, we tested the four most significant SNP from the Phase |
study in 10l low-fertility and 100 high-fertility bulls, with two SNPs (rs29024867 and rs41257187)
significantly replicated. Rs29024867 corresponds to a nucleotide change of C — G 2,190 bp 3' of the
collagen type | alpha 2 gene on chromosome 4, while the rs41257187 (C — T) is in the coding region of
integrin beta 5 gene on chromosome |. The SNP rs41257187 induces a synonymous (Proline — Proline),
suggesting disequilibrium with the true causative locus (i), but we found that the incubation of bull
spermatozoa with integrin beta 5 antibodies significantly decreased the ability to fertilize oocytes. Our
findings suggest that the bovine sperm integrin beta 5 protein plays a role during fertilization and could
serve as a positional or functional marker of bull fertility.

Conclusion: We have identified molecular markers associated with bull fertility and established that at
least one of the genes harboring such variation has a role in fertility. The findings are important in
understanding mechanisms of uncompensatory infertility in bulls, and in other male mammals. The findings
set the stage for more hypothesis-driven research aimed at discovering the role of variation in the genome
that affect fertility and that can be used to identify molecular mechanisms of development.
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Background

Fertilization is a critical event at the onset of mammalian
development. The widespread use of artificial insemina-
tion has revealed great variation in fertility among sires
[1]. Some males display reduced fertility that can be over-
come with higher semen volume for insemination, called
compensable infertility, while others show an uncompen-
sable infertility [2,3].

Uncompensable infertility defects may result from molec-
ular defects caused by abnormalities in spermatozoal
DNA, RNA, or proteins, which impair the ability of sper-
matozoa to interact with oocytes and induce embryonic
development [4-6]. The quality of nuclear vacuoles, DNA
integrity, and chromatin structure have been proposed as
potential causes of uncompensable fertility defects [7-10].
However, most causes of bull subfertility are still
unknown and are likely multigenic.

Recent advances in animal genome sequencing and asso-
ciated technologies are providing new insights into the
genomics study of gametes and embryos [11-14]. For
instance, high-throughput technologies, including mas-
sively parallel expression and protein quantification, have
revealed numerous differences between the spermatozoa
of subinfertile and fertile males [15-17]. These pheno-
types reflect, among other things, the genetic differences
among the various sires. Single nucleotide polymor-
phisms (SNPs) which represent the most abundant
genomic variation, have proved useful in studies of genes
associated with human diseases (e.g., cancer, stroke, and
diabetes) [18-21] and economically important traits in
livestock (e.g., horse, pig, and cattle) [12,22-29]. The pre-
vious use of SNPs for fertility studies has been limited to
a few markers, and their implication in male infertility has
not yet been fully demonstrated [19,30-33].

The objective of the present study was to use a high-
throughput and a high-density SNP array to conduct a
near-genome-wide association study of bull fertility. Sper-
matozoa DNA were isolated from well-characterized low
fertility (n = 10) and high fertility (n = 10) bulls (Phase I
study) and examined for approximately 10,000 SNPs, fol-
lowed by the screening of the four most significant SNPs
in a larger population (101 low- and 100 high-fertility
bulls; Phase II study).

Methods

Bull selection

Pure Holstein bulls were selected based on their fertility as
previously described by Peddinti et al. [34]. Briefly, the
progeny test program from Alta Genetics Inc. (Alta Advan-
tage® program) involving approximately 180 farms milk-
ing an average of 850 cows each was used to select the
bulls (Alta Genetics Inc; Calgary, Alberta, Canada). This
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program provides certain benefits, including DNA verifi-
cation of the paternity of offspring and pregnancy diag-
noses by veterinary palpation, instead of relying solely on
non-return rates 60-90 days after breeding. This depth of
data allows an accurate determination of both male and
female fertility traits. In addition, this program provides
unique research materials to identify molecular markers
associated with fertility.

Definition of low- and high-fertility bulls

The fertility of bulls (Holstein), drawn from a total popu-
lation of 874 bulls, is based on an average of 788 breed-
ing, ranging from 101 to 11,997. We used the model
described by Zwald et al. [35], which takes in account the
breeding event, environmental factors and herd manage-
ment factors that influence fertility performance of sires
(i.e., effects of herd-year-month, parity, cow, days in milk,
sire proven status). All these factors were adjusted using
threshold models similar to the previously published
models [35]. The fertility prediction of each bull was
obtained using the Probit.F90 software [36] and expressed
as the percent deviation (Table 1) of its conception from
the average conception of all bulls. For the QTL analysis,
the fertility was converted to a Z-score.

Isolation of pure sperm cells and DNA extraction

Alta Genetics Inc. (Watertown, WI) provided frozen
semen straws of selected bulls. Thawed spermatozoa were
then purified through a Percoll gradient, washed,
counted, and pelleted for DNA isolation [34]. DNA was
extracted from a pool of three different ejaculates of sper-
matozoa using the Puregene DNA isolation kit (Qiagen,
Valencia, CA), with minor modifications. Spermatozoa
were homogenized in the lysis buffer (containing 60 mM
DTT and 60 pg proteinase K), incubated for 60 minutes at
55°C, and treated with RNase A (12 pg). Proteins were
sedimented and DNA was subsequently precipitated
using isopropanol. DNA was washed in ethanol, dis-
solved in TE buffer (pH 8.0), and quantified using the
NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies). DNA integrity was verified on an electro-
phoresis gel stained-agarose. DNA samples with high
purity (Aygo/a280 = 1.8) and no degradation were used for
the Phase I and Phase II studies.

SNP genotyping (Phase I study)

The 10 K SNP Bovine Gene Chip (Affymetrix/ParAllele
GeneChip; Affymetrix Inc., Santa Clara, CA) was used to
genotype DNA samples (250 ng/ul) of 10 low-fertility and
10 high-fertility bulls. The experiment was carried out at
Baylor College of Medicine (Houston, TX), and assays uti-
lized molecular inversion probe (MIP) technology, allow-
ing the multiplex detection of single base variants using a
4-color array hybridization assay [37,38]. The hybridiza-
tion, washing, staining, and chip scanning procedures
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Table I: Oligonucleotide probe sequences for single-nucleotide polymorphism (SNP) markers

NCBI SNP ID Locus Primers and detection probes

Rs29016875 c/IT

Forward primer: 5-GTCTGGTATTCCCATCTCTTTCAGA-3'

Reverse primer: 5'-TTACTGATTGAAGGGCAACTGTGT-3'
Probe |: 5'-6FAM-TTTTCCACAGITTATTGTG-3'
Probe 2: 5'-VIC-TTTTCCACAGCTTATTG-3'

Rs29015574 C/IT

Forward primer: 5'-"ACTCTGTCTCTGAGATTCGATTCAGT-3'

Reverse primer: 5'-CTGAAATCTTTCATTCCCTAGCTGATG-3'
Probe I: 5'-6FAM-CTGAAAACTCTATCTCTG-3'
Probe 2: 5'-VIC-CTGAAAACTCTGTCTCTG-3'

Rs29024867 G/C

Forward primer: 5-TGGAGGAGTTCTTTAATGCTTATAAATG-3'

Reverse primer: 5'-GGAGGCACAAAATAGTTAACAGACATC-3'
Probe |: 5'-6FAM-CTAAACCGATTTGTAATC-3'
Probe 2: 5'-VIC-CTAAACGGATTTGTAATC-3'

Rs41257187 c/IT

Forward primer: 5-CGAAATGGCTTCAAACCCTCTGTA-3'

Reverse primer: 5-TGTTGAAGGTGAAATCCACAGTGT-3'
Probe |: 5'-6FAM-CAGAAAGCCTATCTCC-3'
Probe 2: 5'-VIC-AGAAAGCCCATCTCC-3'

were performed using the standard protocol recom-
mended by the manufacturer (Affymetrix Inc., Santa
Clara, CA) of 9,919 SNPs analyzed in all DNA samples,
the pass and completeness rates were 94.04% and 98.2%,
respectively.

Allelic discrimination analysis (Phase Il study)

The allelic discrimination technique, based on the Taq-
Man technology (ABI Prism 7000 Sequence Detection
System, Applied Biosystems, Foster City, CA) was per-
formed by scientists at SeqWright, Inc. seqwright.com on
DNA samples (4 ng/ul) of 101 low-fertility and 100 high-
fertility bulls to validate the Phase I association study.
Primer and probe sets were designed on a sequence of 501
nucleotides containing the SNP (250 nucleotides down-
stream and upstream of the SNP allele) using the Primer
Express software (Applied Biosystems, Foster City, CA).
The probes were designed and labeled with FAM (6-car-
boxy-fluorescein) or VIC fluorescent dyes (Applied Bio-
systems, Foster City, CA) to match perfectly either one of
the alleles (Table 1).

PCR reactions were carried out in a total volume of 25 pl
as recommended by the manufacturer. Each reaction con-
sisted of 5 pul of sperm DNA in 20 pl Master Mix solution
(Applied Biosystems, TagMan Universal PCR Master Mix)
containing primers (900 nM) and probes (200 nM). DNA
samples were amplified by 40 times (2 min-50°C, 10
min-95°C, 15 sec-92°C, and 1 min 60°C). For each PCR
run, negative (no-template) and positive (oligos) controls
were added, and each run was preceded or followed by 1-
minute incubation at 60°C to determine the background,
or final levels of fluorescence, in each reaction. The base
calls were made by examining all samples on the allelic
discrimination graph, and the Sequence Detection Soft-
ware (Applied Biosystems, Foster City, CA) was used to

determine the homozygosis or heterozygosis of alleles. All
samples were run in triplicates for each SNP allele.

Bioinformatics

The major repository of SNP data in the National Center
for Biotechnology Information (NCBI) database
(dbSNP), combined with Entrez Genome (NCBI) as well
as the Ensembl automatic analysis pipeline, were used to
characterize and annotate the markers (SNPs and genes)
based on the cattle genome assembly version 3.1. For each
SNP, a sequence of 501 nucleotides consisting of the 250
nucleotides immediately upstream and downstream of
the SNP allele, were extracted and the best hit in the
Bovine 3.1 genome identified using BLASTN. We consid-
ered only the hits (i) found on the same chromosome as
the query, (ii) with E-values equal or close to 0.00 and (iii)
presenting at least 94% alignment with the full length of
the query sequence. Furthermore, the same query
sequences were used to search for putative transcription
factor binding sites through the Transfac-blastX (TRANS-
FAC Database 7.0 for searching eukaryotic transcription
factors).

Functional analysis of integrin beta 5 (ITGBS5)

Sperm preparation and treatment

Thawed spermatozoa were purified through a Percoll gra-
dient as previously reported [39]. Motile spermatozoa
were resuspended in the fertilization medium containing
Heparin and PHE. The sperm concentration was adjusted
to 50 x 10°/ml and incubated with or without the integrin
beta 5 antibody (ITGB5; sc-5401: 5 and 20 pg/ml). As a
control for structural effects of the antibody, spermatozoa
(50 x 10/ml) were also incubated with a nonmammalian
protein (BIT) antibody (sc-33757: 20 pg/ml). After a 2-
hour incubation at 38°C under 5% CO, in air, spermato-
zoa were washed twice in fertilization medium and used
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to fertilize the oocytes. The motility of spermatozoa was
comparable before and after the incubation period.

Oocyte maturation and in vitro fertilization

Bovine oocytes were purchased from Bomed Inc. (Madi-
son, WI), and maturation took place during the transpor-
tation. These oocytes were washed and fertilized with
treated and untreated spermatozoa at a final concentra-
tion of 106 spermatozoa/ml. After 18 hours of co-incuba-
tion, oocytes were collected, denuded, washed, fixed, and
placed on slides for staining with 0.1% aceto-orcein on
slides. The nuclear status of oocytes was observed under a
microscope, and the fertilized oocytes (two extruded polar
bodies and/or two pronuclei) were counted to assess the
fertilization rates.

Statistical analysis

In the Phase I study, the 20 bulls of varied fertility were
typed for 9,919 SNP using Affymetrix 10 K Xba 142 2.0
array. A total of 1,712 markers fixed for a single genotype
in this sample were excluded from further analysis. Mark-
ers were tested for Hardy-Weinberg Equilibrium using a 1
degree of freedom chi-square test. Markers with a p value
< 0.05 were flagged as potentially out of HWE, but were
used for association analysis.

The fertility of the bulls was converted to Z-scores and
used as the quantitative trait for the association analysis.
Analysis was conducted only at the markers' positions; no
attempt at interval mapping was made. At each marker,
the mean fertility, scored as a Z-score, was compared
between genotypes using single marker regression. If the n
for a genotype was 1, the samples were collapsed into the
heterozygote. Benjamini- Hochberg FDR was calculated at
each marker, adjusting 8,207 tests. A p-value less than
0.01 was set as the threshold of a significant association
between the SNP marker and bull fertility; this corre-
sponds to an FDR of 84%. Similar analyses were con-
ducted in Phase II data.

Results and discussion

The lack of methods to accurately predict sire fertility
obliges the artificial insemination (AI) industry to keep
and test hundreds of bulls. The selection of such bulls,
whose fertility has been evaluated with progeny tests prior
to their use in large-scale breeding programes, is costly and
can take several years. Recent advances in cattle genome
projects and molecular genetic technologies have
increased the likelihood of identifying uncompensatory
defects impairing the functions of spermatozoa. High-
throughput technologies may help pinpoint relationships
between a single DNA marker (i.e., SNP) and economi-
cally important traits in dairy cattle. Information about
specific SNPs can enhance the efficiency of genetic selec-
tion, especially for traits that are (i) too difficult or expen-
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sive to measure in all animals and/or (ii) expressed after a
long field trial (i.e., fertility).

Determination of bulls with uncompensatory infertility
The most fertile and the least fertile pure Holstein bulls
were selected from a pool of 874 available bulls with at
least 300 breeding records. These were defined as the rep-
resentative outliers for their corresponding groups and the
scaling of fertility as the deviation from the population
average fertility. The average breeding and fertility rates of
the 10 low- and 10 high-fertility bulls used in the Phase I
association study were 1,974 and -9.2% versus 3,540 and
6.2%, respectively. In the Phase II study, these values were
904 and -4.2% for low-fertility (100), and 994 and 3.4%,
for high (101) fertility bulls (Table 2). The average differ-
ences in fertility rates between low and high fertile groups
were 15.4% and 7.6% in Phase 1 and Phase II studies,
respectively. These differences were considered significant
by Amann and Hammersted, 2002 [40].

Identification of SNPs associated with fertility using DNA
microarrays (Phase | study)

The recent progress in genomics and automation has ren-
dered the SNP genotyping a promising technology for
genetic studies of the cow genome, which contains
approximately one SNP every 252 base pairs [41]. Using
bovine SNP genechip microarrays (Affymetrix Inc.), we
successfully genotyped 9,919 SNP markers using bull
spermatozoa genomic DNA isolated from 10 low-fertility
and 10 high-fertility Holstein bulls (Figure 1). Approxi-
mately 50% (4,963) of SNPs were physically located to
chromosomes using the bovine genome assembly Btau-
3.1 (National Center for Biotechnology Information,
2007).

No significant difference was found between the average
of SNP call rates in both groups (95.8% + 4.8% versus
98.6% =+ 0.7%, respectively; p-value = 0.15). The HWE test
revealed an FDR of 61% corresponding to 790 SNP mark-
ers that failed the test (versus the 496 expected at ran-
dom), but were used for QTL analysis as mentioned above
(Statistical analysis section). A total of 1,712 SNP markers

Table 2: Artificial insemination (A.l.) and fertility records of
bulls

Bulls A.l. Services Fertility data

Fertility status Total# (Range) (mean % % sd)

SNP genotyping (Phase | study)

Low 10 785-11,450 -92+46
High 10 891-9796 62+19
Allelic discrimination (Phase Il study)
Low 101 300-11,957 -42+19
High 100 300-7,209 34+ 1.1
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The figure represents the fertility distribution of bulls
used for SNP genotyping (mean * SD). The scaling of
fertility was defined as the deviation from the population
average. The low-fertility bulls were scored below (negative
data) the average conception rate while the high-fertility bulls
scored above (positive data). The average difference between
the two groups was 15.4%.

were excluded from analysis because they were not poly-
morphic. In the Phase I samples, the fertility (Z-score) of
bulls was used as the quantitative trait for the association
analysis of the remaining 8,207 markers. The p-value dis-
tribution of the 8,207 markers' test showed a slight devia-
tion from the uniform to left end (near 0) of the
distribution, indicating the presence of more putative fer-
tility-associated SNP markers in the data (Figure 2) than
expected at random. Additional file 1 shows the Z-score
data obtained from the four SNP markers with the highest
association (p < 104), and Additional file 2 shows the 97
significant markers p < 10-2. These most significant mark-
ers were selected to test in the Phase II samples.

High-throughput SNP arrays are powerful tools com-
monly used in humans to track population history and
genes associated with diseases [19-21,42,43] or fertility
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Figure 2

The figure represents the distribution of p-values of
the 8,207 markers analyzed in the Phase | study.
These p-values were used as guidance to select markers for
Phase II.
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[32,44]. The application of a such high-throughput tech-
nology has been limited in livestock [24,28,29]. The 10 K
SNP Bovine Gene Chip commercialized by Affymetrix Inc.
ensures a limited coverage of the cow genome (~ 2.8 Gb,
based on the Btau 3.1 genome assembly), with one SNP
every 300 to 350 Kb. However, the SNP location on the
array seems evenly distributed across the genome (1.18 to
2.24 SNP/cM) [45].

The extent of linkage disequilibrium (LD) around the
SNPs in the Holstein population is not clear yet, but we
believe the LD may extend a good distance (< 0.5 Mb)
around the markers due to the extensive inbreeding in the
population [46-48]. For example, one specific bull not in
this study was found to be an ancestor 163 times, often
several times in a single bull's ancestors, within 5 genera-
tions of the bulls in our study. As a result, there may be
some founding effects within this study and large stretches
of LD, but it is doubtful we were able to fully cover the
genome as close to the maximal Fisher's Information
given the marker density and coupled with the low power
of this study. This suggests there are additional fertility
loci to be found in the genome. The need of higher density
SNP arrays (50,000 to 300,000 SNPs) has been suggested
for power association and fine mapping studies in cattle
[41,47,49].

Genotyping of large numbers of bulls for the most
significant SNP markers (Phase Il study)

Large population sizes, often too large to be easily col-
lected, are generally required for defining association
between a given SNP and a trait with reasonable power.
Thus, the use of several stages of analysis with progres-
sively fewer markers typed in each replication population
has become typical in human genome-wide association
studies. The key reliability of a significant association
result is replication in a second (or third) population. For
example, a genome-wide-association (GWA) study of
macular degeneration was successfully replicated when
the initial study contained only 96 cases and 50 controls
[50]. Here, we selected the four most significant SNPs
from the genotyping (p < 10-4; Phase I) study (Table 3) for
replication in a larger cohort of 100 low- and 101 high-
fertility bulls (Figure 3). Interestingly, the marker
1529015574 out of HWE in the Phase I study became in
HWE in Phase II, as well as three other markers (HWE test
> 0.05; Table 4). The fertility (quantitative trait) analysis
confirmed the significant association of two of the four
SNPs (1529024867 and rs41257187; P < 0.05), while the
1529016875 tended to be significant (P = 0.09). Our cal-
culated FDR rate for these markers (26%-63%) in the
Phase I data is very close to our observed replication rate
of 50%, which is known as very high for a genome wide
association study [51,52].
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Table 3: Highly informative SNP markers obtained in Phase | study.

SNP markers Id (rs#)

Association with fertility

Chromosome location

p-values
29016875 3.32x 103
29015574 9.44 x 105
29024867 56 x 105
41257187 38 x 103

HWE

0.062 10
7.7 x 10-6%* 9

0.430 4

0.263 [

*Indicates an out of HWE test.

Bioinformatics on the four highly associated SNPs
Bioinformatics were restricted on the four highest signifi-
cantly associated SNPs (1529016875, 1529015574,
1s29024867, and 1s41257187). Only three SNPs gave val-
uable information (Table 5). The SNP 1529024867
appeared as a positional marker for the collagen I alpha 2
gene, located at 2,190 base pairs of the 5' side of the SNP.
The SNP 1529015574 had a single hit corresponding to a
sequence similar to Rab3A-interacting molecule, which
might be a potential gene candidate for fertility. The SNP
1s41257187 is a synonymous polymorphism located in
the exon 16 of integrin beta 5 gene (ITGB5). Each of these
SNPs was located in a region (< 1 Mb) with low density
(1-3 SNPs). Using similar SNP genechip array, Daetwyler
et al., have reported a SNP frequency (SNP/cM) of 1.55,
1.75, 1.84 and 2.05 on Bos taurus autosome 9, 1, 4 and 10,
respectively (Confer Table 3 for corresponding SNPs)
[45]. This observation makes the four SNP as strong posi-
tional candidate gene markers.

Putative binding sites for transcription factors with roles
in embryogenesis were found within the nucleotide
sequences flanking the SNPs rs29015574 (MEF-2D and
Irx for, myocyte enhancer factor-2D and Iroquois home-
obox, respectively) and 1529024867 (RAR B3 and Ceh-24
for, retinoic acid receptor and Caenorhabditis elegans-24,

respectively). Hence, our findings suggest potential roles
of the SNP mutations on regulation of gene expressions as
already suggested in other studies [53-56].

Taken together, our results provide novel loci candidates
whose associations with the bull fertility have not previ-
ously been reported. Because of the great interest of the
non-synonymous SNP 1541257187 associated with the
ITGB5, we performed a Six Frame Translation of ITGB5
mRNA reference sequence reported on NCBI
(NM_174679.2) using the Baylor College of Medicine's
HGSC Search Launcher to find the reading frame leading
to the amino acid change. We found that the complete
ITGBS5 protein could be obtained from two different read-
ing frames (+3 or +1) when using the whole length of
RNA sequence or the length from the start codon (ATG),
respectively. Contrary to the NCBI report, we found that
the SNP mutation site (C/T) induced a synonymous
amino acid change of a Proline (CCC) to another Proline
(CCT) at the position 778 (P778P). The same SNP
(rs41257187) inducing a synonymous amino acid change
(Proline to Proline) is also reported on the Ensembl data-
base.

The interest of integrin beta 5 in our study resided in the
role(s) played by the integrin family members during fer-

Table 4: Overall SNP call percentages and statistics obtained in Phase Il study.

Allelic variation SNP markers

rs29016875 rs29015574 rs29024867 rs41257187
CiC 85 (42%) 128 (64%) 0 (0%) 108 (54%)
TIT 25 (12%) 6 (3%) 18 (9%)
cIT 91 (45%) 66 (33%) 74 (37%)
G/IG 156 (78%)
G/C 44 (22%)
Total of bulls 201 200 200 200
Test for HWE 0.7566 0.6511 0.3197 0.3730
P values 0.0907 0.1853 0.0313* 0.0483*
Asterix (*) indicates significant association.
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Figure 3

The figure represents the fertility distribution of bulls
used for allelic discrimination (mean * SD). The scaling
of fertility was defined as the deviation from the population
average. The low-fertility bulls were scored below (negative
data) the average conception rate while the high-fertility bulls
scored above (positive data). The average difference between
the two groups was 7.6%.

Table 5: Bioinformatics on the four highly informative SNPs.
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tilization and embryogenesis. Integrins are known to be
expressed in a variety of tissues, including reproductive
tissues of mice, humans, pigs and cattle [57-62].

Functional analysis of integrin beta 5

The biological function of the integrin beta 5 subunit is
not clearly defined. We tested the potential involvement
of ITGB5 isoform on sperm-egg interaction, and the
results showed that the percentages of matured oocytes
(metaphase II) undergoing a successful fertilization (1-2
PN) with spermatozoa pre-exposed to anti-integrin beta 5
antibody were decreased: 74, 60, and 47% normally ferti-
lized oocytes in the presence of 0, 5, and 20 pug ITGB5/ml,
respectively. This dose-dependent inhibition was not
attributed to the antibody itself since the pre-exposure of
spermatozoa to the non-mammalian protein (BIT) anti-
body had no effect on the ability of spermatozoa to ferti-
lize the oocytes (Table 6).

We ruled out the likelihood of non-specific interactions of
the anti-ITGB5 antibody and other integrin beta subunits.
Indeed, the antibody is raised against a specific N-termi-
nal epitope, which amino acid sequence is not found in
other subunits of integrin beta protein. Therefore, our
results contribute to the growing body of reports support-
ing the presence of avp integrins on sperm membranes
[62,63]. Their putative differential expression in subfertile
and fertile bulls could be used as markers for fertility, as
already suggested for the av6B3 integrin in humans [64].
Furthermore, our results contrast with the main body of

rs29016875

rs29015574

SNP markers

rs29024867 rs41257187

Chromosome 10

Gene candidates (NCBI-BLASTN)

Name: Cytoplasmic dynein light chain Rab3A-interacting molecule Collagen |, alpha2 Integrin 5 (NWO001493888)
(NW 001492841) (NW_001495537) (NW 001494859)
Length: 442/501 474/501 500/501 76/78
Identity: 96% 99% 99% 98%
E-Value: 9 x 10122 0.00 0.00 4% 1032
Transcription factors (TRANSFAC-BLASTX)
No hits found MEF-2D Ceh-24 No hits found
(XI; T-01771) (S.Cb; T-03376)
Irx-3 RAR-33
(Mm; T-02439) (Mm; T-01339)

S.Cb, XI, and Mm stand for S. Caenorhabditis Briggsae, Xenopus laevis, and Mus musculus, respectively.
Irx, Ceh, and RAR stand for Iroquois homeobox, Caenorhabditis elegance homeodomain factor, and Retinoic acid receptor, respectively.
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Table 6: Effect of masking spermatozoa ITGBS5 protein during
fertilization.

Total Unfertilized Fertilized Not

Groups Oocytes  Oocytes Normally Determined
(N) N (%) N (%) N (%)
Anti-ITGB5* 0 330 45 (13)2 242 (74)2 43 (13)2
(ng/ml) 5 313 106 (34)> 190 (60) 17 (5)2
20 293 116 (40)° 137 (47)° 40 (14)2
Anti-BIT* 20 263 45 (17)2 190 (72)2 28 (11)2

(ng/ml)

*Bovine spermatozoa were exposed to antibodies (anti-ITGB5 and
anti-BIT) for 2 h before being using to fertilize the oocytes.
"Fertilized oocytes" refers to oocytes observed with at least one
pronucleus, while "Unfertilized oocytes" refers to those without any
pronuclei, but containing a Germinal Vesicle or Metaphase-1 or -2
structures (with only one extruded polar body).

(%) Percentage expressed on total oocytes.

a.bValues with different superscripts within the same columns are
significantly different (Student's test; p < 0.05).

literature reporting the presence of integrins mainly on
the oocyte membrane while their ligands, ADAM family
proteins, are on the sperm membrane [57,58,60,61,65].
In addition to this structural receptor function of integrins
at fertilization (participation in cell-cell and cell-matrix
interactions), integrin beta 5 might serve as a signaling
receptor that induces serial events (such as inositol lipid
turnover and protein phosphorylation) in the sperm,
affecting fertilization and early embryo development.

Conclusion

We have employed a high-density SNP genome associa-
tion study to identify loci that may play a role in fertility
in dairy cattle and significant results in two of four loci
were replicated in a second population. Functional stud-
ies, including one for genes harboring a replicated locus,
the ITGB5 gene, suggest that it may play a role in sperm-
egg interaction. These results provide a foundation for
more hypothesis-driven research in genome biology, evo-
lution, QTL mapping, and discovering genes and genomic
regions for selectable traits.
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