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Abstract

Background: Cytochrome P450 monooxygenases play key roles in the metabolism of a wide
variety of substrates and they are closely associated with endocellular physiological processes or
detoxification metabolism under environmental exposure. To date, however, none has been
systematically characterized in the phylum Ciliophora. T. thermophila possess many advantages as a
eukaryotic model organism and it exhibits rapid and sensitive responses to xenobiotics, making it
an ideal model system to study the evolutionary and functional diversity of the P450
monooxygenase gene family.

Results: A total of 44 putative functional cytochrome P450 genes were identified and could be
classified into |3 families and 21 sub-families according to standard nomenclature. The
characteristics of both the conserved intron-exon organization and scaffold localization of tandem
repeats within each P450 family clade suggested that the enlargement of T. thermophila P450 families
probably resulted from recent separate small duplication events. Gene expression patterns of all T.
thermophila P450s during three important cell physiological stages (vegetative growth, starvation
and conjugation) were analyzed based on EST and microarray data, and three main categories of
expression patterns were postulated. Evolutionary analysis including codon usage preference, site-
specific selection and gene-expression evolution patterns were investigated and the results
indicated remarkable divergences among the T. thermophila P450 genes.

Conclusion: The characterization, expression and evolutionary analysis of T. thermophila P450
monooxygenase genes in the current study provides useful information for understanding the
characteristics and diversities of the P450 genes in the Ciliophora, and provides the baseline for
functional analyses of individual P450 isoforms in this model ciliate species.

Background eukaryotes (protists, fungi) and multicellular eukaryotes
The cytochrome P450 monooxygenases (P450s) consti-  (plants and animals) [1]. They play key roles in the metab-
tute a conserved gene superfamily of heme-thiolate pro-  olism of a wide variety of substrates, including endog-

teins ubiquitously distributed in different life forms,  enous chemicals such as steroids and other important
including prokaryotes (archaea, bacteria), unicellular  small molecules, and also xenobiotic compounds includ-
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ing drugs, pesticides and environmental contaminants
[2]. Substrate and functional diversity are characteristic
features of P450 enzymes and are considered to be the
consequence of evolutionary adaptation driven by differ-
ent metabolic or environmental demands in different
organisms. Evolution and expansion of major P450
branches has been suggested to be linked with the histor-
ical occurrence of important evolutionary events. One
particular example is the divergence of P450s of the com-
mon plant-animal ancestor either to synthesize biochem-
icals/metabolites (in plants) or to detoxify xenobiotics (in
animals), followed by P450 gene expansions, especially in
the plants [3]. These may well reflect different survival
strategies adopted between the two kingdoms, i.e. plants
evolved sessile systems with P450 enzymes with more
diverse and essential roles, while animals developed
higher order sensory and locomotor systems, and compar-
atively fewer P450s [4].

Although over 9,000 P450s have been named and about
1,000 P450 genes have been characterized to date, none
has been systematically characterized in the phylum of
Ciliophora which, together with dinoflagellates and the
exclusively parasitic apicomplexa, constitute the three
major evolutionary lineages that make up the alveolates
[5]. The unicellular ciliate Tetrahymena thermophila is a
free-living protozoan widely distributed in freshwater and
estuarine environments, elaborating typical eukaryotic
components (e.g., microtubules, membrane systems) into
a highly organized cell whose structural and functional
complexity is comparable to, or exceeds that, of human
and other metazoan cells [6]. The physiology, biochemis-
try and molecular biology of Tetrahymena are well charac-
terized [7], and it is an excellent model organism for
toxicological and ecotoxicological studies in aquatic toxic-
ity test systems [8,9]. Results from the EST project [10] and
the macronuclear genome sequencing project [11] have
shown that, although single-celled, Tetrahymena possesses
core processes conserved across a wide diversity of eukary-
otes (including humans) that are not found in other uni-
cellular model species such as the yeasts Saccharomyces
cerevisiae and Schizosaccharomyces pombe. It also contains a
large number of gene families that are involved in proc-
esses associated with sensing and responding to environ-
mental cues. In the case of the cytochrome P450 gene
family, S. cerevisiae and S. pombe have only three and two
P450s, respectively [4], while in T. thermophila the number
is more than 40 (this study), which is close to the typical
number (50-80) in a vertebrate genome [12].

In humans and other mammals, extensive studies have
focused on aspects of P450 gene structure and biochemi-
cal properties. Important biological functions of P450s
and the associated high degree of complexity in the gene
polymorphism and expression patterns have been dem-
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onstrated [13]. As genomic databases became available
and functional genomics techniques such as DNA-micro-
arrays have been applied, investigations on P450 isoforms
have also been extended to other organisms (birds, crus-
taceans, insects, fungi, plants) (see [14] for a recent
review). These developments have, in turn, led to the
emergence of a new field, ecotoxicogenomics [15], which
aims to develop effective tools for identification of possi-
ble toxic environmental pollutants by characterizing their
effects on terrestrial and aquatic model organisms, such as
the soil-dwelling nematode Caenorhabditis elegans [16],
the aquatic crustacean Daphnia magna [17], and the small
fish fathead minnow (Pimephales promelas) [18].

We previously identified a series of differentially
expressed ESTs of T. thermophila that respond sensitively
to treatment with the organochlorine insecticide DDT
[19]. One EST (GenBank accession No. CF653700) was
identified to be a P450 gene by homology searches, and
its expression levels under different concentrations of
DDT treatment were further assessed. Recently, the first
genome-wide microarray platform containing the pre-
dicted coding sequences (putative genes) has been estab-
lished and validated in T. thermophila and was used to
study gene expression during three major stages of the
organism's life cycle: vegetative growth, nutrient starva-
tion and conjugation [20]. Substantial progress has also
been made in closure and reannotation of the MAC
genome sequence of this eukaryotic model organism [21].
All these provided us the opportunity to investigate both
the functional and evolutionary characteristics of the cyto-
chrome P450 genes in T. thermophila at the genomic level.

In this study, the putative T. thermophila P450 genes that
were previous identified both by the International
Nomenclature Committee (Nelson's P450 Homepage
http://drnelson.utmem.edu/CytochromeP450.html) and
by the TIGR genome annotation team were further
checked by EST data and through cDNA sequence cloning
experiments for improvement of annotation. The expres-
sion patterns of the T. thermophila P450 genes during three
important cell physiological/developmental conditions
(growth, starvation and conjugation) were analyzed based
on EST and microarray data. These results are discussed in
the context of understanding the characteristics of the T.
thermophila P450 monooxygenase isoforms and their
functional and evolutionary diversity.

Results and discussion

T. thermophila putative P450 gene sequences

The putative cytochrome P450 gene sequences in T. ther-
mophila were initially identified in 2004 by Dr. Nelson
based on an early TIGR release of its macronuclear
genome assemblies, and 47 P450-like genes (and frag-
ments) were posted on his P450 website http://drnel
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son.utmem.edu/tetrahymena.FASTA.htm. When the draft
whole genome of T. thermophila was sequenced and
reported in 2006, 41 P450 genes were predicted by the
TIGR genome annotation team [11]. In this study, we
retrieved the putative T. thermophila P450 genes from
above two locations and further searched against the TGD
(Tetrahymena Genome Database) utilizing the updated
annotation (Aug. 2007). The obtained P450-like gene
sequences were thereafter compared. Then, we used the
data from two EST database resources (NCBI and
TBestDB) and our own RT-PCR investigations to verify the
accuracy of the predictions.

A total of 44 putative cytochrome P450 gene sequences
with full-length ORFs were identified in T. thermophila
and were assigned names as suggested by the "P450
nomenclature committee" (Table 1). Our results showed
that the gene predictions made by Nelson are more accu-
rate than those presented by the TIGR annotation. The
TIGR predictions have some errors in identifying the start
codons, especially the signal peptide, and intron-exon
boundaries of several P450s are inaccurate. In one case, it
merged 3 adjacent P450 genes (CYP5013A1, CYP5013C1
and CYP5013B1) into one "monster" gene (3,150 amino
acids, 9.5 kb and 27 exons), which also includes two inter-
genic regions plus 1.3 kb upstream of CYP5013A1 (Addi-
tional file 1). For many other P450 genes, the TIGR
annotations are systematically short, presumably due to
its failure to recognize the signal peptide at the 5' end. This
problem may arise if the hydrophobic region is coded by
AT-rich codons, which are not easily distinguished statis-
tically from the AT-rich intergenic regions (E. Orias, Per-
sonal Communication). For all the 44 P450 genes, only
three sequences (CYP5008A1, CYP5011A1 and
CYP5012A1) were modified slightly in our annotation
compared with the predictions made by Dr. Nelson.

There were four P450 pseudogenes (fragments) in Nel-
son's  predictions (CYP5005A5P, CYP5005A7P,
CYP5005A12P and CYP5005A13P, "P" stands for
"pseudo"). It was revealed that one (CYP5005A5P) was a
probable pseudogene due to the presence of in-frame stop
codons, and two partial fragments (CYP5005A12P and
CYP5005A13P) with typical P450 sequence features
appeared to be missing the N-terminus. These sequences
were not included in the following analysis of the T. ther-
mophila putative P450 genes. However, when checking the
cDNA sequences of putative T. thermophila P450 genes, we
identified one transcription product that is most identical
to the predicted pseudogene "CYP5005A7P" which has an
in-frame TGA codon (the only stop codon in T. ther-
mophila) within its ORF. Compared with the
"CYP5005A7P" sequence, the EST of the cDNA transcript
has several site mutations including one nucleotide tran-
sition (A to G) within the in-frame stop codon found in
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the genomic sequence, and thus can be read through.
However, a Blast search of the T. thermophila whole
genome database failed to detect any sequence that com-
pletely matched this cDNA sequence. Thus we designed a
pair  of  primers (5005A7_Genome_Fw  and
5005A7_Genome_Re) located in either the 5' or 3' flank-
ing region of the "CYP5005A7P" sequence, and obtained
a 2.1kb PCR amplification product that was sequenced.
Due to the possibility that different P450 isoforms may
exist in different T. thermophila strains, we checked the
PCR products both from the genomic DNA of strain
SB210 (the strain that used for the T. thermophila macro-
nuclear sequencing project) and CU428. The results
showed that the PCR products from the two strains were
100% identical and were also consistent with the
sequence of the unexpected cDNA transcript. We thus
assigned the name CYP5005A7 to this newly observed
P450 isoform. Further, Blast searches in the TBestDB and
NCBI EST database either found one sequence in each that
perfectly matched the CYP5005A7 sequence (TBestDB
accession No. TTL00012823, cDNA library from a T. ther-
mophila CU strain; GenBank accession No. EC269404,
cDNA library from the T. thermophila strain SB210, respec-
tively). Besides, the microarray data demonstrated that the
corresponding cDNA transcript was constantly expressed
during the different cellular conditions. All the above
observations serve as evidence that CYP5005A7 is a func-
tional P450 gene in both the T. thermophila CU and SB210
strains. The erroneous prediction of the pseudogene
"CYP5005A7P" by TIGR was probably due to false assem-
bly of genome sequence contigs, caused by the high simi-
larity between the CYP5005A5P and CYP5005A7
sequences (Additional file 2).

Structural features and intron-exon organization

P450 genes are classified and annotated on the basis of
amino acid sequence identity, phylogenetic homology
and gene organization, and a four-digit naming system
has been set up to meet the need of the increasing number
of newly discovered P450 sequences. All the T. thermophila
P450 sequences are distributed into 13 families and 21
sub-families according to the nomenclature criterion of
sequence similarity (>40% as a family and >55% as a sub-
family) [22], indicating P450s exist as a large gene family
in this organism. The phylogenetic analysis of T. ther-
mophila P450 genes obtained using either a neighbor-join-
ing tree or a maximum-likelihood tree gave similar
topological nodes, and bootstrap testing showed good
reliability of the phylogenetic tree (Figure 1, Additional
file 3).

The largest expanded P450 family in T. thermophila is the
CYP5005 family that contains 16 likely functional P450
genes (purple in Figure 1) and the two predicted pseudo-
genes (not indicated). The CYP5010 family (blue in Fig-
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Table I: The 44 T. thermophila putative P450 genes.
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Gene ID GenBank accession No. Scaffold GenBank accession No. Loc EST accession No.

CYP5001A1 TTHERM_ 00408880 CH445583 /

CYP5002A1 TTHERM 00516350 CHA445658 S DY683840/CX578941/CX580685

CYP5003A1 TTHERM 00112850 CH445735 S

CYP5004A1 TTHERM 00191380 CH445644 S

CYP5005A1 TTHERM 00198200 CH445786 S

CYP5005A2 TTHERM 00198210 CHA445786 S

CYP5005A3 TTHERM 00198220 CHA445786 S

CYP5005A4 TTHERM 00198230 CHA445786 S

CYP5005A6 TTHERM 00198320 CH445786 S

CYP5005A7 TTHERM 00198340 CHA445786 S EC269404

CYP5005A8 TTHERM_ 00200550 CHA445786 S

CYP5005A9 TTHERM 00201580 CH445786 S

CYP5005A10 TTHERM 00201630 CHA445786 S CX583778/CX575364

CYP5005A14 TTHERM 00227020 CH445668 S

CYP5005A15 TTHERM 00898320 CH445574 S

CYP5005A16 TTHERM 00101170 CH445709 S

CYP5005A17 TTHERM 01398470 CH670446 S CX579342

CYP5005A18 TTHERM 01122770 CH445602 S EC269907/DY677658/DY677657/EC269908

CYP5005A19 TTHERM 01122780 CH445602 S DY679355/DY679356/CX58056 | /EC269178/EC269178/
CX583603/CX583579

CYP5005A20 TTHERM 01369770 CH445637 S

CYP5006A1 TTHERM 00185610 CH445770 S DY677831/DY677832

CYP5007A1 TTHERM_00620930 CHA44562 1 S

CYP5007B1 TTHERM 00283410 CH445618 S

CYP5007C| TTHERM_ 00283420 CH445618 S EC274613/EC274614

CYP5008A1 TTHERM 00101290 CH445709 S CN592969/DY679809/CN593 1 | 1/BM40087 1/CF653700

CYP5008A2 TTHERM 01280630 CH445497 S TTLOOO12665*

CYP5009A1 TTHERM_ 00444460 CH445552 S

CYP5010A1 TTHERM 00723150 CH670361 S

CYP5010A2 TTHERM 01250020 CHA445573 S

CYP5010A3 TTHERM 01698320 CH445507 S DY683602

CYP5010A4 TTHERM 00754730 CH445616 S

CYP5010A5 TTHERM_ 00754700 CH445616 S DY683602/CX586098

CYP50108B1 TTHERM_00129890 CHA445650 S DY683352/CX59151 1/CX571835/BM399027

CYP5010CI TTHERM 01415170 CH670449 S

CYP5010C2 TTHERM 00449550 CHA445687 S

CYP501 1Al  TTHERM 00527100 CH445398 S CX588690

CYP5012A1 TTHERM_ 00137750 CH445601 S TTLOOOI I 142*

CYP5012A2 TTHERM 01250020 CHA445573 S

CYP5013A1 TTHERM_ 00437540 CHA445623 S DY677981/EC271015/BM400694/EC271842/EC272511/
EC270080/EC270079/CX585070/CX584716/CX579033/
DY677982/CX577930/DY680538/CX574127/EC272512/
BM399152/CX577367/CX579948/DY678167/CX572624

CYP5013BI TTHERM_00437540 CHA445623 S

CYP5013C| TTHERM_ 00437540 CHA445623 S

CYP5013C2 TTHERM 00241770 CHA445533 S

CYP5013D1 TTHERM_ 00395750 CH445712 S BM399816/BM396441/BM399815

CYP5013E|I TTHERM_00313500 CH670346 S EC269139/EC270428

Gene ID, GenBank accession numbers, Scaffold GenBank accession numbers, EST accession numbers and predictions of sub-cellular localizations

were listed. S: secretory pathway. *: Found only in TBestDB.

ure 1) and the CYP5013 family (orange in Figure 1) were
"medium"-expanded P450 families in T. thermophila that
possessed 8 and 6 genes, respectively. Moreover, 10
CYP5005 family members are located on the same scaf-
fold (CH445786), which contains a gene cluster in the
form of tandem repeats with four genes (CYP5005A1,
CYP5005A2, CYP5005A3 and CYP5005A4) and one pseu-

dogene (CYP5005A5P) in the same orientation. Three
CYP5013 family members (CYP5013A1, CYP5013B1 and
CYP5013C1) form a tandem triplicate repeat on the scaf-
fold CH445623. Besides these, there are three other P450
gene pairs (CYP5005A18 and CYP5005A19, CYP5007B1
and CYP5007C1, CYP5012A1 and CYP5012A2) organized
in tandem duplication. Such a feature is consistent with
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the gene expansion strategy used by some other lower
eukaryotic genomes, particularly those who have evolved
to meet an extensive demand for generation of a broad
range of metabolites in the secondary metabolism when
interacting with the environmental niches. For example, it
was revealed that the majority of the multigene P450 fam-
ilies in the model white rot fungus Phanerochaete chrysospo-
rium appear to have expanded locally in its genome as a
result of extensive gene duplications and rearrangements,
indicating a strong need for functional divergence in
response to environmental stimuli [23].

The intron-exon organization of P450 genes exhibits a
diversity of gene structure with indicating that multiple
gains and losses of introns have occurred during the evo-
lution of P450 genes in diverse species, with little conser-
vation of intron positions among divergent P450 families
[24,25]. Intron positions were mapped and characterized
for all 44 putative T. thermophila CYP genes (Figure 1). Of
the 48 introns that were identified in the P450 gene
sequences, 13 were phase zero (27.1%), 16 were phase I
(33.3%) and 19 were phase II (39.6%). Meanwhile, based
on the definition of the UIP (introns that occupy a unique
position in the alignment) [26], 27.1% (13) of the total
introns were unique and the remaining 35 introns were
present in 7 consensus locations (introns shared by all
members within a family at the same aligned position)
among three different family clades. Sixteen P450 genes
lack introns entirely. Five genes (CYP5002A1,
CYP5003A1, CYP5011A1, CYP5012A1 and CYP5012A2)
have the maximum number of four introns, respectively.
From Figure 1, it can be observed that there is a good cor-
relation between the conservation of intron position and
phylogenetic relationships of T. thermophila P450 sub-
family members. The evolution of introns in alveolates
was recently studied by Nguyen et al. [27], who concluded
that the rates of intron gain and loss were more or less
constant in the last ~800 Myr after Tetrahymena branched
off. Therefore, it can be inferred that the enlargement of
several P450 families in T. thermophila resulted from
recent separate small duplication events, which is also
apparent within many other Tetrahymena protein families
containing paralogous genes [11].

Our analyses of the EST data to determine the intron
boundaries also revealed that the CYP5013A1 gene might
exhibit alternative intron splicing. Alternative splicing was
suggested to be an uncommon phenomenon in T. ther-
mophila, at least under the several growth conditions that
have examined [21]. CYP5013A1 had the greatest number
of ESTs of all T. thermophila P450 isoforms. Among the 26
retrievable EST sequences, 25 represented the correct tran-
scriptional product of CYP5013A1, while one (GenBank
accession No. FF565796) retained the first intron. The dif-
ferent transcripts were further investigated by RT-PCR. An
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intron-containing transcript was observed in PCR prod-
ucts both from the cDNA templates of starvation and con-
jugation stages, but was barely detectable from vegetative
growing cells (data not shown). The retained intron in
CYP5013A1 is 53 bp in length and belongs to phase I type.
Thus, the putative intron-containing transcript should
contain a frame-shift mutation. RNA transcripts carrying
such premature stop codons can be prevented by the
NMD pathway [28]. Recently, this pathway was found to
play an essential role in another ciliate, P. tetraurelia, by
knocking down the two homologous genes encoding
UPF1, a protein which is crucial in NMD, thus indicating
a universal translational control of intron splicing in
eukaryotes based on NMD surveillance [29]. A blast
search of the T. thermophila genome using P. tetraurelia
UPF1 genes as queries revealed the existence of one
homolog with 70% identity (GenBank accession No.
TTHERM 00726300). Thus, intron retention in the
CYP5013A1 transcript might be caused by inefficient
NMD activity during specific physiological/developmen-
tal stages. However, it would lead to a mature "non-sense"
transcript and could only serve to down-regulate expres-
sion of the CYP5013A1 gene. Whether such rarity of alter-
native splicing in this species may simply be tolerated or
directed by other mechanisms, is currently unknown.

All known P450s appear to take on a similar folded struc-
ture, yet frequently show less than 30% sequence identity
and have very different substrates [30]. In T. thermophila,
the average length of the P450 amino acid sequences in
the alignment is around 500 amino acid residues (Figure
1), and the genes share different degrees of amino acid
sequence conservation between different families. To bet-
ter understand the structure and functional relationship
of P450 enzymes, mammalian P450 CYP3A4, seven T.
thermophila P450 sequences (CYP5002A1, CYP5005A18,
CYP50077C1, CYP5008A1, CYP5011A1, CYP5012A1 and
CYP5013A1) and one Paramecium tetraurelia P450
sequence (CYP693A1, ParameciumDB accession No.
GSPATP00036495001) were selected and aligned (Figure
2). Secondary elements were then assigned using CYP3A4
as the template for secondary structure, based on its
known crystal structures and six putative SRSs were iden-
tified in the aligned sequences according to Gotoh's pre-
dicted models [31]. SRSs participate in the contact with
ligands and many of them locate at regions with variable
structural elements. All the T. thermophila P450 sequences
contain the typical conserved P450 domains, including
the heme-binding region (FXXGXRXCXG) near the C-ter-
minal, the PERF domain (PXRX) and the K-helix (EXXR).
Multiple sequence alignment also revealed that some res-
idues are identical across T. thermophila P450s; most of
these are distributed in the five regions that constitute the
conserved P450 structural core, including: the C helix
(a4), the C-terminal part of the E helix (a7), the I helix
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Figure 2

Multiple sequence alignment and secondary structure elements assignment. The alignment of 7 representative T.
thermophila P450 genes and one predicted P. tetraurelia P450 gene (CYP693A1, ParameciumDB accession No.
GSPATP00036495001) with the mamalian CYP3A4 protein sequence. Substrate recognition sites (SRSs) |—-6 were manually
determined. The heme-binding region (FXXGXRXCXG), PERF domain (PXRX) and K-helix (EXXR) were indicated with blue
triangles respectively. The alpha helices are marked as alpha or eta based on the automatic assignment according to the tem-
plate of CYP3A4 protein structure in the program ESPript.
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(a13), the J helix (a14), and the heme-binding loop
between helix K (e16) and L (a18) (Figure 2, Additional
file 4).

T. thermophila P450 member composition

Prediction of sub-cellular localization of the CYP proteins
showed that no predicted mitochondrial localized P450
was found in T. thermophila (Table 1), and all of the genes
except CYP5001A1 encode a putative typical microsomal
signal peptide of about 20 hydrophobic residues that
likely serves as a membrane anchor in the endoplasmic
reticulum. The secretory pathway of eukaryotic cells con-
sists of a series of discrete, membrane-bound compart-
ments, including the ER, Golgi, and vacuoles [32], all of
which are present in Tetrahymena [7]. For CYP5001A1, the
predicted signal sequence was ambiguous and also lacked
the positively charged residues in this N-terminus critical
for endocellular transportation targeting. So far, mito-
chondrial P450s have been described only in the animal
kingdom [4,25]. As with T. thermophila, none was found
in fungi and plants. These observations support the sug-
gestion that mitochondrial P450s did not originate from
the ancestral mitochondrial endosymbiont, but evolved
later, possibly by mistargeting of microsomal P450s [33].

CYP51 is the only P450 family that has orthologs in mul-
tiple phyla of the animal, plant, fungal and bacterial king-
doms, and it has been postulated to be the ancestral P450
isoform [34]. This family is functionally conserved and
has a very limited range of substrates related to the biosyn-
thesis of sterols and their derivatives, and a high conserva-
tion within the SRSs is a specific feature of CYP51. It was
believed that two motifs, "YxxF/L(i)xxPxFGxxVxF/YD/a"
and "GQ/hHT/sS", present within the regions of SRS1 and
SRS4, respectively, can be considered as the CYP51 signa-
ture [35]. In this study, no CYP51-like gene has been iden-
tified with such a signature in the T. thermophila P450
family. So far, all studied CYP51 family members were
found to exhibit catalytic function in the oxidative
removal of the 14a-methyl group from sterol precursors
formed downstream from cyclization of squalene 2,3-
epoxide, and the 140-demethylated products are interme-
diates in the sterol biosynthetic pathways leading to for-
mation of cholesterol in animals, ergosterol in fungi and
a variety of functional sterols in plants and algae [35,36].
CYP51 appears to be absent in insects and nematodes due
to the fact that they don't make cholesterol and lack the
post-squalene sterol biosynthesis pathway, and absence
of the CYP51 gene was thought to be the consequence of
gene loss during evolution [25]. Thus, a similar CYP51
gene loss may be inferred in T. thermophila. Instead of the
sterols in most other eukaryotes, Tetrahymena produces
the pentacyclic triterpenoid alcohol 'tetrahymanol' and/or
hopanoids de novo as functionally equivalent structural
components of cell membranes, and its ability to synthe-
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size and use this "primitive" substance can be considered
as a metabolic relic [37]. Besides, although T. thermophila
is able to incorporate exogenous sterols into cell mem-
branes and convert those to various derivates, it utilize
enzymes other than P450s in the downstream metabo-
lism of certain steroid compounds, such as the cyto-
chrome b5 in the direct desaturation reaction of
cholesterol [38].

The ciliate P. tetraurelia is the species closest to T. ther-
mophila that has an available genome database and phyl-
ogenetic analyses between these two species can help to
understand the evolutionary relationship of T. thermophila
P450 families with other ciliate members. A phylogenetic
network was constructed of both the T. thermophila and P.
tetraurelia P450 protein sequences (Figure 3). In the
branch that constitutes three P. tetraurelia P450 genes
(CYP688A1, CYP690A1 and CYP690A2), two genes from
T. thermophila (CYP5002A1 and CYP5003A1) also present
and cluster together. However, according to the deep
branching of these sequences and the relatively low boot-
strap values on the branch nodes (50%), there is yet no
strong evidence supporting the possibility that they repre-
sent orthologs shared by the two species. Surprisingly, the
other major clades of P450 genes seem to be highly spe-
cific to T. thermophila or to P. tetraurelia. Moreover, the
number of P450 genes in P. tetraurelia is less than half of
that in T. thermophila, and Blast searches in different EST
databases revealed that only about 1/3 of the P. tetraurelia
P450s have retrievable EST data (C. Fu, unpublished
observations). It has been pointed out that while Tetrahy-
mena and Paramecium are related species within the
diverse clade of ciliates, their genomes have obviously
evolved by significantly different mechanisms [39]. The
Paramecium genome has gone through a series of whole
genome duplications and may exhibit the most com-
pletely preserved whole-genome duplication described to
date, where ~95% of the genome is located in duplicated
blocks [40]. By contrast, although up to 40% of the T. ther-
mophila genome was also indicated to be located within
duplicated blocks, the most of the large expansions of its
gene families may have arisen through tandem duplica-
tion events [41]. While differences in the P450 genes in
the two species may reflect the difference in evolutionary
strategies between the two organisms since their diver-
gence, further investigations are needed to address the
adaptive significance of these diversities relative to the
well known functions of cytochrome P450s in sensing of
and responding to environmental changes, particularly
environmental stress.

P450 gene expression analysis

Spatial and temporal gene expression patterns are impor-
tant aspects of gene regulation and expression pattern
analysis has played an important role in the study of the
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Figure 3

The phylogenetic network of the T. thermophila and P. tetraurelia P450 protein sequences. Green: P. tetraurelia;

Blue: T. thermophila. Bootstrap values are indicated on each node.

cytochrome P450 gene superfamily. In the present study,
the gene expression patterns of all T. thermophila P450s
during three important cell physiological stages were ana-
lyzed based on EST and microarray data.

To examine the expression profiles of the P450 genes, we
initially retrieved the EST data of T. thermophila from both
in the NCBI EST database and the taxonomically broad
EST database (TBestDB) (Apr. 2008) that had been
derived from cDNA libraries made from cells in different
physiological conditions. The ESTs matching with a corre-
sponding predicted P450 gene are listed in Table 1, which
indicates that the gene of origin is expressed and the num-

bers of ESTs found could be considered as a first indica-
tion of the relative expression abundance of that gene. For
example, ESTs derived from a few P450 genes
(CYP5005A18, CYP5005A19, CYP5008A1, CYP5010B1,
CYP5013A1 and CYP5013D1) were found a number of
times and their relatively high expression levels were also
checked by semi-quantitative RT-PCR analysis, while ESTs
from many other P450s were not identified at any of the
examined cell physiological/developmental stages. While
EST analyses enabled the localization of introns and dem-
onstration of a likely case of alternative splicing, due to
random fluctuation in EST numbers and differences
between the sizes of each library, the total EST counts in
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different cDNA libraries cannot be rigorously compared
for quantifying the relative amounts of the expressed
genes in different physiological states.

Therefore, a more comprehensive analysis of the gene-
expression patterns of the each T. thermophila P450 family
member was done by whole-genome microarray analyses
of RNAs from three different cell physiological/develop-
mental conditions (vegetative growth, nutrient starvation
and conjugation). Cluster analysis of the heat map of the
P450 expression profiles among the different conditions

http://www.biomedcentral.com/1471-2164/10/208

showed all the P450 genes could be clustered into three
major clades on the basis of their basal expression levels
and dynamic fluctuation patterns during the three differ-
ent stages. Generally, three main categories of expression
patterns could be postulated. The first category contains
P450 genes that are silent or have relatively low expres-
sion levels during all the experimental conditions and
time scales (most genes in clade A in Figure 4). One sur-
prising phenomenon is that most of the P450 isoforms
within this group come from branches having many para-
logs in the phylogenetic clade, such as the CYP5005 and

A
|
- - | i '
|
B | i s R 0
e ;
1 ' '
\ | 00
I | l
| | | [ |
C [
Figure 4

Heatmap of T. thermophila P450 gene expression patterns. The levels of expression are illustrated by different grades
of color scale determined on the basis of the microarray data, as indicated from the top bar (From left to right): Dark color:
low expression; light color: high expression. P450 gene names are shown on the y-axis and the three physiological stages exam-
ined on the x-axis. The "monster gene" represents the false prediction of merging the three P450 genes (CYP5013A1,
CYP5013CI and CYP5013B1) into one gene by TIGR, resulting in their being combined on the microarray. Vegetative growth:
L-1, low cell density (100,000 cell/ml); L-m, medium density (350,000 cell/ml); L-h, high cell density (1,000,000 cell/ml); Starva-
tion: S0, 0 h; S3, 3 h; S6, 6 h; $9, 9 h; S12, 12 h; SI5, 15 h; S24 24 h; Conjugation: C0, 0 h; C2,2 h;C4, 4 h; Cé, 6 h; C8, 8

h; C10, 10 h; C12, 12 h;Cl14, 14 h; C16, 16 h; C18, I8 h.
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CYP5010 family. Although these genes are possibly
becoming pseudogenes after relatively recent duplication
events, the transcriptional activities of these genes at a spe-
cific physiological phase other than the three major ones
examined here, or under some xenobiotic stimulus can-
not yet be excluded.

Secondly, nearly 50% of all the P450 isoforms, including
the mostly highly expressed isoforms (CYP5005A18,
CYP5008A1, CYP5008A2, CYP5010B1, CYP5012A2 and
CYP5013D1) are constantly expressed at all life cycle
stages, although their expression levels may vary to differ-
ent extents (clades B and C in Figure 4). These genes prob-
ably take part in constitutive, endogenous physiological
processes. It should be pointed out that, due to an errone-
ous prediction of the TIGR genome sequence that merged
three adjacent P450 genes (CYP5013A1, CYP5013C1 and
CYP5013B1) into one "monster" gene when the microar-
ray was designed; the separate microarray data for these
three genes were unavailable. However, by manually
checking the signal of 5 of the 14 oligonucleotide probes
whose position correctly matched the putative
CYP5013A1 gene, its high expression level could be
inferred. The EST information of CYP5013A1 also sup-
ports this conclusion.

The last category consists of five P450 genes whose expres-
sion levels varied markedly at specific time points or dur-
ing one of the three physiological conditions that have
been examined, including CYP5005A1, CYP5005A16,
CYP5005A19, CYP5005A20 and CYP5010C2 (Figure 5).
This probably indicates their involvement in some impor-
tant, stage-specific endogenous cellular process. Starva-
tion is not only a distinct physiological state that
Tetrahymena likely encounters in its freshwater environ-
ment, but it also induces numerous phenotypic and
behavioral changes resulting in the acquisition of compe-
tence for mating [42]; The nuclear events that occur in
conjugating Tetrahymena have clear parallels in multicel-
lular eukaryotes and include meiosis, pronuclear forma-
tion, pronuclear fusion, postzygotic divisions, and
cytoplasmic determination of nuclear fate [43,44]. Thus,
further studies are necessary to correlate the expression
level of specific P450 isoforms with stage-specific cellular
processes.

Meanwhile, expression studies of T. thermophila cyto-
chrome P450 genes when exposed to specific chemical
substances are currently under investigation. Among the
P450 genes that are not expressed in the three major phys-
iological/developmental states, at least three of these iso-
forms (CYP5007C1, CYP5010A4 and CYP5010A5) are
transcriptionally active under different xenobiotic stresses
(W. Miao and C. Fu, unpublished microarray data), sug-
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gesting that they may play a role in the metabolism and
biotransformation of some chemical compounds.

Evolutionary analysis of T. thermophila P450 genes
Codon-usage analysis

Codon usage bias in genes is an important evolutionary
phenomenon and has been widely examined among
prokaryotic and eukaryotic organisms. Firstly, since the
codon bias can be shaped by preferences at the level of
nucleotide, specifically the GC content levels of the cod-
ing regions, we carried out a relative neutrality plot analy-
sis (GC12 plotting against GC3s) of the T. thermophila
P450 genes (Figure 6A). Unlike GC3s, GC1 and GC2 are
subject to functional constraints against change because a
mutation at these positions usually leads to an amino acid
change, except between some codons of arginine, leucine,
or serine [45]. The neutrality plot of the T. thermophila
P450 genes showed that there is a significantly positive
correlation (p < 0.01) and the correlation coefficient was
0.433, indicating that the effect on the GC contents by the
intragenic GC mutation bias was similar at all three codon
positions. Since both the neutral mutation and selective
constraint play roles in shaping codon usage pattern of
gene sequences [45], this suggests that there were rela-
tively high mutation biases or low conservation of GC
content levels among the T. thermophila P450 genes.

Secondly, if translational selection pressure influences the
shaping of codon usage, the bias would show significant
positive correlation to expression levels and some transla-
tion-preferred codons should be used more frequently
than others. Thus, we calculated the two often used meas-
ures of codon usage bias, the CAI [46] and the ENc [47] of
each T. thermophila P450 gene,. Among the most highly
expressed P450 genes (clade C in Figure 4), three isoforms
(CYP5008A1, CYP5010B1 and CYP5013D1) have a CAI
value above 0.6, which is significantly above that of the
average (0.421) following a student's t test (p < 0.05).
Meanwhile, four P450 genes (CYP5005A18, CYP5008A2,
CYP5012A2 and CYP5013A1), although exhibiting a sim-
ilar high basal expression level, showed a CAI value close
to, or even less than, that of the average. Thus, no simple
trend exists between the expression levels of P450 genes
and the codons they use. Meanwhile, in the ENc-plot
analysis, if a given gene is only subject to G+C composi-
tion mutation constraint, it will lie above or just below the
standard curve. From Figure 6B, it can be seen that while
the most T. thermophila P450 genes had ENc values
slightly smaller than expected ones, the three genes with
the significant high CAI values displayed a more biased
codon usage according to the respective GC3s, indicating
that they are probably under pressure from direct expres-
sion selection.
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Gene expression patterns of P450 genes that belong to the third category. This category consists of P450 genes
whose expression levels varied markedly at a specific time period or under a certain physiological condition. Gene relative
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Figure 6

Codon usage in T. thermophila P450 genes. A: Neutrality plots (GC12 vs. GC3s). The regression line: y = 0.1435x +
0.2853, r2 = 0.1877, OP (optimal point) = 0.333. OP indicates the point at which the regression line crossed the diagonal line.
B: The Effective number of codons (ENc) plotted with the GC3s for each predicted P450 gene. Each expected ENc from GC3s
is shown as a standard curve. C: Correspondence analysis of the relative synonymous codon usage (RSCU) values. A plot of
the two most important axes after the correspondence analysis was shown. The three P450 isoforms (CYP5008A1, CYP5010B1
and CYP5013D1) that each has a CAl value above 0.6 were indicated with brown, orange and red color dot, respectively. The
rest of the T. thermophila P450 genes were shown with a blue dot.
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The correspondence analysis on the RSCU was also per-
formed to avoid identification of trends in codon usage
due to biased amino acid usage among the genes. RSCU
of T. thermophila CYP genes detected one major trend on
the first axis of inertia which accounted for 26.05% of the
total variation and was approximately three times as
much of the variation as the second axis (8.87%), and no
other axes accounted for more than 7.34% of the total var-
iation, respectively. The codons of T. thermophila CYP
genes that make the major contributors to this pattern
showed preference for ending in C, including CCC (Pro-
line), UCC (Serine), CUC (Leucine), GUC (Valine), CAC
(Histidine) and AUC (Isoleucine), and this might indicate
that codons ending in C could lead to better translational
accuracy/efficiency. Besides, Axis 1 was significantly corre-
lated to GC and GC3s (r=0.913, 0.931, p < 0.01, Pearson
correlation coefficient), but not to ENc (r = 0.074, p >
0.05). While this result implies that the nucleotide com-
position mutation could be considered as the relatively
major factor in shaping the codon usage in P450 genes, it
should be taken into account that the robustness of our
current analysis would be limited by the relative small
quantities of calculated genes. A recent study reported that
there was a very small but significant correlation between
the ENc and expression level (estimated based on the EST
counts) in T. thermophila [48]. However, in Miao et al. [20]
the authors found that while most codon-biased genes
(95%) are expressed constitutively and at high levels, only
a fraction of highly expressed genes (<15%) are codon-
biased. This may well reflect that the genome-wide micro-
array analyses covered a wide range of physiological/
developmental stages and are subject to less bias than
non-saturated, random analyses of ¢DNAs. Thus,
although the overall codon usage biased is determined by
nucleotide composition mutation in T. thermophila, the
presence of a preferred gene subset is under pressure from
direct expression selection which probably results from
the large effective population size of this species [49]. It
has been reported that in the bacteria Bacillus subtilis [50]
and Chlamydia trachomatis [51], the synonymous codon
usage appeared to be determined by both the neutral
mutational biases and translation selection. Therefore,
while genes within one species often share a single codon
usage pattern, exceptions also exist, especially among
microorganisms.

Site-specific selection of duplicate P450 genes

The two largest P450 families in T. thermophila (CYP5005
and CYP5010) were chosen for investigating whether dif-
ferent evolutionary pressures exist on particular sites of
P450 isoforms. Here the rates of substitutions that
occurred within the coding regions of the family members
were calculated for all types of selection (purifying, neu-
tral and positive). Different rates of substitutions were
estimated to occur within the coding regions among the
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two family members. The obtained Ka/Ks ratios were
between low (<1) to median (= 1) along the whole
sequences, and were especially low among some residues
that represent some core P450 structure regions, indicat-
ing strong negative selection on these structural regions.
This suggests they are functionally important sites in cata-
lytic reactions and may experience restriction of deleteri-
ous mutations. Meanwhile, no positive selection was
indicated at any specific site along the rest of gene coding
regions, suggesting a divergent or neutral evolution proc-
ess among both the CYP5005 and CYP5010 family mem-
bers (Additional file 5).

In ciliate species, fast protein evolution has been reported
for several genes, and was suggested to be the conse-
quence of either relaxed functional constraint on the
nucleosomes of amitotic macronuclei or of adaptive evo-
lution through gene duplication coupled with the ciliates'
highly processed macronuclear genomes [52]. The low
expression levels of many isoforms within the CYP5005
family, suggested they might have undergone pseudogene
formation. However, the possibility cannot be ruled out
that some members of these groups serve as inducible
P450 isoforms that function when the cell contacts spe-
cific xenobiotic compounds from the environment. In a
recent comparative genome analysis of vertebrate cyto-
chrome P450 genes [12], it was suggested that all of the
CYP genes that encode enzymes with known endogenous
substrates are phylogenetically stable, characterized by
few or no gene duplications or losses. In contrast, the
unstable P450 genes that are characterized by frequent
gene duplications and losses were found to constitute
most of those that encode enzymes that function as xeno-
biotic detoxifiers. Besides, adaptive evolution has also
been estimated to occur restrictively on those duplicated
CYP450 genes at the amino acid sites within the SRSs
regions in the protein structure. This may be due to their
functional association with unstable environmental inter-
actions such as toxin and pathogen exposure. Such spe-
cific xenobiotic-driven P450 gene expansion events were
also observed in D. melanogaster [53] and C. elegans [54].
The relatively high heterogeneity among the major clades
within the T. thermophila P450 family members, along
with their diverse expression patterns suggested that a
similar situation might be occurring in this organism.

Expression divergence of duplicate P450 genes

In evolving genomes, change in gene expression is one
important mechanism that can lead to retention of dupli-
cate genes, and studying the gene expression patterns has
been suggested to be an important measure of gene func-
tions that can facilitate our understanding of the genetic
basis of evolutionary change [55,56]. High-throughput
approaches, such as microarray techniques, provide an
opportunity to investigate gene expression of whole
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genomes simultaneously, allowing studies of how differ-
ent genes respond to a certain environmental stimuli and
the general gene expression patterns among various gene
families that were categorized into different cellular func-
tions on genome-wide scales [57].

We first investigated the gene-expression evolution pat-
terns of the P450 duplicate pairs in the two largest T. ther-
mophila P450 gene families, CYP5005 and CYP5010, by
analyzing the gene-expression data from multiple micro-
array experiments. For the three physiological/develop-
mental stages, the T. thermophila cells examined, the
nonphylogenetic model was the best supported model
both for the two families (Additional file 6). For the
CYP5005 family, the best "nonphylogenetic-free" model
suggested that more closely related duplicate genes are no
more likely than more distantly related genes to share
similar expression patterns. This may indicate either the
gene family has little influence over physiological func-
tions or the rapid rates of gene-expression evolution [55].
Meanwhile, the "nonphylogenetic-distance” model best
fit the CYP5010 family, indicating that genetic distances
since last gene duplication predict change in expression,
consistent with an initial coupling during evolution of
expression and coding sequences, i.e. a correlation
between the genetic distance in the coding region of
CYP5010 family members and the change in gene expres-
sion level still can be detected (Additional file 7). This was
similar to a report on duplicate genes in the yeast S. cere-
visiae showing that gene expression patterns remain simi-
lar shortly after gene duplication, but the evolution of
expression occurs quickly so that the patterns become dis-
tinct from each other in a relatively short period of time
[58]. Due to the observation that many CYP5005 family
members are within the "expression-silent" category, the
assumed gene pseudonization events probably obscured
the possible correlation between the genetic distance and
gene-expression divergence in the CYP5005 family.

Further, we estimated the relative duplication time of the
two gene families. Since silent substitution rates were
often used as an approximation to the neutral mutation
rates [59], we calculated the 4-fold substitution rates (d4)
of the synonymous sites for all the duplicate pairs for each
of the two gene families. It was indicated that except for
three genes (CYP5010A3, CYP5010A4 and CYP5010A5,
d4<0.015) that raised by very recent duplication events
(Figure 1), most P450 genes in the CYP5005 and
CYP5010 families have uniform mutation rates (1.072
and 0.880, on average). Then we calculated the amino
acid distance between duplicates for using as a proxy for
evolutionary time. The results showed that the overall dis-
tance values are highly identical (0.748 and 0.742, on
average), thus indicating that the duplication time of the
two gene families was close to each other. Therefore, given
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that the enlargement of these P450 families in T. ther-
mophila was probably caused by recent separate small
duplication events, the divergence rate of gene expression
thus may also vary between the two P450 gene families.

Since a rapid divergence of expression among the T. ther-
mophila duplicate P450 genes could be inferred, we also
tried to examine the 5' flanking regions of the T. ther-
mophila duplicate P450 genes for identification of likely
regulatory elements. It is well known that promoters and
enhancers located upstream of the coding regions usually
have critical roles in regulating gene expression levels, and
that major P450 genes are selectively induced by different
nuclear receptors in response to endogenous substances
or diverse xenochemicals in multicellular organisms
[60,61]. However, the fact that the Tetrahymena genome
has a 78% A/T content makes it difficult to identify regu-
latory elements by sequence homology to well-character-
ized promoters from other model organisms using
transcriptional regulation databases such as TRANSFAC
[62]. Currently, except for a few regulatory elements that
have been identified by deletion and mutational analysis
[63,64], little information is available on the cis-elements
of specific genes in Tetrahymena. We further checked pos-
sibility whether the T. thermophila P450 duplicate pairs or
their adjacent genes in the same chromosome (scaffold)
have a tendency to show similar physiological/stage-spe-
cific patterns of expression. The results showed that most
of these genes exhibited wide variations in their levels and
stage-specificity of expression, i.e. no chromosomal or
sub-chromosomal level of gene regulation was indicated
(data not shown). Therefore, although the rapid diver-
gence of upstream non-coding sequences of the relatively
well-conserved P450 OFRs may contribute to the remark-
ably varied expression patterns among the T. thermophila
duplicate P450 genes, further experimental investigations
are needed to identify specific regulatory elements or
trans-acting factors involved in the transcriptional induc-
tion of P450s in this organism.

Conclusion

In the current study, we identified 44 putative functional
P450 monooxygenase genes in the model ciliate organism
T. thermophila, analyzed their evolutionary relationships
and characterized their expression based on both EST and
microarray data, using bioinformatics tools. The current
microarray data provide background information of T.
thermophila P450 gene expression in normal physiological
states. Our analyses provide information on the character-
istics and diversity of the P450 genes in the Ciliophora,
and will facilitate further functional analysis to under-
stand the roles of individual P450 isoforms either in cel-
lular physiological metabolism or the possible oxidative
detoxification catalysis under environmental toxic expo-
sures in this model ciliate species.
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Methods

T. thermophila putative P450 Gene identification and
cDNA cloning

Putative T. thermophila cytochrome P450 gene sequences
were retrieved from the Institute of Genome Research
(TIGR; now known as the J. Craig Venter Institute) pre-
dicted peptide database
(Preliminary_Gene_Predictions_Aug _2004.pep), used to
search against both the T. thermophila genome sequences
database from TIGR (Assembly2-Nov_2003.scaffolds)
and the TGD (Tetrahymena Genome Database, http://
www.ciliate.org/) [65] predicted gene database using
Blastp with the filter option turned off. The P450 gene pre-
dictions made by Dr. David Nelson were used as an inde-
pendent source (available at http://drnelson.utmem.edu/
tetrahymena.FASTA.htm). The deduced amino acid
sequences obtained from the above two strategies were
then compared. To improve the accuracy of exon and sig-
nal peptide identification in the putative genes, the
canonical GT/AG rule was used to determine the intron
splice sites and all corresponding P450 nucleotide
sequences were subjected to BLAST N searches against
both the NCBI EST database http://
www.ncbi.nlm.nih.gov/dbEST/index.html and the Protist
EST Program (TBestDB, http://tbestdb.bcm.umontreal.ca/
searches/organism.php?orgID=TT) [66]. For some puta-
tive genes with uncertain intron boundaries, RT-PCR was
carried out to check the cDNA sequences. Total RNA of 2
ml cultures of T. thermophila exponential phase cells
(strain SB210) was isolated by the TRIzol reagent (Gibco
BRL) method according to the user manual with slight
modification. RNA purity and integrity were monitored
by spectrophotometry and electrophoresis. RNA samples
were treated with DNase I (Promega) and reverse tran-
scribed into double strand cDNA using MMLV (Promega)
in a 25 pL reaction mix. Primers (Additional file 8) were
designed using Primer3 http://frodo.wi.mit.edu/cgi-bin/
primer3/primer3_www.cgi. PCR products were sub-
cloned into the vector pGEM-T (Promega, Madison, USA),
transformed into Escherichia coli DH50. and sequenced
using the ABI model 377 stretch automated DNA
sequencer (PE Applied Biosystems). A pair of primers
(5013A1Int-Fw, 5013A1Int-Re) that span the intron junc-
tions was used to check the alternative splicing of the
CYP5013A1 intron, and the different transcripts were fur-
ther investigated by RT-PCR experiments coupled with
non-denaturing PAGE electrophoresis.

Sequence alignment and phylogenetic analysis

All predicted P450 genes except pseudogene sequences
from T. thermophila were used for alignment and phyloge-
netic analysis at the amino acid level. The pairwise levels
of gene similarity/identity were calculated using the pro-
gram MegAlign, which is embedded in the DNASTAR
package (DNASTAR, Inc.) [67]. Multiple sequence align-
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ment (MSA) of the P450 proteins was conducted using
both the CLUSTALW program at the EMBL-EBI website
http://www.ebi.ac.uk/clustalw/ and the T-coffee (Tree-

based Consistency Objective Function For alignment
Evaluation) server http://www.tcoffee.org/, using parame-
ters under default settings. The quality of each resulting
alignment was evaluated by the CORE method, available
through the T-coffee server, compared and manually
improved by removing any badly aligned columns. For
construction of the phylogenetic tree, the Neighbor-Join-
ing (NJ) method (JTT matrix with different rates among
sites, gamma parameter = 1.0, bootstrap test = 1000 repli-
cates) was applied on the MSA using MEGA (version 4.0)
[68]. In addition, a maximum-likelihood (ML) tree was
constructed with PhyML [69] (JTT matrix, four rate catego-
ries, gamma distribution parameter = estimated). The
resulting tree was tested with 200 bootstrap repeats with
PhyML with the same settings. Putative full length P450
genes of Paramecium tetraurelia were retrieved from (Para-
meciumDB http://paramecium.cgm.cnrs-gif.fr/[70] and
the P450 website http://drnelson.utmem.edu/
param3.htm, respectively. Totally, 19 P. tetraurelia P450
genes that either were consistent with the available EST
data or shown to be identical in the above two predictions
were chosen for the following analysis, and the standard
nomenclature was used according to Nelson's website.
MSA of both the T. thermophila and P. tetraurelia P450 pro-
tein sequences was conducted using the T-coffee program
and manually improved and a maximume-likelihood tree
was constructed by PhyML program. Phylogenetic net-
work was conducted with the NeighborNet method using
the SplitsTree program (version 4.10) [71], (Model = JTT,
chartransform = ProteinMLdist, splitstransform = Equa-
lAngle, gamma distribution parameter = 2.0, bootstrap
test = 1000 replicates)

Secondary structure elements assignment and sub-cellular
localization predictions

One T. thermophila P450 sequence (CYP5002A1,
CYP5005A18, CYP5007C1, CYP5008A1, CYP5011A1,
CYP5012A1 and CYP5013A1) from each of seven family
clades and one P. tetraurelia P450 sequence (CYPG693A1,
ParameciumDB accession No. GSPATP00036495001)
that have full length or partial cDNA information were
selected as the representative set. Previously reported
P450 protein crystal structure data were downloaded from
the RCSB (Brookhaven protein data bank) website http://
www.rcsb.org/, including P450cam (CYP101), P450BM3
(CYP102), P450terp (CYP108) and P450eryF
(CYP107A1) from bacteria, P450nor (CYP55A1) from
fungi, CYP2C5, CYP2C8 and CYP3A4 from mammals,
corresponding to PDB codes 1UTU, 1204, 1CPT, 1EUP,
1EHE, INR6, 1PQ2 and 1TQN, respectively. With each of
the indicated P450 proteins, MSAs were done at the
amino acid level through the 3DCoffee web server http://
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www.tcoffee.org/, which affords the possibility of produc-
ing an MSA with combined sequence and structure infor-
mation. Judging by sequence identity from all the
examined alignment results and CORE index, mamma-
lian P450 CYP3A4 was chosen as the template for second-
ary structure. The program ESPript [72] was used for the
assignment of secondary structure elements onto the cor-
responding aligned sequences, and substrate recognition
sites were manually indicated based on the CYP3A4
enzyme information. Then obtained aligned sequences
were used to investigate the conservation pattern of the T.
thermophila P450 family as inferred by Consurf program
http://consurf.tau.ac.il/[73]. All putative functional T.
thermophila P450 proteins were checked for likely sub-cel-
lular localization by using the TargetP program http://
www.cbs.dtu.dk/services/TargetP/[74] and the WOoLF
PSORT http://wolfpsort.org/[75] with the default param-
eters.

Cell culture, RNA extraction and Semi-quantitative RT-
PCR

Cells in the growth, starvation (strain SB210) or conjuga-
tion (strains CU428 and B2086) stages of the life cycle
were used for RNA extraction. Semi-quantitative RT-PCR
analysis using gene-specific primers for selected P450
genes were carried out. A pair of primers designed for the
T. thermophila B-actin gene (Genbank accession No.
AY315823) was used as the control for normalization of
expression data. PCR cycling conditions were: 5 min at
95°C; 20sat 94°C; 20 s at 60°C; 60 sat 72°Cina 25 puL
reaction with totally 30 cycles. To calculate the normal-
ized relative gene expression levels, the same amount of
PCR products underwent a 1% EB stained agarose gel elec-
trophoresis and scanned pictures were taken. The relative
expression levels were calculated by lane analysis using
the QuantiScan for Windows (Biosoft, Cambridge, Eng-
land) software according to the tutorial.

Analyses of microarray data

RNA sample preparation, Tetrahymena thermophila whole-
genome oligonucleotide DNA Microarray synthesis and
data analysis are described in Miao et al. [20]. In brief,
wild-type cell lines B2086 and CU428 of T. thermophila
were provided by Dr. P.J. Bruns, Cornell University, Ith-
aca, NY. Both of these cell lines have inbred strain B
genetic background, as does cell line SB210, the source of
the MAC genome sequence used to design the microarray
probes. Cells were grown in SPP medium [76] at 30°C.
For microarray analyses of growing cells, CU428 cells at
low, medium and high cell densities (~1 x 10> cells/ml,
~3.5 x 105 cells/ml and ~1 x 10° cells/ml; referred to as L-
1, L-m and L-h) were collected. For starvation, CU428 cells
at 2 x 105 cells/ml were washed and starved at 2 x 105
cells/ml in 10 mM Tris (pH 7.5); samples were collected
at3,6,9,12, 15 and 24 hours referred to as S-0, S-3, S-6,
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S-9, §-12, S-15 and S-24). For conjugation, equal volumes
of B2086 and CU428 cells that had been starved for 18
hours in 10 mM Tris (pH 7.5) at 2 x 105 cells/ml, were
mixed, and samples were collected at 0, 2, 4, 6, 8, 10, 12,
14, 16 and 18 hours after mixing (referred to as C-0, C-2,
C-4, C-6, C-8, C-10, C-12, C-14, C-16 and C-18). Total
RNA was extracted using the RNeasy Protect Cell Mini Kit
(Qiagen, Valenica, CA) according to manufacturer's
instructions. cDNA synthesis and Cy3 labeling was per-
formed by NimbleGen Systems, Inc. The custom microar-
rays were manufactured by NimbleGen Systems, Inc.
using the maskless photolithography method described
previously [77]. For each growing and starved Tetrahymena
sample, hybridizations were performed on three inde-
pendent microarrays. For analysis of conjugation, hybrid-
izations were performed on two independent
microarrays. The final data were analyzed based on the
RMA-processed expression values (RMA calls). The 12, fold
changes, p values and heat maps were calculated using
ArrayStar software, version 2.0 (DNASTAR, Inc, Madison,
WI).

Codon-usage analysis

G+C contents of each entire gene, first and second, third
codon positions (GC, GC1, GC2 and GC3s, respectively)
were calculated for each T. thermophila P450 gene using
the CodonW software http://mobyle.pasteur.fr/cgi-bin/
portal.py and DnaSP4.0 [78]. GC12 was the average of
GC1 and GC2 and was used for neutrality plot analysis.
The strength of the selection on a given gene relative to the
mutation pressure were estimated by the method of the
relative neutrality plot (RNP), which consists of plotting
the G+C content at the nonsynonymous positions
(GC12) of the codons against the G+C content at the syn-
onymous position (GC3s). If GC12 was as neutral as
GC3s against selection, the points should be distributed
along the diagonal line (slope of unity). In contrast, if
GC12 was completely non-neutral, the points should be
on the parallel lines of abscissa (slope of zero). Thus, the
regression coefficient (slope) provided a measure of rela-
tive neutrality of GC12 to GC3s.

The CAI and the ENc values were both calculated of each
T. thermophila P450 genes, respectively. The CAI indicates
the similarity of a gene in its codon usage pattern com-
pared to that of a predefined gene set in the same organ-
ism. While the T. thermophila genome is very AT rich with
a bias against GC rich codons, a subset of 'preferred'
codons that are independent of the genes' AT content and
differed from that of the average gene was found to be
used with high frequency in a group of 232 highly
expressed genes [11], and were used as the reference data-
set in the CAI calculation. ENc is a measure of the effective
number of codons used in a gene. For the universal
genetic code, ENc delivers values that range from 61 (no
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bias - all codons used equally) to 20 (complete bias -
only one codon used for each amino acid). In the case of
ciliates, ENc values range from 63 to 20 theoretically,
since there are 63 sense codons in their alternate genetic
codons. The expected ENc values from GC3s under HO
(null hypothesis, i.e.,, no selection) were calculated
according to Equation 1, where S denoted GC3s [47]:

ENc=2+S+{29/[S? +(1-9)*]} (1)

Correspondence analysis was used to investigate the
major trend in relative synonymous codon usage varia-
tion among the genes, using the CodonW software. The
RSCU value for a codon is the observed frequency divided
by the frequency expected if all synonyms codons for that
amino acid were used equally. Only those codons for
which there is a synonymous alternative were used in the
analysis. Each gene is described by a vector of 59 variables
(codons). Correspondence analysis identifies the major
trends in the variation of the synonymous codon usage
data and distributes genes along continuous axes in
accordance with these trends. RSCU values close to 1 indi-
cate a lack of bias, while much higher and much lower val-
ues indicate preference and avoidance of that particular
codon, respectively. The calculated codon usage parame-
ters of 44 T. thermophila P450 genes were listed in Addi-
tional file 9. Correlation analysis was performed using
SPSS version 12.0 and Microsoft Excel.

Site-specific selection analysis

Since recombination may result in higher rates of false
positives in maximum likelihood tests for positive selec-
tion, the possibility of intergenic recombination events in
two datasets (CYP5005 and CYP5010 family) were
checked using the TOPALI software [79], with the DSS
(Difference of Sums of Squares) and PDM (Probabilistic
Divergence Measures) methods (window size 100, step
2), and no positive signal was detected. Then the two data-
sets were selected to detect site-specific positive selection
and purifying selection. For each set, an amino acid align-
ment was conducted using the CLUSTAL W program with
default settings. The resulting alignment was used to gen-
erate the corresponding codon alignment with RevTrans
[80], and to construct an unrooted ML tree with PhyML.
The codon alignment and the phylogenetic tree were used
for calculation of the ratio () between non-synonymous
Ka and synonymous Ks at each site of the predicted pro-
tein for all types of selection (purifying, neutral and posi-
tive) with Selecton (version 2.4) http://selecton.tau.ac.il/,
according to Stern et al. [81]. The positive selection of the
two gene family members were also checked using Likeli-
hood ratio tests (LRTs) with PAML (version 4) [82]
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Gene-expression evolution analysis

Gene-expression evolution analysis was done according
to [55]. Firstly, the amino acid sequences of CYP5005 and
CYP5010 family members were aligned respectively using
the CLUSTAL W program with default settings and trans-
lated to the corresponding codon alignment. The
(GTR+I+G) model of evolution was selected as deter-
mined by likelihood ratio tests in ModelTest [83] and the
phylogenetic tree was constructed by ML analysis, using
PAUP* version 4.0b10 [84]. The microarray data for each
gene at different time points were log-based-two trans-
formed and represent the character data at the taxa tips
(see Additional file 7). Then both the phylogenetic tree
and the transformed microarray data as a set of continu-
ous data were read into the program CoMET (Continu-
ous-character Model Evaluation and Testing) [85]. The
likelihood values for each of the two datasets were calcu-
lated using the default punctuation asymmetry threshold
of 100. The nine maximum-likelihood models of gene-
expression evolution were compared by the Akaike Infor-
mation Criterion (AIC) and the best fitting evolutionary
model was determined by selecting the one with the min-
imum AIC value. The 4-fold substitution rates (d4), i.e.
the expected number of substitutions per site at the four-
fold degenerate sites of the third codon position, were cal-
culated as a measuring of the neutral mutation rates using
Kumar method in the MEGA program (version 4.0) [68].
The pairwise levels of amino acid distance between dupli-
cate genes were calculated using the JTT Model.

Nucleotide sequence and microarray data accession
numbers

The sequences reported here were deposited in GenBank
(Accession No. EU349017-EU349060) at the National
Center for Biotechnology Information. Microarray data
have been deposited with the NCBI Gene Expression
Omnibus http://www.ncbi.nlm.nih.gov/geo under acces-
sion numbers listed in document S11 in Miao et al. [20].
(doi:10.1371/journal.pone.0004429)
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Additional material

Additional file 1

The position and orientation of three adjacent P450 genes
(CYP5013A1, CYP5013C1 and CYP5013B1) in the T. thermophila
genome. These three gene isoforms are tandemly located on scaffold
8254607. They were mistakenly merged into one "monster" gene by the
TIGR gene finder as was shown in the Genome Browser map. Underline:
the putative ORF of CYP5013A1 gene. Red italic: the first intron of
CYP5013A1 gene. Green: the second intron of CYP5013A1 gene.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S1.tiff]

Additional file 2

Sequence alignment of the CYP5005A7 gene, ESTs, the pseudogene
CYP5005A5P and the erroneous pseudogene TIGR_ CYP5005A7P.
The CYP5005A7 gene sequence was obtained from the 2.1kb genomic
DNA sequencing results. The two ESTs (TTL00012823 and EC269404)
were retrieved from TBestDB and GenBank, respectively. The erroneous
sites in the "TIGR_CYP5005A7P" sequence were indicated by red
squares. The different sites between the CYP5005A7 gene and the pseu-
dogene CYP5005A5P sequences were indicated by green squares.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S2.tiff]

Additional file 3

The unrooted maximum-likelihood (ML) tree of the T. thermophila
P450 protein sequences. The resulting tree was tested with 200 bootstrap
repeats with PhyML and the bootstrap values are indicated on each node.
Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S3.tiff]

Additional file 4

The conservation pattern of the T. thermophila P450 family. A: The
full indication of the conservation pattern inferred by Consurf based on
the multiple sequence alignment using mammalian P450 CYP3A4 as the
template of secondary structure elements assignment. Bottom: key to the
Consurf colours; B: The six putative substrate recognition sites (SRSs)
region were indicated.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S4.tiff]

Additional file 5

Site-specific selection results of the CYP5005 and CYP5010 gene fam-
ilies. A: CYP5005 Family; B: CYP5010 Family. A seven-color scale was
used by the Selecton program to represent different types of selection.
Shades of yellow (colors 1 and 2) indicate > 1. Shades of white through
magenta (colors 3 through 7) indicate various level of @ <1.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-

http://www.biomedcentral.com/1471-2164/10/208

Additional file 6

Calculated values of the CYP5005 and CYP5010 gene families for
each of nine different models. Calculated Akaike Information Criterion
(AIC) and maximum-likelihood (ML) values of the CYP5005 and
CYP5010 gene families for each of nine different models were listed. The
results of best supported models under each cell conditions were marked in
bold.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S6.pdf]

Additional file 7

Phylogenetic tree of the CYP5010 gene family and its expression pro-
files for the three physiological/developmental stages of the T. ther-
mophila cells. Left: The ML tree of CYP5010 family used in the gene-
expression evolution analysis. Relative branch lengths are proportional to
number of substitutions per site. Right: The corresponding log2 trans-
formed microarray data during three cellular conditions as a set of contin-
uous data represent the character data at the taxa tips.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-S7.tiff]

Additional file 8

Oligonucleotide primers used in this study.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-88.pdf]

Additional file 9

Codon usage parameters of 44 T. thermophila P450 genes. The CAI,
ENc, GC content, GC12, GC3s and the RSCU values of the two most
important axes were listed.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-208-89.pdf]
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