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Abstract
Background: The recently developed RNA interference (RNAi) technology has created an
unprecedented opportunity which allows the function of individual genes in whole organisms or
cell lines to be interrogated at genome-wide scale. However, multiple issues, such as off-target
effects or low efficacies in knocking down certain genes, have produced RNAi screening results that
are often noisy and that potentially yield both high rates of false positives and false negatives.
Therefore, integrating RNAi screening results with other information, such as protein-protein
interaction (PPI), may help to address these issues.

Results: By analyzing 24 genome-wide RNAi screens interrogating various biological processes in
Drosophila, we found that RNAi positive hits were significantly more connected to each other when
analyzed within a protein-protein interaction network, as opposed to random cases, for nearly all
screens. Based on this finding, we developed a network-based approach to identify false positives
(FPs) and false negatives (FNs) in these screening results. This approach relied on a scoring function,
which we termed NePhe, to integrate information obtained from both PPI network and RNAi
screening results. Using a novel rank-based test, we compared the performance of different NePhe
scoring functions and found that diffusion kernel-based methods generally outperformed others,
such as direct neighbor-based methods. Using two genome-wide RNAi screens as examples, we
validated our approach extensively from multiple aspects. We prioritized hits in the original screens
that were more likely to be reproduced by the validation screen and recovered potential FNs
whose involvements in the biological process were suggested by previous knowledge and mutant
phenotypes. Finally, we demonstrated that the NePhe scoring system helped to biologically
interpret RNAi results at the module level.

Conclusion: By comprehensively analyzing multiple genome-wide RNAi screens, we conclude that
network information can be effectively integrated with RNAi results to produce suggestive FPs and
FNs, and to bring biological insight to the screening results.
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Background
In the past few years, many groups have successfully con-
ducted multiple genome-wide RNA interference (RNAi)
screenings in C. elegans, D. melanogaster and mammals,
using either whole animal or cell lines to investigate a full
array of biological processes at the systems level [1-4].
Compared with classical genetic screens, such as transpo-
son-mediated mutagenesis and somatic clonal analysis [5-
7], RNAi technology is revolutionary in that it allows
investigators to quickly interrogate the phenotype
changes that occur upon knocking down individual genes
at the genome scale [8]. However, similar to many other
high-throughput technologies, RNAi screens are not com-
pletely flawless. On the one hand, genes may not always
be effectively knocked down and will consequently be
missed by the screening. We refer to these genes as false
negatives (FNs). On the other hand, owing to the toler-
ance for mismatches and gaps in base-paring with targets,
small interfering RNA (siRNA) could possibly target up to
hundreds of sequences [9,10], which are often termed as
off-target effects (OTEs). Such OTEs are believed to be the
main reason for false positives (FPs) in RNAi screens. The
use of long double-stranded RNAs (dsRNAs) in Drosophila
has been proposed as a means of reducing the occurrence
of OTEs [11]. However, two groups reported that OTEs
mediated by short homology stretches within long dsR-
NAs were prevalent in Drosophila, and that therefore the
effectiveness of dsRNAs for reducing OTEs needs further
investigation [12,13]. Furthermore, OTEs and low effica-
cies in knocking down certain genes are not the only
sources for FNs and FPs associated with RNAi screens. As
a matter of fact, designing a high-throughput RNAi screen
involves many levels of decision-making, such as the type
and concentration of RNAi reagents, the readout options,
and the methodologies and criteria used for hit selections,
each of which could affect the quality of the final results
[11]. For example, it has been shown that the adoption of
a better analytic method for hit selection may help reduce
the rate of FPs and FNs [14-17].

Both computational and experimental efforts have been
made to identify errors in RNAi screens. For example, Ma
et al [12] and Kulkarni et al [13] suggested that dsRNAs
which contained > = 19-nucleotide(nt) perfect matches to
unintended targets or had simple tandem repeats of the
tri-nucleotide CAN (N represents any base) might cause
OTEs and thus contribute significantly to FPs. Conse-
quently, sequence-based computational analysis can be
used to predict potential FPs in RNAi screens. However,
such prediction is not applicable to identifying FNs. More-
over, DasGupta and colleagues found that there was a lack
of strict correlation between the sequence match of 19 nts
and FPs, and they suggested that the "FP results" obtained
from dsRNAs that were predicted to have OTEs based on
sequence analysis should not be blindly treated as artifacts

without further tests [18]. In their study, to experimentally
distinguish true positives (TPs) from FPs, they rescreened
hits identified in the original screen using multiple, inde-
pendent "off-target (OT)-free" dsRNAs. However, such
experimental validation has its own drawbacks. First,
since not all dsRNAs are effective in knocking down the
target genes, failure in validating the original positive hits
is insufficient for validating FPs. In fact, they showed that
some known regulators of the pathway under investiga-
tion were actually missed by the validation screens [18].
Second, since our knowledge of the mechanisms involved
in OTEs is still developing, the successful validation of
RNAi hits by so-called "OT-free" dsRNAs might actually
be the result of unknown OTEs. Third, validation screens
are usually conducted only on the positive hits from pri-
mary screens, and FNs cannot be recovered without addi-
tional effort.

As diverse genomic data accumulate, integrating RNAi
screening results with other genomic information, partic-
ularly those represented in the form of networks, may
help in identifying FPs and FNs. Network-based analysis
has been widely applied to solving many biological prob-
lems. For example, methods have been developed using
protein-protein interaction networks to predict unknown
disease genes [19-22], or to diagnose disease subtypes
[20]. A common principle adopted by most of these net-
work-based studies is "guilt by association", i.e., nearby
genes in the network are more likely to possess similar
functions, or will lead to similar phenotypic changes,
when perturbed. Here, we test whether this principle
holds for RNAi hits, and if it does, we intend to apply it to
addressing the noise issue associated with RNAi screens.
We also anticipate that network analysis may help to
reveal the underlying mechanisms that link the perturbed
genes with the observed phenotype changes, which may
not be directly obtainable from the raw screening data.
Specifically, by perceiving the cell or organism as a
dynamic system composed of interacting functional mod-
ules which are defined as discrete entities whose functions
are separable from those of other modules [23], the net-
work information can help us to identify the underlying
module structure.

Here we present a comprehensive network analysis using
24 published genome-wide RNAi screens in Drosophila.
We first verify the "guilt by association" principle by
showing that RNAi hits are significantly more connected
than random cases. We then develop a network-based
RNAi phenotype scoring method termed NePhe to inte-
grate information from both network topology and RNAi
screening results. We demonstrate the effectiveness of
NePhe scores in identifying putative FPs and FNs by a
novel rank-based test and two case studies. We show how
the network information can help identify the underlying
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modules as formed by the refined hits that potentially
explain the RNAi phenotype changes as observed by the
screen experiments. Finally, we discuss limitations of our
approach and potential follow-up studies.

Results
RNAi hits have higher network connectivity than random 
chance hits
The Drosophila protein-protein interaction (PPI) network
was built from PPIs in the STRING database [24]. STRING
is a comprehensive PPI database, and the PPIs are experi-
mentally derived or predicted by comparative genomics
and text mining. In total, 10,297 proteins and 248,355
interactions were used to construct our network. Only
proteins within this network were considered throughout
our analyses. Hereinafter, we do not make explicit distinc-
tion between genes and their protein products.

24 genome-wide RNAi screening results [25-48] were
downloaded from the flyRNAi database [49]. For each
screen, we collected the set of genes that were observed to
cause changes in the phenotype under investigation. We
call these genes hits, and all the remaining genes nonhits
for that screen. For each screen, a sub-network was con-
structed exclusively upon hits for that screen and the inter-
actions among them. In order to evaluate network
connectivity of these 24 sub-networks, we measured three
network attributes, i.e., number of edges, size of the larg-
est component and number of isolated nodes. We calcu-
lated two P-values for each attribute in each sub-network
by either randomizing nodes or edges (see Methods for
details). Table 1 lists the number of edges and P-values for
each screen. In total, 20 out of 24 sub-networks have a sig-
nificantly greater number of edges compared to rand-
omized networks (both P-values < 0.005), supporting
higher network connectivity. Similar, but slightly less sig-
nificant, results were obtained for the other two network
attributes (see Additional file 1 – Table S1). Therefore, our
results indicate that the principle of "guilt by association"
is valid and applicable for RNAi hits.

Although for most of the 24 screens, hits are significantly
more connected than random cases, the degree of connec-
tivity varies considerably among screens as reflected by
the wide range of P-values. Several factors could account
for this variance. For example, the STRING database may
contain relatively more complete PPIs for some screened
biological processes than others; therefore, some screen-
ing hits may appear to be more connected. Another possi-
ble factor could be the different accuracy for generating
the screening results by different experimental protocols.
For instance, as shown in Table 1, the sub-network con-
structed from "viral replication" [38] screening hits is
among the most significantly connected, while the sub-
network constructed from "nuclear import of Smads" [27]

is among the least connected. Although the readouts were
measured by immuno-fluorescence staining followed by
automated microscopy for both screens, different accura-
cies could exist. In "viral replication", knockdowns of true
participants were expected to cause a reduced number of
cells compared to negative controls and thus presumably
be easier to measure compared with the "nuclear import
of Smads" process. In this case, the knockdowns were
expected to cause diffused distribution of Mad in cyto-
plasm compared to the negative controls where Mad pre-
dominantly localized in nucleus, making it difficult to
measure the phenotype change accurately and leading, in
turn, to a higher error rate and lower connectivity. Further-
more, the criteria used for hit selection varied dramatically
from screen to screen. For instance, as listed in Table 1,
"Store-operated Ca2+ entry" [25] and "Ca(2+) influx"
[42] are presumably two related biological processes.
However, the two screens differ dramatically with regard
to the number of hits and their associated P-values. The
screen for "store-operated Ca2+ entry" measured the
dsRNA effects by percentage inhibition and used a rela-
tively lenient cutoff to obtain a large number of hits for
further validation (1,122 hits). The screen for "Ca(2+)
influx" calculated z-score for each dsRNA and used a rela-
tively stringent cutoff of -3 to obtain a small number of
hits (65 hits). The two hit sets overlap by 25 genes (Fisher
Exact P = 5 × 10-9), suggesting that these two screens are
significantly related, although very different in hit counts.
Also screens are different as some kept the basic cell
metabolism hits while some removed them. For instance,
the sub-network associated with "JAK/STAT signaling"
[39] appears to be less connected than that of the "Hh sig-
naling pathway" [29]. What may partially account for this
is the fact that the former removed ribosomal proteins, as
well as proteins involved in RNA processing and transla-
tion during the curation process, while the latter did not.
Finally, some of the hit sets listed in Table 1 were obtained
directly from primary screenings, and some were filtered
with additional validation assays. Although the 24 screen-
ing results studied here were curated from an assembly of
experiments that varied in multiple aspects, the compre-
hensive study we performed here demonstrates that the
higher network connectivity associated with RNAi hits
and the applicability of our NePhe scoring system, as
shown here and in later paragraphs, hold in general and
are not restricted to a particular screening result.

Identifying the best performing NePhe scoring system
Given the above observations, we then tried to apply the
"guilt by association" principle to address the issue of FPs
and FNs associated with RNAi screens. In general, we
believe that if a gene has tight connection with many hit
genes, then it is likely to be a TP in the case of a hit or an
FN in the case of a nonhit, and vice versa. One computa-
tional problem that arises is the need to quantify the dis-
Page 3 of 18
(page number not for citation purposes)



BMC Genomics 2009, 10:220 http://www.biomedcentral.com/1471-2164/10/220

Page 4 of 18
(page number not for citation purposes)

Table 1: The network attributes and corresponding P-values for the 24 sub-networks constructed from RNAi hits.

RNAi screen [Ref] #hits #edges P-value1 P-value2

Store-operated Ca2+ entry [25] 1,122 4,281 2e-05 3e-98

ERK signaling [26] 982 7,050 2e-71 <1e-229

Nuclear import of Smads [27] 683 1,321 0.07 3e-06

Protein secretion and Golgi organization [28] 645 6,597 <1e-229 <1e-229

Hh signaling pathway [29] 306 3,214 <1e-229 <1e-229

Bacterial infection [30] 286 2,803 <1e-229 <1e-229

Growth and viability [31] 281 1,871 <1e-229 <1e-229

Wnt signaling pathway [32] 167 368 5e-51 1e-92

Light-dependent CRY degradation [33] 131 197 1e-28 9e-105

Neural outgrowth genes [34] 128 414 7e-146 3e-145

Chlamydia infection [35] 126 107 2e-07 2e-17

Regulators of NFAT [36] 121 29 0.7 0.002

Multipolar divisions [37] 115 62 0.005 9e-12

Viral replication [38] 104 2,069 <1e-229 <1e-229

JAK/STAT signaling [39] 104 85 4e-09 1e-21

Mycobacterial infection [40] 76 176 1e-129 8e-117

Transcript-specific mRNA export [41] 65 146 6e-141 2e-100

Ca(2+) influx [42] 65 137 3e-123 9e-54

Muscle assembly and maintenance [43] 39 21 5e-11 5e-08

Caspase activation [44] 37 4 0.4 0.2

Mitochondrial and Peroxisomal Fission [45] 22 2 0.3 0.1

Histone pre-mRNA processing [46] 17 4 2e-04 2e-05

E2F repression [47] 15 7 2e-13 1e-39

Orai proteins [48] 15 9 1e-21 1e-30

Results are sorted based on the number of hits in descending order. The P-value1 and P-value2 are calculated by two different randomization 
strategies, i.e., 1) randomizing nodes and 2) randomizing edges (with fixed node degree) (see Methods for details).
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tance or similarity between a pair of genes in the context
of network. Several different measurements have been
proposed in previous studies to address similar problems
[21,50,51]. We consider four of them: direct neighbor,
shortest path, diffusion kernel [52] and association analy-
sis-based transformation [51]. In addition, we also
needed to quantify the overall similarity between a gene
and its neighbors, or in an extreme case, all the remaining
genes in the network. In this analysis, we considered three
different summation formulas to calculate the overall
similarity (see Methods for details). Thus, in total, we
compared twelve different scoring functions, i.e., combi-
nations of four pair-wise similarity measurements and
three summation formulas (see Additional file 1 – Table
S2). We call these scoring functions Network RNAi Pheno-
type (NePhe) scoring functions, since we integrate both
the network topology and RNAi screen data to derive the
NePhe scores.

Since full annotations for true positive hits or true negative
hits are not available for most RNAi screens, it is not possi-
ble to directly compare the performance of each scoring
method. To overcome this difficulty, we designed a rank-
based test to indirectly estimate the relative performance of
different scoring functions (see Methods for details).
Although the NePhe scoring functions differ in how they
define pair-wise similarity and how to summarize the sim-
ilarity across all neighbors, the common scenario is that a

gene would receive a higher score if a greater number of its
neighbors are hits. Therefore, under the principle of "guilt
by association", an FP should be more likely to receive a
lower score compared to TPs. In contrast, an FN should be
more likely to receive a higher score compared to TNs.
Based on this reasoning, the rank-based test works as indi-
cated in the following description. We assume that all hits
in the original RNAi screens are TPs and all nonhits are TNs.
One hit is placed into the nonhit set as if it were a nonhit
(simulated FN). We then rank all nonhits, including the
simulated FN, using different scoring methods (see Figure
1). Similarly, one nonhit is added to the hit set as though it
were a hit (simulated FP), and we then rank all hits, includ-
ing the simulated FP, using different scoring methods. We
repeat the above procedure for each hit and nonhit for each
screen. We evaluate the performance of each scoring
method based on two quantities: the relative rank (RR) of
simulated FNs among nonhits and the RR of simulated FPs
among hits. For each scoring function, we calculate the
group means of the two quantities for each screen, and the
overall performance of each method is determined by the
grand means of the two quantities from all 24 screens (see
Methods for details). Theoretically, for an optimal scoring
method, the RR of FNs should be close to 1 (ranked at the
top), and the RR of FPs should be close to zero (ranked at
the bottom). In reality, however, because not all hits in the
original hit sets are TPs, we do not expect every FN simu-
lated in this way to be ranked high among all negatives, as

The flowchart for the rank-based testFigure 1
The flowchart for the rank-based test. We put one hit into the nonhit set as if it were a nonhit (simulated FN). We then 
ranked all nonhits, including the simulated FN, using different scoring methods. Presumably, a good scoring system can rank the 
"FN" higher, while a bad scoring system cannot.

Hit set

Nonhit set

Calculate NePhe 
scores and rank 

Good 
scoring 
system

Bad 
scoring
system
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not all negatives are TNs either. Similarly, we do not expect
every simulated FP to receive a low rank among all posi-
tives. However, as long as the original hit sets are signifi-
cantly enriched for TPs (which we believe to be true for
most screens), the rank-based test should reflect the relative
performance of each method.

Figure 2 shows the performance of different NePhe scor-
ing methods estimated by the rank-based test. First, as
indicated by the grand mean of FPs and FNs, all the net-
work-based scoring methods perform much better than
random chance (which is expected to be 0.5) in ranking
FPs and FNs for all 24 screens (Figure 2(a) and 2(b),

The overall performance of different methods in identifying FNs (a) and FPs (b) in the rank-based test and the screen-specific performance of different methods in identifying FNs (c) and FPs (d) in the rank-based testFigure 2
The overall performance of different methods in identifying FNs (a) and FPs (b) in the rank-based test and the 
screen-specific performance of different methods in identifying FNs (c) and FPs (d) in the rank-based test. The 
error bars represent the estimated standard deviations for the corresponding quantities. The DN, SP, DK and AT represent 
the four different network similarity measurements, i.e., direct neighbor, shortest path, diffusion kernel and association analy-
sis-based transformation, respectively. Index 1, 2 and 3 represent the three different summarizing formulas, respectively (see 
Additional file 1 – Table S2 for details). GR represents the GeneRank algorithm.
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respectively). It is of note that the error bars, which repre-
sent the standard deviations, are considerably larger in
Figure 2(a) than in Figure 2(b). This is expected since
there are fewer hits than nonhits for all the screens, hence
fewer simulated FNs than FPs. Second, when considering
the overall performance of the four similarity measure-
ments, diffusion kernel performs the best, followed by
association analysis-based transformation, shortest path,
and then direct neighbor. This result is consistent with
previous studies [21,50] and supports the superiority of
global measurements (e.g., diffusion kernel) over local
measurements (e.g., direct neighbor). When considering
the three summation functions, formula 3 performs
slightly better than the other two. However, the summa-
tion formulas have less influence on the overall perform-
ance compared to similarity measurements. The better
performing formula 3 endorses the calculation of a gene's
similarity to other genes by putting different weights to
hits and nonhits (see Methods). Third, when we compare
the NePhe scoring system with the GeneRank algorithm
[53], we find that GeneRank is not as powerful as our
models in recovering FPs (Figure 2(b)), but is comparable
in prioritizing FNs (Figure 2(a)). We optimized the
parameter d in the GeneRank algorithm by varying it from
0.1 to 0.9 with 0.1 intervals, and selected the one with the
best performance to compare with our best performed

models. Finally, there is no consistently best performing
NePhe scoring function, and the best function is some-
how screen-specific. Figure 2(c) and Figure 2(d) show the
screen-specific performance of different methods for two
screens that are used for case studies in later sections (see
Additional file 1 – Figure S1 for all the 24 screens). It
should be noted that the relative performance of different
methods varies considerably for each screen. One possible
reason for this is that different RNAi hit sub-networks may
have distinct characteristics. For example, hit sub-net-
works of smaller size appear to favor the diffusion kernel
method over the direct neighbor method (see Additional
file 1 for details). Since the rank-based test can tell us
which method is the best for a particular screen, we simply
use the method with the best performance throughout our
analyses with the following two case studies.

To further quantify the RR of simulated FNs among non-
hits and the RR of simulated FPs among hits, we show
their distributions for each screen in Figure 3. As seen in
Figure 3(a), 14/24 screens have their majority (>50%) of
simulated FNs ranked above 0.8 among all negatives, or
9/24 screens, if considering a higher threshold of 0.9. Sim-
ilarly, 15/24 screens have their majority of simulated FPs
ranked below 0.3 among all positives, or 7/24 screens, if
considering a lower threshold of 0.1 (Figure 3(b)). Fur-

The distributions of RR of FNs among nonhits (a) and RR of FPs among hits (b) for each screen in the rank-based testFigure 3
The distributions of RR of FNs among nonhits (a) and RR of FPs among hits (b) for each screen in the rank-
based test. The RR was computed by the best performing scoring method for that screen according to the rank-based test. 
The notation for each method is the same as in Figure 2.
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thermore, we find that the results shown in Figure 3 cor-
relate well with results in Table 1, i.e., the effectiveness of
the NePhe scoring system for a particular screen largely
correlates with the degree of connectivity of the sub-net-
work derived from that screen. The two related screens,
Ca2+ influx and store-operated Ca2+ entry, received quite
different ranks among all the 24 screens based on RR of
FNs and RR of FPs. Since the screen for Ca2+ influx used
a more stringent cutoff to call hits, the number of hits is
much smaller (65 hits) compared to the screen for store-
operated Ca2+ entry (1,122 hits) and is presumably,
therefore, of better quality. The better rank it received
based on the NePhe scoring system suggests that the out-
put of our approach is reasonably dependent on the qual-
ity of its input. For the two screens that we use for later
case studies, i.e., "Hh signaling pathway" and "Wnt sign-
aling pathway", the performance of NePhe scoring is
intermediate among all 24 screens.

Case studies: Hedgehog (Hh) and Wnt signaling pathways
In this section, we study RNAi screens interrogating Hh
[29] and Wnt signaling pathways [32]. Because all the
original hits had been rescreened by an independent col-
lection of dsRNA to assess FP rates in a follow-up study
[18], we chose these two particular screens. Thus, for these
two particular RNAi screens, we can use this validation
screen as an independent experimentally derived refer-
ence set to estimate the performance of the NePhe scoring
system in identifying FPs.

Comparing NePhe scoring system with experimental 
validation
We compare the NePhe scoring system with experimental
validation from the following four aspects.

First, NePhe scores correlate with experimental validation
results. We ranked hits in the original screen of Hh signal-

The reproducibility rate of hits in the validation screen within each interval of the RR by NePhe score for Hh (a) and Wnt (b) signaling pathwayFigure 4
The reproducibility rate of hits in the validation screen within each interval of the RR by NePhe score for Hh 
(a) and Wnt (b) signaling pathway.
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ing pathway by their NePhe scores and put them into
bins. Within each interval, we calculated the proportion
of hits confirmed by experimental validation, termed as
the reproducibility rate. As shown in Figure 4(a), the
reproducibility rates positively correlate with the NePhe
scores. Statistical tests show that the ranks of all reproduc-
ible hits are significantly higher than those of irreproduc-
ible hits (P-value = 4e-14 by Wilcoxon rank-sum test). A
similar, but weaker, trend can be seen for the Wnt signal-
ing pathway (P-value = 0.04 by Wilcoxon rank-sum test)
(Figure 4(b)). The decrease of reproducibility rates is most
visible for RR between 0 and 0.1, but less apparent for
other intervals. One possible reason is that the original hit
set for the Wnt signaling pathway was already quite accu-
rate. In fact, the overall reproducibility rate for the Wnt
signaling pathway is about 74%, higher than that for the
Hh signaling pathway (56%). As the validation experi-
ment is also based on RNAi technology, it has its own FP/
FN issues and may fail to validate an already very accurate
hit set. Here, the 74% reproducibility rate is comparable
to the average reproducibility rate observed for the valida-
tion screen when the same collection of dsRNA was used
to self-validate, which clearly demonstrates a limitation of
experimental validation [26].

Second, the NePhe scoring system can prioritize known
regulators of Hh/Wnt pathways that failed to be con-
firmed by experimental validation. As discussed in the
introduction, validation experiments are based on RNAi
and can have their own FN issues. Using Hh and Wnt sig-
naling pathways as examples, we find that the validation
experiment indeed failed to validate some of the known
pathway regulators. As shown in Table 2, the KEGG [54]
pathways contain 25 and 65 genes for Hh and Wnt sign-
aling pathways, respectively (we regard them as true posi-
tives). The original screens identified 9 and 9 of these
known regulators, respectively (Table 2). However, the
validation experiment only confirmed 6 out of 9 for the
Hh signaling pathway and 8 out of 9 for the Wnt signaling
pathway. Those unconfirmed regulators may be sugges-
tive FNs of validation screens, although they could also be
missed by the validation screens for a multitude of rea-
sons unrelated to the FN/FP rate (see the discussion). On
the other hand, the NePhe scoring system seems to suc-

cessfully capture all the known regulators in the original
hit sets. By calculating the NePhe scores for all the original
hits (306 and 167 for Hh and Wnt signaling pathways,
respectively) and choosing the top ranked hits of the same
size as the experimentally validated hit sets (171 out of
306 and 123 out of 167), we see that all the original hits
contained in KEGG pathways are kept in these NePhe top-
ranked hit sets (Table 2). Therefore, compared with the
validation experiments, the NePhe scoring system is better
at keeping hits that are known regulators, while some of
these hits are missed by validation experiments.

Third, NePhe scores correlate with sequence-based OTE
prediction for FPs. As discussed in the introduction, OTEs
mediated by homologous sequences or CAN repeats are
believed to be a main reason for RNAi screen FPs. We clas-
sified screening hits into two categories, i.e., off-target
(OT)-related and OT-unrelated, using sequence-based
OTE prediction similar to DasGupta et al. [18] (see Addi-
tional file 1 for details). Figure 5(a) shows the proportion
of OT-related hits for each NePhe score interval. It can be
seen that there is a strong negative correlation between the
proportion of OT-related hits and their RR for both the
Hh signaling pathway and Wnt signaling pathway. Statis-
tical tests show that the rank of OT-related hits is signifi-
cantly lower than that of OT-unrelated hits (P = 4e-13 for
the Hh signaling pathway, and P = 9e-4 for the Wnt sign-
aling pathway by Wilcoxon rank-sum test). Therefore, FPs
predicted from the NePhe score correlate well with those
predicted using sequence-based OTE prediction.

Fourth, the NePhe score can further refine the sequence-
based OTE prediction for FPs. DasGupta and colleagues
pointed out that there was a lack of strict correlation
between predicted OT-related hits and FPs as confirmed
by validation experiments [18]. Figure 6(a) shows the
reproducibility rates for OT-related and OT-unrelated hits
based on the validation experiment for the Hh signaling
pathway. It is clear that OT-related hits have a lower repro-
ducibility rate, indicating that sequence-based OTE pre-
diction is generally informative. However, 31.6% of OT-
related hits were in fact reproduced in the validation
screen, indicating that FPs predicted by sequence analysis
could actually contain a considerable proportion of TPs.

Table 2: The overlap between KEGG pathway genes and hits/nonhits in the corresponding RNAi screen.

KEGG pathway
(#genes)

All hits Experimentally validated hits Top-ranked hits All nonhits Top-ranked nonhits
(RR > 0.9)

Top-ranked nonhits
(RR > 0.8)

Hh signaling pathway (23) 9 6 9 14 7 10

Wnt signaling pathway (65) 9 8 9 56 32 48

Each cell represents the overlap between KEGG pathway genes (rows) and all, or subsets of, hits/nonhits in the corresponding RNAi screen 
(columns). The hits/nonhits were ranked by NePhe score. The top-ranked hits (column 3) are of the same size as the experimentally validated hits 
(column 2).
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Similarly, TPs predicted by sequence analysis could in fact
be contaminated by a considerable proportion of FPs.
Using the NePhe scores, we further divided OT-related
and OT-unrelated groups into high-ranked (e.g., RR of
NePhe score > = 0.4) and low-ranked subgroups. Here, the
cutoff of 0.4 is somehow arbitrary, but we get similar
results using different cutoffs from a reasonable interval
(data not shown). We compute the reproducibility rate for
the four subgroups separately. The results are plotted in
Figure 6(b) and 6(c), and it can be seen that the high-
ranked subgroup has a much larger reproducibility rate
than the low-ranked subgroup for both OT-related and
OT-unrelated hits. Statistical tests further confirm that the
rank of reproducible hits is significantly higher than that
of irreproducible hits for OT-related and OT-unrelated
hits (Wilcoxon rank-sum test P = 0.04 for the former and
1e-9 for the latter). A similar, but less significant, pattern
is also observed for the Wnt signaling pathway (see Addi-
tional file 1 – Figure S2). Therefore, the NePhe scoring sys-
tem can be used to further identify TPs from predicted FPs

(OT-related hits) or FPs from predicted TPs (OT-unrelated
hits).

Identifying FNs from nonhit set using NePhe scoring system
Compared to experimental validation, the value of the
NePhe scoring system becomes clearer when we consider
recovering FNs that are missed by the original screens.
This is because in practice, most experimental validations
focus only on primary hits, as does the sequence-based
OTE prediction. In this subsection, we provide evidence
indicating that top-ranked nonhits by the NePhe scoring
system are enriched for genes that are relevant to the path-
way under investigation, while these nonhits are putative
FNs missed by the original screens.

First, top-ranked nonhits are enriched for known regula-
tors of the Hh and Wnt signaling pathways. Table 2 lists
the numbers of top-ranked nonhits that are known KEGG
pathway genes. For each pathway, 14 out of 56 KEGG
pathway genes were missed by the original screens and

The proportion of OT-related hits within each interval of the RR by NePhe score for Hh (a) and Wnt (b) signaling pathwayFigure 5
The proportion of OT-related hits within each interval of the RR by NePhe score for Hh (a) and Wnt (b) sign-
aling pathway.
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thus reported as nonhits. By ranking all the nonhits from
original screens based on their NePhe scores, we see that
the top 10% nonhits were able to capture 50% (Hh) and
57.1% (Wnt) of these missed KEGG pathway genes (P-val-
ues are 1e-4 and 2e-18 by Fisher Exact Test). The top 20%
nonhits are able to capture 71.4% and 85.7% of these
missed KEGG pathway genes (P-values are 4e-5 and 4e-26
by Fisher Exact Test).

Second, top-ranked nonhits display mutant phenotypes
similar to the mutant phenotypes for known Hh or Wnt
pathway genes. Here we assume that genes belonging to
the same pathway tend to show similar phenotypes when
mutated. Because we have a set of known regulators from
KEGG, we can compare the mutant phenotypes to esti-
mate how likely it is that an unknown gene belongs to the
same pathway. We retrieved allele phenotype data for Dro-
sophila genes from FlyMine [55] and used these data for
mutant phenotypes. There were 1,901 genes that had at
least one allele phenotype, and we only considered them
in the following analysis. We calculated the mutant phe-

notype similarity between each nonhit and known regula-
tors (see Methods for details). The distributions of the
similarities for nonhits with different NePhe scores are
shown in Figure 7 in blue bars. We also computed the
similarity between each hit and known regulators (orange
bar in Figure 7), and the phenotype similarity among
known regulators (red bar in Figure 7). First, as expected,
the within pathway mutant phenotype similarity is the
highest for both Hh and Wnt KEGG pathways, which sup-
ported our assumption. Second, there is a significant pos-
itive correlation between the RR of nonhits and their
mutant phenotype similarities to known regulators (P-
value < 2e-16 by Spearman's correlation test; estimated
rhos are 0.28 and 0.31 for the Hg and Wnt pathways,
respectively). The strong correlation observed here indi-
cates that the NePhe scoring system indeed correctly
ranked putative FNs to the top of nonhit genes. Third,
with regard to mutant phenotype similarity to known reg-
ulators, there is no significant difference between top-
ranked nonhits (rank >0.9) and hits (P-value > 0.1 by Wil-
coxon rank-sum test). In other words, these top-ranked

The reproducibility rate for OT-related and OT-unrelated hits (a), for low-ranked and high-ranked OT-related hits by NePhe score (b) and for low-ranked and high-ranked OT-unrelated hits by NePhe scores (c) for Hh signaling pathwayFigure 6
The reproducibility rate for OT-related and OT-unrelated hits (a), for low-ranked and high-ranked OT-related 
hits by NePhe score (b) and for low-ranked and high-ranked OT-unrelated hits by NePhe scores (c) for Hh sig-
naling pathway.
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nonhits are comparable to hits when mutant phenotype
similarity to known regulators is considered. The failure of
RNAi screens to detect these putative FNs might result
from ineffective knockdown by siRNA. Or, it could also
result from the fact that the RNAi screens were carried in

cell lines and thus unable to capture certain regulators
with detectable mutant phenotypes only at the tissue or
organism level. In any case, the NePhe scoring system can
be used to identify putative FNs that are not identifiable
by experiment alone.

Distributions of the mutant phenotype similarities between nonhits within each interval of the RR by NePhe score and known regulators (blue bars), between hits and known regulators (orange bar) and among known regulators themselves (red bar) for Hh signaling pathway (a) and Wnt signaling pathway (b)Figure 7
Distributions of the mutant phenotype similarities between nonhits within each interval of the RR by NePhe 
score and known regulators (blue bars), between hits and known regulators (orange bar) and among known 
regulators themselves (red bar) for Hh signaling pathway (a) and Wnt signaling pathway (b). Only genes with at 
least one allele phenotype are considered here.
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Interpretation of RNAi phenotypes at module level
In this section, we use the Wnt signaling pathway as an
example to show how the NePhe scoring system can bring
biological insights to the screening results and can help to
interpret RNAi phenotypes at the module level. Based on
the RNAi screening results and NePhe scores, we con-
structed a high-confidence Wnt signaling pathway-related
sub-network. The sub-network was built by hits in the
original screen, top-ranked nonhits by NePhe score and
high-confidence interactions in the STRING network
(confidence score >0.9 [56]). We included the top 300
nonhits to the sub-network for two reasons: 1) the RR is
high, >0.97, and 2) its accuracy is most likely comparable
to the original screening hit set using the KEGG Wnt sign-
aling pathway as reference because both sets contain a
similar proportion of Wnt KEGG pathway genes (~5%).
Figure 8 (generated using Cytoscape [57]) shows the larg-
est connected component of this sub-network consisting
of 209 genes in total, among which 51 are hits (red), 158

are top-ranked nonhits (white), 24 are members in the
KEGG Wnt signaling pathway (green boundary), and 41
are supported by literature for their association with the
Wnt signaling pathway (square). We refer hereafter to
those genes within the KEGG Wnt signaling pathway as
canonical participants. 15 out of the 24 canonical partici-
pants shown in Figure 8 are among the top-ranked non-
hits (e.g., dsh, dally), which further confirms the
effectiveness of our computational strategy in recovering
putative FNs of RNAi screens. What might be more inter-
esting in Figure 8 is that, with the network information
and the nonhits recovered by NePhe scores, hits detected
in the RNAi screen appear to be clustered into several
hypothetical modules. These modular structures may help
us to dissect the potential roles of module genes, includ-
ing the non-canonical participants, in the Wnt signaling
pathway.

Examination of these hypothetical modules and their
functions indicates that the Wnt signaling pathway could
be regulated at different levels with varied specificities (see
Additional file 1 for details). From the most general regu-
lators, such as TFIID complex, to less general regulators
that are preferentially involved in controlling signaling
pathways (e.g., PcG complex), to participants of other sig-
naling pathways that enable cross-talkings, and to the
most specific regulators like the canonical participants of
Wnt signaling pathway, the network approach we devel-
oped just reveals a fine modular view of the Wnt signaling
pathway that could be of great interest to biologists for
further validation, and such views are not directly deriva-
ble from raw RNAi screen data.

Discussion and Conclusion
We carried out by far the most comprehensive network-
based analyses on multiple genome-wide RNAi screens in
Drosophila. We showed that RNAi screen hits were gener-
ally more connected in the PPI network than random
cases. We developed a NePhe scoring system to identify
both FPs and FNs in RNAi screening results. We demon-
strated the power of such scoring system by a novel rank-
based test and two case studies. We provided our NePhe
score results for both hits and nonhits of the 24 whole-
genome RNAi screens to provide a foundation for follow-
up studies (see Additional file 2). We also showed that
these NePhe scores are reasonably robust to the random
noise in the initial hit sets (see the Additional file 1 for
details). We implemented our strategy to compute NePhe
scores in an R package (see Additional file 3) so that our
approach could be used by the whole research community
in the future.

With that said, our approach does have several limita-
tions. First, the NePhe scoring system relies on the relative
completeness and accuracy of PPI information. It is not

A sub-network associated with the Wnt signaling pathwayFigure 8
A sub-network associated with the Wnt signaling 
pathway. Red: hits of RNAi screening. White: top-ranking 
nonhits by NePhe score. Green boundary: genes within 
KEGG Wnt signaling pathway. Square: genes supported by 
literature for their association with the Wnt pathway. Mod-
ule I: canonical participants-related. Module II: transcription 
factor TFIID complex-related. Module III: PcG protein com-
plex-related. Module IV: other signaling pathways-related. 
The visualization was generated using Cytoscape [57].
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applicable to hits or nonhits whose target genes are miss-
ing from the interaction network. Likewise, genes present
in the network, but which have poorly characterized inter-
actions, are likely to yield inaccurate results. Second, the
list of putative FNs and FPs created by our approach are
only suggestive and should not be regarded as definitive.
Although hits with lower NePhe scores will most likely
validate at lower rates than those with higher scores, the
exact fraction of them representing true FNs and FPs can-
not be known without actually validating the data. For
example, even though a gene is relevant to a pathway
under investigation, its knockdown does not need to have
an effect for a multitude of reasons, such as the paralogue
issue and the alternative/branching of pathway issue.
Thus, some putative FNs suggested by our approach may
not necessarily be FNs. In this regard, scientists should use
our approach to assess the general robustness of their
screen rather than use it as a substitute for experimental
validation. Third, our approach does not address the "spe-
cificity" issue with RNAi screens. A common phenome-
non observed by many screens is that genes related to
basic cell metabolism (e.g., ribosomal proteins, proteas-
ome components, polymerases, or splicing factors) are
often reported as hits. These genes usually receive high
NePhe scores since they are well connected in the net-
work. Although they are likely to be true hits, they may
not be relevant to the questions being asked of each
screen. Some of these effects could be offset by cross com-
paring multiple screening results. For example, we can
remove from each screen those genes that participate in
cell growth and viability [31] and perform the NePhe cal-
culation afterwards (see Additional file 1 – Table S3 for
the network connectivity of each RNAi screen after the
removal). However, such strategy will miss bona fide
components that may have pleiotropic effects [8,58].

In summary, we present a novel network-based strategy
that can potentially address the FN and FP issue associated
with RNAi screens. Follow-up experimental validations of
our results are extremely valuable for further quantifying
the results of our approach. Moreover, given the increas-
ing popularity of RNAi techniques and rapidly accumulat-
ing protein-protein interaction data in multiple model
organisms, including human, the applicability of our
approach to other species is very promising.

Methods
Network attributes, P-values and Randomization
24 RNAi screens were considered in total, and each screen
was analyzed independently. For each screen, a sub-net-
work was constructed by including only hits for that
screen and PPIs among them as obtained from STRING
database. We calculated three network attributes, i.e.,
number of edges, size of the largest component and
number of isolated nodes. In order to obtain P-values for

each network attribute, we constructed randomized sub-
networks for each of the 24 RNAi screens. From these ran-
domized sub-networks, we obtained null distribution of
each network attribute for that particular screen. The P-
value was then computed by one-side testing assuming
these attributes under null hypothesis were normally dis-
tributed, while mean and variance were estimated from
these randomized sub-networks. The assumption of nor-
mal distribution has been verified and adopted in a previ-
ous study in yeast [59]. We employed two different
strategies in generating randomized sub-networks from
the whole PPI network. In the first strategy, we randomly
assigned a gene in the whole network as a hit while keep-
ing the total number of hits the same as seen from the real
screen. Then we derived a sub-network associated with the
randomized hits from the whole network. In the second
strategy, we first randomized the edges of whole network
while keeping the number of interactions for each node
fixed (implemented by R graph package). From the rand-
omized whole network, we then derived a sub-network
associated with the original hits. For each strategy, we gen-
erated 1,000 randomized sub-networks.

Network-based similarity
The network-based similarity Sij between gene i and j were
measured in the following four ways.

Direct neighbor

where A is the adjacency matrix, so that

.

Shortest path

where spij denotes the shortest path between i and j in the
network. We used the exponential function y = exp(-x) to
transform the gene-gene distance to gene-gene similarity.

Association analysis-based transformation

where di denotes the degree of node i in the network. It is
known that PPI networks are both incomplete and inaccu-
rate. One way to handle this problem is to transform the
original interaction graph to new graphs by removing spu-
rious edges, adding biologically valid ones, and assigning
reliability scores to the edges constituting the final net-

S Aij ij= (1.1)

A
i j

ij =
1

0

    if  interacts with 

    otherwise              

⎧⎧
⎨
⎩

S spij ij= −( )exp (1.2)

S
common neighbors of i and j

di d j
ij = #

max( , )
     

(1.3)
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work [51]. The motivation for the above transformation
method is that proteins sharing many neighbors are more
similar, and the significance of this similarity depends on
the number of neighbors that each gene has.

Diffusion kernel

where K = exp (βL), L = A - D, and A form the adjacency
matrix of the interaction network and D is a diagonal
matrix containing the nodes' degrees. The diffusion kernel
can be seen as a random walk consisting of transitions to
each one of the current node's neighbors with probability
of β [52]. Kij can be regarded as a sum of the probabilities
over all paths from i to j. In this study, we explored two
different values forβ, i.e., 0.1 and 0.01, and chose the one
that gave better performance in the rank-based test.

NePhe scoring system
The NePhe score of gene j for screen k is calculated by the
following three formulas:

where G denotes all the genes in the network, Sij denotes
the network similarity between gene i and j, and Iki
denotes the observation of gene i in RNAi screen k. Iki = 1
if gene i is a hit for screen k, and 0 otherwise.

Intuitively, the more similar a gene is to hits according to
the network-based similarity (Formula 1.1–1.4), the more
likely it is a TP/FN. Thus, a straightforward scoring func-
tion would summarize the similarity of gene j to all hits of
the screen k (Formula 2.1). However, the similarity of a
gene to nonhits may also affect its likelihood of being a
TP/FN, i.e., higher similarity to nonhits may indicate
lower possibility of being a TP/FN. Motivated by this, we
devised Formula 2.2 which divides the similarity of gene j
to all hits by its similarity to all the genes (both hits and
nonhits). In order to distinguish the different contribu-
tions of hits and nonhits to the final score, Formula 2.3
combines the similarity of gene j to all hits and all nonhits
with different weights, i.e., αk and βk.

In order to determine the parameters αk and βk in Formula
2.3, we used the following linear regression model:

Given observations for all genes {Ikj | j ∈ G} in screen k,
the above linear regression optimizes the coefficients γk,
αk and βkso that the model, which differs from the NePhe
score (Formula 2.3) by a constant γk, would predict actual
observations with the least square errors. Here, we
adopted linear regression instead of logistic regression
since the former model performed slightly better than the
latter one in rank-based test (see Additional file 1 for
details). However, as linear model assumes the normality
of the residual variables, alternative models which make
no such assumptions could lead to better performance.

Different from previous studies[53,60], the network-
based similarity of a gene to itself is not considered in any
of the above three formulas (2.1–2.3). In other words, the
NePhe scoring functions do not consider a gene's own
RNAi phenotype in the screen. This is particularly useful
when we need to predict a gene's knockdown phenotype
type which has not been previously screened by RNAi.

Rank-based test
To systematically evaluate the performance of the above
different scoring methods in identifying FNs and FPs in
the RNAi screening results, we designed a novel rank-
based test.

We simulated FNs by adding one hit gene into the nonhit
set of screen k each time. Specifically, for a gene i ∈ {i | Iki
= 1} (Iki specifies if gene i is a hit for screen k), we set Iki =
0 and considered it as an FN. We updated the NePhe score
according to Formula 2.1–2.3 for each gene with current
setting of Iki. Particularly, to mimic real situations, we also
updated the parameters of αk and βk in Formula 2.3 by lin-
ear regression with current setting of Iki. We then ranked
all genes in the nonhit set by NePhe score, which includes
all the original nonhits and the simulated FN gene i. We
denote the RR of the simulated FN gene i as FNRki (FNRki
∈ (0,1]). We set Iki back to 1 afterwards. We repeated the
above procedure for each gene i ∈ {i | Iki = 1}. The screen-
specific performance of a scoring method in identifying
FNs for screen k is defined as the group mean of FNRki:

S Kij ij= (1.4)

NePhe S Ikj

i G i j
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The overall performance of a scoring method in identify-
ing FNs for all the 24 screens is defined as the grand mean
of FNRki, which is the mean of the group mean of FNRki.

where E denotes the set of all 24 screens. If a phenotypic
score performs well in recovering FNs, we would expect

 and  close to 1.

Similarly, we simulated FPs by adding one nonhit gene
into the hit set of screen k each time. Specifically, for a
gene i ∈ {i | Iki = 0}, we set Iki = 1 and considered it as an
FN. We updated the NePhe score for each gene with cur-
rent setting of Iki. We then ranked all genes in the hit set
by NePhe score, which includes all the original hits and
the simulated FP gene i. We denote the RR of the simu-
lated FN gene i as FPRki (FPRki ∈ (0,1]). We set Iki back to
0 afterwards. We repeated the above procedure for each
gene i ∈ {i | Iki = 0} The screen-specific performance of a
scoring method in identifying FPs for screen k is defined
as the group mean of FPRki

The overall performance of a scoring method in identify-
ing FNs for all 24 screens is defined as the grand mean of
FNRki which is the mean of the group mean of FNRki.

where E denotes the set of all 24 screens. If a phenotypic
score performs well in recovering FNs, we would expect

 and  close to 0.

Mutant phenotype similarity
We downloaded allele phenotype data for Drosophila from
FlyMine [55]. In specific, for each gene, we obtained a list
of distinct terms describing the phenotypes that had been
manifested by at least one of its alleles, including the tis-
sue type, cell type, and developmental stage. After map-
ping to the PPI network, we obtained 1,901 genes
associated with at least one of the total 2,884 distinct phe-
notype terms. We represented the phenotype profile for
each gene as a Boolean vector of length 2,884, specifying
whether it was associated with each of the 2,884 pheno-
type terms. The mutant phenotype similarity between two
genes was then calculated by the cosine of the angle

between their phenotype vectors as in the previous study
[61]:

The mutant phenotype similarity of a gene to KEGG Hh
(Wnt) signaling pathway was measured by the average
phenotype similarity of the gene to all the members in the
pathway.
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