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Abstract

Background: Cyanobacteria of the genera Synechococcus and Prochlorococcus play a key role in
marine photosynthesis, which contributes to the global carbon cycle and to the world oxygen
supply. Recently, genes encoding the photosystem Il reaction center (psbA and psbD) were found
in cyanophage genomes. This phenomenon suggested that the horizontal transfer of these genes
may be involved in increasing phage fitness. To date, a very small percentage of marine bacteria and
phages has been cultured. Thus, mapping genomic data extracted directly from the environment to
its taxonomic origin is necessary for a better understanding of phage-host relationships and

dynamics.

Results: To achieve an accurate and rapid taxonomic classification, we employed a computational
approach combining a multi-class Support Vector Machine (SVM) with a codon usage position
specific scoring matrix (cuPSSM). Our method has been applied successfully to classify core-
photosystem-Il gene fragments, including partial sequences coming directly from the ocean, to
seven different taxonomic classes. Applying the method on a large set of DNA and RNA psbA
clones from the Mediterranean Sea, we studied the distribution of cyanobacterial psbA genes and
transcripts in their natural environment. Using our approach, we were able to simultaneously

examine taxonomic and ecological distributions in the marine environment.

Conclusion: The ability to accurately classify the origin of individual genes and transcripts coming
directly from the environment is of great importance in studying marine ecology. The classification
method presented in this paper could be applied further to classify other genes amplified from the

environment, for which training data is available.
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Background

Marine cyanobacteria Prochlorococcus and Synechococcus
constitute the main prokaryotic fraction of oceanic phyto-
plankton [1-5]. Their photosynthetic membrane contains
two reaction centers, of which photosystem II (PSII)
mediates the transfer of electrons and protons from water,
the terminal electron donor, to the plastoquinone pool.
The D1 and D2 proteins form the reaction center of PSII,
which binds the primary electron donors and acceptors.
The genes coding for the D1 and D2 proteins, psbA and
psbD, were found recently in the genomes of cyanophages
from the Myoviridae and Podoviridae families [6-10] and
were readily detected in recent marine metagenomics
projects [11-14]

Recently, a possible exchange and reshuffling of psbA
genes between Synechococcus and Prochlorococcus bacteria
by horizontal gene transfer (HGT) via phage intermedi-
ates was proposed [15,16]. Furthermore, observations
based on data extracted from the Global Ocean Sampling
(GOS) expedition [11] suggested that the phage genes
undergo an independent selection for distinct D1 proteins
[12]. The D1 PEST-like domain (implicated as the site of
initial cleavage in the D1 protein that initiates protein
turnover [17]) in the loop between helices D and E was
identified as the target for this viral selection, having spe-
cific viral motifs. The D1 protein has a rapid turnover and
must be replaced continuously in order to enable the sus-
tained functioning of PSII (due to D1 sensitivity to photo-
damage [18]). The fact that viruses invest in modifying the
D1 proteins led to the hypothesis that an adaptive role for
this function is involved, facilitating adaptation to harsh
light conditions or modifying the D1 role for their selfish
benefits (a more stable D1 that is functional only for the
short time of infection). In addition, viral specific psbA
transcripts were detected directly in one marine sample,
implicating that these viral photosynthetic proteins are
expressed in the marine environment [12]. These novel
observations requires further investigation with much
more samples taken at different locations and times, with
both genomic DNA and RNA transcripts sampled.

Based on early genomic studies, it was concluded that dif-
ferent species have a unique sequence composition,
which has been named 'genomic signature' [19]. The
existence of specific genomic compositions has been dem-
onstrated for short oligonucleotides, such as dinucle-
otides, trinucleotides and tetranucleotides [20-23]. Based
on differences in the genomic composition of bacterial
and eukaryotic genomes, supervised and unsupervised
classification methods have been developed, such as the
Naive Bayesian classifier [24] and the neural network Self-
Organizing Maps (SOM) [25]. Characterization and clas-
sification of species based on the genomic composition of
longer oligonucleotides, such as the Chaos Game Repre-
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sentation (CGR) [26], has also been demonstrated. Sev-
eral of these approaches have been developed and applied
to specifically identify HGT events based on genomic sig-
natures [19,24-27].

The number of unknown taxonomic origin fragments
coming directly from the environment has grown rapidly
in the past few years [11,14,28-30]. Hence, tools that cou-
ple such fragments to their taxonomic origin are extremely
valuable for metagenomics research [31-34]. To better
describe and understand the phenomenon of marine viral
‘photosynthesis' and to further study the HGT of core
photosystem-II genes between phages and bacteria, we
studied psbA genes and transcripts obtained directly from
the environment. For rapid classification, we employed a
powerful approach that combines genomic composition
and position-specific codon usage to identify the specific
taxonomic origin of the fragments (100-729 bp). Overall,
for binary classification our method achieved very high
accuracy when tested on annotated psbA fragments from
the GOS (86-98% overall accuracy depending on frag-
ment length). To further verify the accuracy of the multi-
group classification method and its applicability to simi-
lar classification problems, we tested it on an independent
dataset of viral psbA sequences from a recent study by
Chenard and Suttle (2008) [35] that included freshwater
samples, as well as on annotated psbD gene fragments
from the GOS. Overall, our results were highly consistent
with original annotations (92% accuracy). Finally, we
applied the method to a large set of psbA clones, including
DNA and transcribed RNA sequences from the Mediterra-
nean Sea. We found that the distribution of bacterial taxa
(hosts) was highly correlated when examining the genes
versus the transcripts, whereas no such correlation was
observed for the phages.

Results and Discussion

In order to shed light on the diversity and dynamics of
marine cyanobacteria and their phages, we examined the
spatial and seasonal distribution of psbA genes and tran-
scripts in the eastern Mediterranean Sea. We sampled two
locations: a coastal station (Tb04) and a pelagic station
(Tb01) during the years 2006 and 2007. PsbA genes and
transcripts from mixed picoplankton assemblages were
PCR amplified directly from DNA or RNA extracts using
newly designed psbA primers [4]. Although these primers
are general and amplify psbA from picoeukarya, cyanobac-
teria and cyanophages, they are not biased against high
GC environmental Synechococcus psbAs (data not shown).
It should be noted that the amplified PCR products
reported in this study are unique only to this primer set.

A total of 1,205 randomly picked clones containing psbA
inserts (median length 699, ranging between 414 and
702) were sequenced; 618 were DNA-derived clones and
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587 were retrieved from RNA. As a first step in sorting
phage and cyanobacterial psbA genes and transcripts,
picoeukaryal psbAs were removed based on phylogenetic
trees and top BLAST hits. Interestingly, while almost
undetectable in the DNA extracts, eukaryal psbA tran-
scripts dominated in several stations and could reach up
to 88% of the total psbA RNA (data not shown). This
observation is in good agreement with longstanding
observations that different samples numerically domi-
nated by cyanobacteria (cell abundance) are in fact dom-
inated (activity) by picoeukaryotes [36].

Classifying psbA fragments based on genomic composition
using SYM

The D1 protein sequence is very well conserved amongst
bacteria and viruses except for two regions [12]. The first
variable region lies within the PEST-like domain located
in the loop between transmembrane helices D and E. The
second variable region is the viral D1, which differs from
the cyanobacterial sequences at the end of transmem-
brane helix E and precedes the C-terminal residues of
mature cyanobacterial D1. These regions possess different
sequence motifs that distinguish between the phages and
their hosts [12]. However, since the vast majority of the
protein sequence is highly conserved, taxonomic classifi-
cations that rely solely on these motifs are prone to error.
Based on the hypothesis that psbA has undergone hori-
zontal transfer events between the bacteria to the phages,
its sequence composition may reflect two major processes
acting at both the protein (functional) and the DNA level.
At the protein level, adaptive changes could make viral D1
proteins less susceptible to photo-damage and could
influence its turnover. Additionally, transferred genes are
prone to amelioration processes that cause them to reflect
the DNA composition of the received genome over time
[37].

Previous studies have attempted to distinguish bacterial
from viral psbA genes based on GC content [15,16]. In
Synechococcus, the GC composition differs significantly
between the host and its phage: for example, Synechococcus

Table I: SVM prediction results for Prochlorococcus classification.
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phage psbA sequences have a noticeably lower percentage
of GC [15]. Such differences in GC content were not
observed in Prochlorococcus phages and their host psbA
sequences, therefore these differences are not sufficient to
unambiguously assign sequences to the phage or the host.
To uniquely identify the psbA origin based on nucleotide
composition information, we chose to employ a machine
learning technique called Support Vector Machine (SVM)
[38]. SVM has been shown to be a very successful classifi-
cation tool for biological problems [39,40] including phy-
logenetic characterization [27,31]. In this study, the input
vectors for the SVM were combined from nucleotide com-
position information (mono-, di-, tri-, tetra- nucleotide
frequency) of each psbA fragment.

Our SVM training set was derived from 11 and 15 cultured
Prochlorococcus host and phage psbA sequences, respec-
tively. In addition, 28 and 16 Synechococcus host and
phage sequences were extracted from cultured data [See
Additional file 1]. As a first step, we tested the method on
an independent set of 280 psbA fragments from the GOS
dataset [11]. Applying the SVM classifier based on nucle-
otide composition, each fragment in the testing set was
labeled as Prochlorococcus bacteria, Prochlorococcus-like
phage Synechococcus bacteria and Synechococcus-like phage.
To evaluate the accuracy (sensitivity and specificity) of the
SVM, we compared our results to the original classifica-
tion derived from phylogenetic analysis, based on DNA
trees[15], and neighboring genes [12] [See Additional file
2]. Overall, when combining the frequency of mono-, di-
, tri- and tetranucleotides in our feature vector, we cor-
rectly classified 93% and 100% of the Prochlorococcus and
Synechococcus sequences, respectively. Detailed results for
Prochlorococcus classifications are given in Table 1 and
illustrated in Figure 1.

Given the differences in GC content between Synechoc-
coccus and Synechoccoccus-like phages, a high perform-
ance of the classification was expected. Nevertheless, the
extremely high prediction accuracy for classifying
Prochlorococcus vs. Prochlorococcus-like phages was not

Feature Vector Test ROC Sensitivity Specificity Accuracy
Mononucleotide 0.864 0 91.43 75.74
Dinucleotide 0.959 82.76 95 92.9
Trinucleotide 0.989 96.55 95.71 95.86
Tetranucleotide 0.999 96.55 100 99.4
All oligonucleotides 0.955 82.76 95 92.9
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ROC plot demonstrating the SVM performance for
classifying host vs. phage psbA trusted sequences
from GOS [I| |]Jbased on genomic composition: mono-
nucleotides (gray line), dinucleotides (green line), tri-
nucleotides (blue line), tetranucleotides (red lines),
all oligonucleotides (black lines). AUC (Area Under
Curve) values are given in Table |. As illustrated, best per-
formance was achieved when including only the tetranucle-
otide composition.

anticipated. In order to better understand which of the oli-
gonucleotide features contribute to the classification, we
performed a simple feature selection analysis, each time
training and testing the SVM on a different set of oligonu-
cleotide composition (i.e. dinucleotides vs trinucle-
otides). The results of the SVM tests are illustrated in
Figure 1 (full details are given in Table 1). As expected, the
mononucleotide frequencies were least informative,
achieving an overall accuracy of 75% with 0% sensitivity
due to no true positive results (Table 1). As previously
demonstrated for genomic sequences [41], the tetranucle-
otide frequencies differentiated best between host and
phage psbA sequences with a prediction accuracy of 97%.
When including all oligonucleotide frequencies in the fea-
ture vectors (Figure 1, blue line), classification perform-
ance decreased, giving very similar results as when
including only dinucleotide frequencies (Figure 1, black
line). Overall, the SVM results tested on psbA gene frag-
ments from the GOS data were very promising. As most of
the psbA fragments from GOS were of full length (average
length 679 + 66 bp), we were interested to test how well
the SVM performed on shorter fragments anticipated from
metagenomics studies. To examine this, we tested the
SVM including only the tetranucleotide frequencies on
randomly selected short psbA fragments from the GOS
data of length 300, 200 and 100 bp. As shown in Table 2,
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the average prediction accuracy for classifying Prochloro-
coccus vs. Prochlorococcus-like phages was extremely
high for short fragments of length 300 bp and 200 bp. A
considerable reduction in performance was observed for
the short sequences of length 100 bp. It is important to
note that SVM is a supervised approach that requires the
existence of trustworthy data for training. Thus, this
method could not be applicable for the taxonomic classi-
fication of any random short sequences that are not
homologues to the training dataset. This result is consist-
ent with a recent study for classifying short fragments
based on Blast hits [42]. Nevertheless, given a set of train-
ing data for a specific gene, use of the SVM is possible for
automatically defining whether a random short sequence
fits the gene model and subsequently classifying it as a
viral or bacterial origin.

Classifying psbA fragments based on codon usage using
cuPSSM

Another common technique for genome classification is
based on codon usage frequencies [43]. To test whether
differences in codon usage at each position of the D1 pro-
teins can be applied to the taxonomic classification of
short fragments of highly conserved genes, we constructed
a codon usage Position Specific Scoring Matrix (cuPSSM)
for each set of training data (see Methods section). For
comparison, we derived a standard PSSM based solely on
amino acid frequency. In a standard PSSM, each column
in the matrix corresponds to a single residue in the aligned
D1 protein, and each line represents the frequency of an
amino acid at each position. Notably, we found that clas-
sification based on codon usage information was signifi-
cantly more accurate (99% accuracy; 96.6% and 100%
sensitivity and specificity, respectively) than classification
based on amino acid information alone (89% accuracy;
96.6% and 87.9% sensitivity and specificity, respectively).
Overall, the results obtained using the cuPSSM for full
fragments were comparable to the SVM results based on
overall nucleotide composition when ignoring the posi-
tion information. In order to examine whether the predic-
tion depends on variable regions, such as the PEST-like
domain and the end of transmembrane helix E in the C-
terminal, we reproduced the same tests excluding these
regions. While the PEST-like domain was found to be
obligatory for classifying D1 proteins at the amino acid
level, it was not required for classification when depend-
ing on either the codon usage or the nucleotide signature
of the gene. Further, as shown in Table 2, when applying
the cuPSSM to randomly chosen partial sequences, a very
high accuracy was achieved even for short sequences of
100 bp. These results reinforce that both the SVM and the
cuPSSM methods are applicable for classifying the viral or
bacterial origin of short psbA fragments. However, the
main disadvantage of these approaches is that they can
only be applied to genes for which training data are avail-
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able; they cannot be used for the classification of any ran-
dom fragment obtained from metagenomics studies. In
comparison to SVM, the cuPSSM approach depends
greatly on the quality of the alignment of the query
sequence to the training data and thus can only be appli-
cable for highly conserved genes.

A combined approach for fragment classification

To study the distribution of psbA genes and transcripts in
the marine environment, we sought a method that could
further subclassify the fragments into their explicit taxo-
nomic origins: Synechococcus, Synechococcus-like Myovirus,
Synechococcus-like Podovirus, high-light adapted Prochlo-
rococcus (HL-Prochlorococcus), low-light adapted Prochloro-
coccus (LL-Prochlorococcus), Prochlorococcus-like Myovirus
and Prochlorococcus-like Podovirus. To date, only a small
number of genomes from cultured marine Synechococcus
and Prochlorococcus and their phages are available for
training. Specifically, Synechococcus podovirus psbA
sequences and LL-Prochlorococcus are underrepresented in
culture. To broaden the psbA representation, we included
in the training set fragments from the GOS expedition that
were annotated based on DNA trees (as described in [15])
and on neighboring genes (as described in [12]) [See also
Additional File 2]. To first examine whether the psbA genes
in the training set clustered into distinct groups based on
their nucleotide composition, we applied an unsuper-
vised clustering method, Principle Component Analysis
(PCA) [44] (see Methods section), to the GOS data repre-
senting each sequence by the oligonucleotide frequencies
vector. As illustrated in Figure 2A, of the seven groups, six
clearly showed distinct clusters (denoted by different
colors). The only sequences that did not cluster in the PCA
were the LL-Prochlorococcus (pink dots), presumably due
to their under-representation in the data.

Although the PCA clustering clearly indicates that psbA
fragments can be grouped based on their oligonucleotide

Table 2: SVM and cuPSSM results for short fragments.

Length Classifier Sensitivity* Specificity* Accuracy*
300bp SVM (tetra) 97.33+% 1.2 96.55 + 3 975+ 12
cuPSSM 9842 +£0.64 9839% 1.7 9844+0.7
200bp  SVM(tetra)  93.51 = 1.7 9031 £57 9417+ 17
cuPSSM 9834+ .7 9837 + 1.7 9732+ |
100bp  SVM(tetra) 8521 £2.6 80.03+74 8629+28
cuPSSM 9192+ 187 9527+37 91.22%2.1

* The analysis of randomly chosen fragments for sequences of lengths
300, 200 and 100 bp was repeated 30, 50 and 100 times, respectively.

http://www.biomedcentral.com/1471-2164/10/229

frequencies, it is not a practical method for the automatic
and accurate classification of large amounts of data. Thus,
we expanded our binary prediction described above to a
multi-class problem. To this end, we built seven new SVM
classifiers, one for each taxonomic group. In each classi-
fier, we trained an SVM to separate one of the seven
groups from all the other groups using the oligonucle-
otide frequencies as a feature vector. Subsequently, each
fragment was tested on each of the classifiers and was
given a discriminate value, denoting the confidence that
the fragment belongs to the specific group. Further, the
discriminate values produced by each classifier were
ranked, and the tested fragment was labeled based on the
classifier in which it received the highest positive value.
Independently, we built seven cuPSSMs based on the
codon usage of the training data. The tested sequences
were then aligned to a template psbA gene, scored against
seven different cuPSSMs (each sequence was trained on a
single taxonomic group) and given a label based on the
cuPSSM for which it achieved the highest score. To assure
an accurate prediction of the testing data, each fragment
was examined against the two classifiers independently,
and a final label was acquired only when the results of the
two classifiers converged. A summary of our classification
methodology is illustrated in Figure 3. As illustrated,
when given a sequence, it is independently tested by two
classifiers: (i) multi-class SVM and (ii) cuPSSM. Further,
the results of the two approaches are combined and com-
pared. Sequences for which the two independent classifi-
ers converged are classified according to the common sub-
classification (e.g Prochlorococcus-like Myovirus). In cases
where there is no agreement between the two classifiers
(i.e. multi-class SVM vs cuPSSM), sequences are consid-
ered "un predicted" and are subjected to a manual deci-
sion.

To evaluate the performance of the classifier on an inde-
pendent dataset, we tested it on a recent dataset of cul-
tured and uncultured viral psbA fragments from freshwater
and marine environments [35]. As shown in Table S3 [See
Additional file 3], there was a 92% agreement for the full-
length fragment (59/64) between our predictions (agreed
by the two independent classifiers) and the phylogenetic-
based annotation [35]. Notably, all 20 sequences origi-
nated from culture were predicted correctly by our classi-
fier. Interestingly, the classifier was able to detect two
Synechococcus podoviruses containing psbA genes. These
two may be added to the only two currently known cul-
tured Synechococcus podovirus [4]. Notably, when applied
to the multi-class problem, our method still achieved a
relative high performance for a partial length sequence of
400 bp, however, as shown, shorter fragments could not
be predicted with high accuracy [See Additional file 4].
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A. PCA plot based on oligonucleotide frequencies (340 features), projected onto three uncorrelated axes
(principal components). Each dot represents a psbA sequence color based on GOS classification [| I]:Synechococcus (light
blue), Synechococcus-like Myovirus (light sky blue), Synechococcus-like Podovirus (turquoise), HL-Prochlorococcus (rosy brown),
LL-Prochlorococcus (deep pink), Prochlorococcus-like Myovirus (gold) and Prochlorococcus-like Podovirus (light salmon). B. PCA
plot showing the distribution of DNA sequences extracted from station M from deep sea in March 2006. The Mediterranean
data are presented on the background of the GOS data (GOS sequences are colored as in A.). The Mediterranean data are
shown in darker colors Synechococcus (royal blue), Synechococcus-like Myovirus (blue), Synechococcus-like Podovirus (dark
green), HL-Prochlorococcus (dark purple), LL-Prochlorococcus (dark red), Prochlorococcus-like Myovirus (dark orange) and Prochlo-
rococcus-like Podovirus (dark brown). Black dots represent sequences for which there was no agreement between our inde-
pendent classifiers. Manual examination suggests that this is a new subclass of sequences not represented in the GOS database.
C and D. represent PCA plots showing the distribution of DNA and RNA sequences, respectively. The Mediterranean Sea
sequences colored in dark colors (as is B) on the background of the GOS data (colored as in A) were extracted from surface
water sampled in March 2006. As demonstrated, the bacterial sequences are distributed similarly between subclasses in both
the DNA and RNA sequences, while the viral psbAs are mostly found at the DNA level.

We further tested the applicability of the method for the
taxonomic classification of the psbD gene, which codes for
the D2 proteins. In this case, we trained the algorithm on
a set of annotated psbD genes from culture and tested it on
the psbD fragments from the GOS. Here again, the predic-
tion of our automatic classifier was compared to inde-

pendent annotations based on phylogenetics analysis[15]
and neighboring genes[12] [details annotation is shown
in Table S5, Additional file 5]. As shown in Table S5, out
of the 530 annotated sequences, we correctly predicted
515 (97%). Of the 15 missed annotations, in 13 the
method did not converge (nine Prochlorococcus Myovirus
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and four Synechococcus Myovirus), while only two Syne-
chococcus bacterial sequences were predicted incorrectly as
Synechococcus viral sequences.

Studying psbA dynamics in the Mediterranean Sea based
on supervised classification

Confident with the test results on psbA and psbD gene frag-
ments, we applied our classifier to DNA sequences from
the Mediterranean Sea. The prediction results for the
sequences extracted from all stations at different times of
the year are summarized in Table 3. As shown, in 867 of
the 894 psbA fragments (97%), the classifications to one
of seven taxonomic groups based on the SVM and the
cuPSSM were identical. For validation, we again applied a
PCA analysis to the test data from the Mediterranean and
superimposed it on the fully informed training data (fix-
ing the principle components as described in the Methods
section). Figure 2B illustrates the test results for station
Tb01 from the Mediterranean Sea (described in detail
below) plotted on the background of the GOS training
data. As shown, samples from the test data in the majority
of cases (highlighted in dark colors) fell within the corre-
sponding clusters from the training set, i.e., sequences
from the training set that were classified by our prediction
method as being Synechococcus-like podo viruses (dark
green) fell within the cluster of the same subclass from the
GOS data. Interestingly, the seven sequences for which
there was no classification agreement in our classifier
(black dots) did not coincide with a specific cluster, and
rather appeared to be located between the bacterial and
viral branches.

http://www.biomedcentral.com/1471-2164/10/229

Estimation of sampling efficiency

In order to evaluate if our PCR samplings approximated
the natural psbA diversity in our samples, we performed a
naive rarefaction analysis of both the RNA and DNA
sequences. The analysis suggested that each sampling was
performed more thoroughly on the DNA population than
on the RNA sequences, yet both were sampled very thor-
oughly. Sampling of translated sequences was saturated
(95%) at distances of 0.09 for the RNA samples (61% at
0.02) and 0.02 for the DNA samples. Separating the col-
lection not by the collection method (from RNA or DNA)
but instead into pools of predicted bacterial and viral ori-
gins (Fig. 4) demonstrates that the bacterial sampling is
saturated at an amino acid distance of 0.10 and the viral
at 0.05.

psbA dynamics at the DNA level

Based on our predictions, we found that the pelagic sta-
tion (Tb01) DCM (Deep Chlorophyll Maximum) depth
(at all sampling dates) was dominated by one bacterial
group  (LL-Prochlorococcus), while viral sequences
belonged to two groups (i.e., Prochlorococcus- and Syne-
chococcus-like) (Fig. 5 and Table 3). A similar trend was
observed at the surface water of station Tb04 in January
2007, with Synechococcus-like phages and only Prochloro-
coccus-like hosts (Table 3). In addition, in surface water at
station Tb01 in May 2006, Prochlorococcus-like phages
sequences were detected, while no Prochlorococcus-like
hosts were observed. Our observations from station Tb01
(DCM depth in October 2006 and from the surface in May
2006) were also confirmed when compared to flow

Syn Syn Syn Pro Pro Pro Pro
Bac Vir Vir Bac Bac Vir Vir
Myo Podo HL LL Myo Podo

. . . n . . . ACTGTGACIGTGGTGTG Syn Bac VRETTE§ESQNYGY

wyo " VRETTEZESONYGY

*

Check Agreeme

31" VRETTE. SN GY
Fro 82 | RETTETESQNYGY

is Required

Manual Decision

Pro B2 | RETTereSONYGY

Mo ' |BETTE-ESQNYGY

A

| Origin Prediction Decision

podo 1FTTE. SONVGY

Figure 3

A summary of the psbA sequence classifier. Each sequence is classified by two independent approaches: multi-class SVM
(left) and cuPSSM (right). In the multi-class SVM classifier, each sequence is represented by an oligonucleotide frequency vector
(calculated in overlapping windows) and tested against seven different SVM classifiers (trained on culture and environmental
data from GOS) [See Additional Files | and 2]. The sequence is classified based on the classifier in which it achieved the highest
positive result. Independently, the sequence is aligned to a template psbA gene and scored against seven different cuPSSMs. The
sequence is then classified based on the subgroup for which it achieved the highest score. Finally, the results of the two
approaches are compared. Sequences for which the two independent classifiers converged are classified according to the com-
mon sub classification. In cases where no agreement exists, the sequence is further classified manually as described in the text.
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cytometry results applied to the same samples. These
results again indicated that only one bacterial group is
present while the phages carry psbA genes from both bac-
terial groups. Usually, cyanobacterial host genes tend to
be acquired by host-like phages (i.e., Synechococcus genes
by Synechococcus phages and Prochlorococcus genes by
Prochlorococcus phages) [16]. However, rare events in
which phage psbA did not cluster with their hosts and did
not have psbA isoforms consistent with that of their hosts

http://www.biomedcentral.com/1471-2164/10/229

were also observed (PCR based observations reported by
[16]). This phenomenon was hypothesized to be the
result of gene swapping when two or more different
viruses infect the same host [16]. Our observations further
support the hypothesis that these swapping events occur
when different viruses (Prochlorococcus-like or Synechococ-
cus-like phages) infect the same host [45].

Table 3: Summary of prediction results for psbA DNA and RNA sequences extracted from the Mediterranean Sea.

Loc# Date Depth Seq? PH PL S PM PP SM SP N& T*

A TbOl Jan 07 surface DNA | 14 6 I 6 2 8 2 50
B TbOl Jan 07 surface RNA 7 18 0 0 0 0 0 0 25
C Tb04 Jan 07 surface DNA 2 7 0 12 7 3 46 0 77

D Tb04 Jan 07 surface RNA 2 4 0 0 0 0 0 0 6
E TbOl Oct 06 surface DNA | | 50 7 0 | 6 0 66
F TbOl Oct 06 surface RNA 4 4 8 0 0 0 0 0 16
G TbOl Oct 06 DCM DNA 0 I 0 48 14 0 9 6 88
H TbOl Oct 06 DCM RNA | 45 0 0 0 0 2 0 48
| Tb04 Oct 06 surface DNA 0 0 3 0 0 10 51 2 66
J Tb04 Oct 06 surface RNA 0 0 10 0 0 0 0 0 10
K TbOl Mar 06 surface DNA 4 | 7 18 3 8 14 | 56
L TbOl Mar 06 surface RNA 6 2 7 0 0 0 0 0 15
M TbOl Mar 06 DCM DNA 2 13 0 19 6 8 15 7 70
N TbOl Mar 06 DCM RNA 6 51 7 0 0 0 0 0 64
(o] Tb04 Mar 06 surface DNA 4 I 2 7 0 8 42 0 74
P Tb04 Mar 06 surface RNA 9 17 2 0 0 0 | 0 29
Q TbOl May 06 surface DNA 0 0 Il 3 0 14 Il | 40
R TbOl May 06 surface RNA 10 0 3 0 0 0 0 0 13
S TbOl May 06 DCM DNA 0 17 0 4 0 0 3 9 33
T TbOl May 06 DCM RNA | 48 0 0 0 0 0 0 49
60 264 116 129 36 54 208 28 895

#— Location, Station; $— Sequence; & No decision; * — Total PH — Prochlorococcus HL- Bacteria; PL — Prochlorococcus LL- Bacteria; S — Synechococcus
Bacteria; PM — Prochlorococcus Myovirus; PP — Prochlorococcus Podovirus; SM — Synechococcus Myovirus; SP — Synechococcus Podovirus
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psbA dynamics at the RNA level

Among all RNA-derived clones, only a single psbA
sequence was classified as a Synechococcus-like podovirus
while an additional seven sequences (sample D1-H col-
lected from station Tb01) gave conflicting scores (see
Table 3). These sequences had very low identity (~85% at
the nucleic acid level) to Prochlorococcus. In order to exam-
ine these sequences, we tested several features: (1) psbA
GC content; (2) D1 protein signature motif; (3) PCA
topologies; and (4) psbA tree topologies. A simple analysis
of their nucleotide contents showed that the GC content
is 47-48%, which is consistent with the GC content of
Synechococcus-like phages (47-50%) (while the calculated
GC content of Synechococcus and Prochlorococcus and their
phages was 58-60% and 44-45%, respectively [15]).
When applying a phylogenic analysis, all seven sequences
were clustered with Synechococcus-like podoviruses, but
had a common branch with Prochlorococcus MIT9211 in
the psbA tree (data not shown). Taken together, we suspect
that the seven clones are Synechococcus-like phages. How-
ever, the deposition of additional future psbA sequences in
the GenBank could modify our predictions and classify
these sequences into another group.

45

40 1 —Viral

35 :
—Bacterial

w
o
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psbA dynamics at both RNA and DNA levels

When comparing psbAs genes and transcripts, we observed
that RNA and DNA levels correlated for different pre-
dicted bacterial groups, whereas no such correlation was
observed in phages (Table 3). Figure 2 illustrates the dis-
tribution of DNA (Fig. 2C) and RNA (Fig. 2D) samples
among the seven subclasses in station Tb04 from surface
water (sample D1-O (DNA) and D1-P (RNA)) plotted on
the background of the clusters from the GOS training
data. As shown, while Synechococcus-like podoviruses
(green) are most abundant in the DNA samples, only one
was predicted in the RNA samples. Nevertheless, the bac-
teria sequences were distributed similarly in the RNA and
DNA samples from the same station. Interestingly, in both
DNA and RNA samples, we observe a relatively large clus-
ter of LL-Prochlorococcus sequences (dark brown). As dis-
cussed above, the latter group was underrepresented in
the training data and did not generate a distinct cluster.
Other cases where host genes were predicted only in the
RNA could be explained by a high expression of these psbA
genes, along with a low cell abundance. The opposite phe-
nomenon (i.e., host genes predicted only in DNA) could
possibly result from low expression of psbA at the time of
sampling. Overall, 73% of the DNA-derived clones were

[
(]

N
=]
L

Saturation (ACE)
and 95% Cl for
OTUs (0.05 AA distance)

Number of Observed OTUs

-
w

10 -

1 101 201 301 401

501 601 701 801 901
Collected

Figure 4

Rarefaction analysis of bacterial and viral PsbA. Median rarefaction curve for 1,000 replicates, sampling without replace-
ment from observed OTUs (0.05 amino acid distance); rectangles and horizontal lines indicate the 95% confidence interval and
expected value for the actual number of OTUs in the sampled population (ACE).
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A summary of the relative frequency of cyanobacteria and phage psbA sequences at the DNA level as pre-
dicted by our classifier. Flow cytometry results are given in comparison. Host and phage sequences are divided into four
groups:Synechococcus (blue); Prochlorococcus (green); Prochlorococcus-like phage (light green); and Synechococcus-like phage (light

blue).

classified as cyanophages, whereas less than 1.5% of the
RNA-derived clones were classified as phages.

DI virallbacterial motif search

Amino acid variations in the variable loop between helices
D and E (R/K ETTXXXSQ/H) were observed recently in the
viral fraction of the GOS data [12]. This D1 PEST-like
domain is implicated as the site of initial cleavage in the D1
protein and is assumed to be important for D1 turnover
rate. As our classification method does not rely on this var-
iable region, we were interested in examining this phenom-
enon in the Mediterranean Sea data. As previously
observed, D1s assigned to bacteria mainly contained the
known ESE and EAE cyanobacterial motifs while the viral
sequences contained 18 different motif variants [See Addi-
tional file 6], most of which were the same viral motifs pre-
viously observed in the GOS data [12]. Several different
new viral motifs were observed only in the Mediterranean
samples (EKE, ESV, DIE, DTE and GLI). Interestingly, one
viral motif (observed on both the RNA and DNA levels)
completely deviated from the canonical R/KETTXXXSQ/H
cyanobacterial motif and included changes throughout the
entire loop (RETS EKESL; see Additional file 7, amino acid
alignment plus schematics). It is important to note that our
classifier not only does not rely on loop sequence, but
achieves identical classifications when these sequences are
removed from the data. To better understand the nature of
these unique D1s, we searched the database for similar psbA

sequences. One GOS sequence (JCVI_SCAF_109662834
9996) had a 100% match to RNA D1 clone P_E8 and also
included two predicted hypothetical cyanophage ORFs
(See Additional file 7), further confirming our viral affilia-
tion predictions.

Conclusion

In this paper we employed two independent classification
methods for identifying the origin of psbA genes: 1)
cuPSSM, based on position specific codon usage; and 2) a
machine learning approach (SVM) trained on oligonucle-
otide (specifically tetranucleotide) composition. Combin-
ing the two approaches, we built a classifier for rapid and
accurate annotation of core photosystem-II genes and
transcripts to seven taxonomic classes of cyanobacteria
and cyanophages. When tested on independent datasets
from culture and from the environment, the method dem-
onstrated a very high accuracy, ranging from 92-100%
true predictions for psbA and psbD gene fragments. When
tested specifically on short sequences, we showed that for
binary classification, the method can accurately predict
very short partial gene fragments (down to 100 bp) while
the multi-class classifier achieved a high performance for
partial fragments of 400 bp and longer. The great advan-
tage of this classification method is that it does not rely on
having the whole gene and can be applied to partial
sequences that could be derived in the future from rapid
sequencing methods without the need for assembly proc-
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esses. However, as a supervised approach, accurate classi-
fication requires the availability of reliable annotated
training data for the gene of interest, and cannot be
applied for annotating any random sequence extracted
from the environment.

Finally, we applied the method to rapidly classified psbA
DNA and RNA sequences extracted from the Mediterra-
nean Sea, and studied the spatial distribution of the host
and viral genes and transcripts from different depths and
at different seasons. Our results show that bacterial psbA
gene and transcript levels were highly correlated, whereas
no such correlation was observed in phages, which were
observed mainly on the gene level and rarely as tran-
scripts.

Methods

Sample collection

Seawater samples were collected during four cruises
(March, May and October 2006 and January 2007) on
board the R/V Mediterranean Explorer. Two locations
were sampled: near-shore station Tb04 and open sea sta-
tion TbO1. Station Tb04 is located 20 km off the coast
(32°09'N, 34°34'E) at ca. 200 m bottom depth, and sta-
tion TbO1 is located 51 km offshore (34°14'E, 32°10'N)
at ca. 1,000 m bottom depth. Surface water samples were
collected from both stations, while samples from the
DCM were collected only from station Tb01. Twenty liters
were pre-filtered through a GF/A glass-fiber filter (What-
man) or a 3 pm polycarbonate filter (GE Water & Process
Technologies); the plankton in the filtrate was collected
on a 0.2 um Sterivex filter (Milipore, MA, USA) using a
peristaltic pump (Cole Parmer Masterflex 5, channel hard-
ware). After collection, the Sterivex filters were filled with
1 ml of lysis buffer [46] and stored at -80°C.

Nucleic acid extraction

Nucleic acid extraction was performed according to Mas-
sena et al. [46] with several modifications. Nucleic acid
extraction began with the addition of 20 pl of 100 mg/ml
fresh lysozyme (final concentration 2 mg/ml) to the Ste-
rivex filter and incubation with rotation at 37°C for 30
min. One hundred pl of 10 mg/ml Proteinase K (final
concentration 1 mg/ml) and 50 pl of 20% (w/v) sodium
dodecyl sulfate (SDS) (final concentration 0.5% (w/v))
were added and the filter was incubated at 55°C for 1 h.
The lysate was then recovered from the filter and extracted
with an equal volume of phenol pH 8.0. The aqueous
phase was extracted with an equal volume of phenol-chlo-
roform-isoamyl alcohol (25:24:1; pH 8.0), then extracted
with an equal volume of chloroform-isoamyl alcohol
(24:1). One tenth volume of 3 M NaOAc and 2 volumes
of absolute ethanol were added to the aqueous extract.
The extracts were kept overnight at -20°C. Following 20
min centrifugation at maximal speed at 4°C, the pellet
was washed with 1 ml ice-cold 80% ethanol and centri-
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fuged for 10 min at maximal speed at 4°C. The pellet was
air-dried and resuspended in 40 ul ultra pure water. Half
of the final extract (20 pl) was stored as genomic DNA at
-20°C. The RNA was treated with RNase-Free DNase I
(Ambion, Cambridgeshire, UK) for 30 min at 37°C to
remove DNA contamination. DNase was inactivated by
heat denaturation at 75°C for 10 min and samples were
stored at -80°C for further use. DNA and RNA concentra-
tions were determined by measuring their UV absorbance
and UV,4,:UV, 4, ratios.

Reverse transcription and PCR amplification

Total RNA (100-300 ng) was reverse transcribed with
psbA degenerate reverse primer psbA-2R from [4] using
Bio-RT (Bio Lab) according to the manufacturer's instruc-
tions. Reaction mixtures were incubated at 37°C for 1 h.
PsbA gene fragments (~750 bp) were amplified by PCR
from cDNA and genomic DNA using the degenerated PCR
primers designed by [4] that target the conserved YPIWEA
and HNFPLD regions. PCR was performed in a total vol-
ume of 25 pl containing 10 ng of template DNA/cDNA,
2.5 ul of 10 x OptiBuffer, 2 ul of ANTP, 1.3 pl of 50 mM
MgCl, 1 ul of 25 uM psbA-1F (TAYCCNATYT-
GGGAAGC), 1 pl of 25 puM psbA-2R (TCRAGDG-
GGAARTTRTG) and 1.2 U of BIO-X-ACT™ (Bioline,
London, UK). The amplification conditions comprised
steps at 95°C for 2 min, 30 cycles at 94°C for 1 min, 55°C
for 1 min, and 68°C for 1 min followed by one step of 7
min at 68°C. We performed two tests for the presence of
contaminating DNA in the RNA sample: (1) PCR on the
RNA samples without the reverse transcription step; and
(2) treating the RNA samples with RNase and subjecting
them to RT-PCR. To test the reagents for DNA contamina-
tion, PCR reactions without template were performed.

Cloning of psbA genes, library construction and sequencing
PCR products were cloned using the QIAGEN PCR clon-
ing kit according to the manufacturer's instructions.
Clones were picked randomly into 20 96-well plates. Each
96-well plate represented different dates (March, May and
October 2006 and January 2007), stations and depths
(Tb04 surface, Tb01 surface and Tbh01 DCM), and sources
(DNA and RNA). All plates were sequenced at the MPI for
Molecular Genetics in Berlin. Sequences were deposited in
GenBank under accession numbers EU727548-
EU728419.

Flow cytometry

Samples of 1.8 ml were taken directly from the Niskin bot-
tles and fixed immediately at room temperature with 140
pl of 25% glutaraldehyde (sigma G-5882) for 20 min,
after which they were frozen in liquid nitrogen. In the lab-
oratory, the samples were kept at -80° C until further anal-
ysis was made. Samples were thawed at 37°C and
analyzed by excitation using an argon laser (488 nm) for
either 10-15 min or until 10,000 cells were counted. Tax-
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onomic discrimination was based on the following
parameters: cell side scatter — a proxy of cell volume; for-
ward scatter — a proxy of cell size; and pigment identifica-
tion via orange and red fluorescence for phycoerythrin
and chlorophyll (585 nm and 630 nm, respectively).
Beads (0.93 pm Polysciences™) served as a standard.

Position-Specific Scoring Matrix (PSSMI/cuPSSM)

PSSM calculates and demonstrates the variation found in
each position of the multiple sequence alignment [47]. In
PSSM and cuPSSM, each row entry corresponds to a differ-
ent amino acid in the D1 protein or to a different codon
in the psbA gene, respectively. All sequences tested were
aligned based on the protein sequence and reversed to
DNA for the cuPSSM using MUSCLE protein multiple
alignment software [48]. Odd scores Oi(n) for PSSM were
calculated from the raw counts in the PSPM. Odd scores
were defined as Pi(n)/P(n), where Pi(n) is the probability
of amino acid/codon n at position I, and P(n) is the back-
ground frequency.

Support Vector Machine (SYM)

SVM experiments were carried out with Gist Program ver-
sion 2.1.1. [49]. Input data were normalized by rescaling
the columns to values between -1 and 1. A linear kernel was
applied for all SVM classifiers. Each sequence was repre-
sented by an input feature vector. The features included
normalized frequencies of: 1) mononucleotides (i.e., A, T,
G, C); 2) dinucleotides (16 pairs); 3) trinucleotides (64 tri-
plets); and 4) tetranucleotides (256). In all cases, frequen-
cies were calculated from both DNA strands (coding and
non-coding) in overlapping windows and normalized for
the sequence length. To evaluate SVM performance, a ROC
(Receiver Operating Characteristic) curve describing the
relationship between the False Positive Rate (FPR) and the
True Positive Rate (TPR) were plotted. The Area Under the
Curve (AUC) was reported for each SVM test.

For statistical analysis, we calculated the percent of cor-
rectly predicted sequences (accuracy), as well as the sensi-
tivity and specificity for each test based on the trusted
GOS labeling [11]:

Accuracy = _ IPYIN. x100%
TP+TN+FP+FN
Sensitivity = P x100%
TP+FN
N
Specificity = X 100%
pecificity = 4 v Fp ’

Mutti-class SVM
The multi-class SVM approach, also called the One Versus
All approach, is generally a series of binary SVM classifiers,
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whereby the members of one subclass (one) in each clas-
sifier are separated from the rest of the data (all) [50]. For
a given query, the predicted subclass is defined according
to the classifier for which it achieved the highest positive
discriminating value. In the current study, we built seven
subclasses, one for each taxonomic group.

Principal Components Analysis (PCA)

The PCA figures represented in this work were produced
in a two-step procedure. First, standard PCA was per-
formed for the training set, including only culture and
GOS data, using oligonucleotide frequency vectors (340
features). Second, coordinates for the testing set were cal-
culated with respect to the first three principal compo-
nents derived from the first step. Color labeling for the
testing set was based on prediction agreement (by Multi-
class SVM and cuPSSM methods). In case of prediction
disagreement, points were colored black. The PCA was
conducted using GNU R software [51].

Rarefaction analysis and community structure analysis
Aligned DNA sequences (878 psbA sequences), which had
been predicted to be viral or bacterial in origin, were used
to infer a phylogeny with PhyML [52]. The data were ana-
lyzed as DNA sequences and translated again for each anal-
ysis. The resulting trees were broken down into a distance
matrix (using MATLAB); these distances formed the basis
for a rarefaction analysis with DOTUR [53]. The sequences
were analyzed as an entire group as well as in subsets: RNA/
DNA derived sequences and viral/bacterial sequences.

Availability

A standalone package called MgFC (MetaGenomic Frag-
ment Classification) suitable for linux OS is available for
download from http://yaelab.technion.ac.il
new_lab_site/tools/MgFC.html

Abbreviations

GOS: Global Ocean Sampling; HGT: Horizontal Gene
Transfer; SVM: Support Vector Machine; cuPSSM: Codon
Usage Position Specific Scoring Matrix; PCA: Principle
Component Analysis.
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Additional material

Additional file 1

Synechococcus host and phage sequences from cultured data. The
data provides the sequences from cultured data used for training the algo-
rithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-S1.txt]

Additional file 2

Synechococcus and Prochlorococcus host and phage sequences
from environmental data. The data provides the sequences from environ-
mental data used for testing the algorithm.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-82.txt]

Additional file 3

Detailed prediction results on and independent dataset from culture
and Marine environment. The data provides the detailed result of the
predictions using MgFC algorithm compared to phylogenetic-based anno-
tation [35].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-S3 xls]

Additional file 4

Summary of prediction results on and independent dataset from cul-
ture and Marine environment. The data provides the detailed result of
the predictions using MgFC algorithm compared to phylogenetic-based
annotation [35].

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-S4.pdf]

Additional file 5

Prediction results for psbD fragments. The data provides the summary
of the prediction results for psbD using MgFC.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-85 xls]

Additional file 6

Occurrence of different D1 R/KETTXXXSQ/H motifs in viral and bac-
terial assigned Mediterranean Sea D1 sequences. Asterisks denote sta-
tistically significant motifs (p-value < 0.01), p-values were calculated
using the hypergeometric distribution test, applying the Bonferroni correc-
tion for multiple testing.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-56.pdf]

Additional file 7

Schematic representation and alignment of GOS scaffolds containing
the new viral motif EKE. Red arrows represent viral predicted ORFs (#1
denotes hypothetical protein p158 from cyanophage S-PM2, and #2
denotes unknown protein from cyanophage P60), gray arrow represents
an unknown ORF, and blue arrow represents the D1 protein.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-229-57.pdf]
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