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Abstract

Background: The role of the RNA polymerase sigma factor RpoN in regulation of gene expression in
Geobacter sulfurreducens was investigated to better understand transcriptional regulatory networks as part
of an effort to develop regulatory modules for genome-scale in silico models, which can predict the
physiological responses of Geobacter species during groundwater bioremediation or electricity production.

Results: An rpoN deletion mutant could not be obtained under all conditions tested. In order to
investigate the regulon of the G. sulfurreducens RpoN, an RpoN over-expression strain was made in which
an extra copy of the rpoN gene was under the control of a taclac promoter. Combining both the
microarray transcriptome analysis and the computational prediction revealed that the G. sulfurreducens
RpoN controls genes involved in a wide range of cellular functions. Most importantly, RpoN controls the
expression of the dcuB gene encoding the fumarate/succinate exchanger, which is essential for cell growth
with fumarate as the terminal electron acceptor in G. sulfurreducens. RpoN also controls genes, which
encode enzymes for both pathways of ammonia assimilation that is predicted to be essential under all
growth conditions in G. sulfurreducens. Other genes that were identified as part of the RpoN regulon using
either the computational prediction or the microarray transcriptome analysis included genes involved in
flagella biosynthesis, pili biosynthesis and genes involved in central metabolism enzymes and cytochromes
involved in extracellular electron transfer to Fe(lll), which are known to be important for growth in
subsurface environment or electricity production in microbial fuel cells. The consensus sequence for the
predicted RpoN-regulated promoter elements is TTGGCACGGTTTTTGCT.

Conclusion: The G. sulfurreducens RpoN is an essential sigma factor and a global regulator involved in a
complex transcriptional network controlling a variety of cellular processes.
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Background

RpoN (654 or sigma 54) is a subunit of the RNA polymer-
ase and plays a critical role in the regulation of gene
expression by recognizing specific promoter elements and
initiating transcription. RpoN-dependent promoters do
not have conserved -35 and -10 elements typically found
in the promoters recognized by sigma factors in the 670
family. Instead, a GG dinucleotide around position -24
and a GC dinucleotide around position -12 with respect to
the transcription initiation site are highly conserved
among RpoN-dependent promoters [1]. The consensus of
186 RpoN-dependent promoter elements from 47 bacte-
rial species was reported to be  mrNrYT-
GGCACG...4bp.. TTGCWNNw [2]. In contrast to c70
family sigma factors, RpoN is able to bind to a promoter
without the core RNA polymerase (RNAP) [1]. RNAP con-
taining RpoN (RNAP/RpoN) can form a stable closed
complex with the promoter. In addition, RNAP/RpoN
requires a transcription factor, the enhancer-binding pro-
tein (EBP), for initiation of transcription. Some of the EBP
family members are response regulators in two-compo-
nent regulatory systems [3]. RpoN was first identified in
Escherichia coli and was reported to regulate the transcrip-
tion initiation of nitrogen assimilation genes [4]. Since
then, RpoN homologs have been identified in bacteria
from different phylogenetic origins and are involved in
regulation of genes related to a diverse functional catego-
ries [5], including genes for pili and flagella biosynthesis
and quorum sensing in Pseudomonas aeruginosa [6-8], C,-
dicarboxylate transport in Mesorhizobium ciceri [9] and car-
bon metabolism in Gram positive bacteria, Bacillus subtilis
and Listeria monocytogenes [10-13].

Geobacter species are important agents in the bioremedia-
tion of subsurface environments contaminated with
organic or metal contaminants [14]. They also appear to
be the primary contributors to current production in
microbial fuel cells harvesting electricity from the envi-
ronment [15]. Some physiological responses of Geobacter
species can be predicted with constraint-based genome-
scale metabolic models that determine the optimal flux of
metabolites for a given environmental condition [16]. The
ability to predictively model the physiological responses
of environmentally relevant microorganisms to a wide
diversity of environmental conditions is a major goal of
environmental biotechnology [14,17]. However, the cur-
rent version of these models lacks regulatory modules that
could increase their predictive value. Progress has been
made using a combination of bioinformatic tools and
molecular biological methods to identify regulatory com-
ponents, such as operon structures, promoter elements,
and transcription factors and their binding sites, as well as
global transcriptomic and proteomic expression patterns
that provide the basis for building regulatory modules in
G. sulfurreducens [18-21]. Sigma factors are key to con-
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structing bacterial transcriptional regulatory networks. In
G. sulfurreducens, homologs of RpoD, RpoS, RpoH, RpoE
and FliA of the 670 family have been identified and physi-
ological roles of G. sulfurreducens RpoS [22,23], RpoH [24]
and RpoE (G. Reguera et al, unpublished) have been elu-
cidated.

An ortholog of the rpoN gene (GSU1887) is present in the
G. sulfurreducens genome [19]. It encodes a protein, which
shares a considerable degree of similarity to RpoN sigma
factors from other bacteria. We report here that an rpoN
deletion mutant could not be isolated under conditions
tested in this study. In order to identify the components of
the RpoN regulon in G. sulfurreducens, genome-wide
microarray transcriptional profiling of an RpoN over-
expression strain and genome-wide prediction of RpoN-
regulated promoters were employed. We discuss below
our findings that RpoN-dependent genes carry out impor-
tant functions that may contribute to the reasons why no
viable rpoN deletion mutants could be obtained.

Results

The Geobacter sulfurreducens rpoN gene cluster

An rpoN ortholog (GSU1887), which encodes the RpoN
sigma factor, is present in the G. sulfurreducens genome.
Phylogenetic analysis showed that G. sulfurreducens RpoN
is very similar to other experimentally characterized RpoN
sigma factors, such as the Escherichia coli RpoN [19]. The
G. sulfurreducens RpoN polypeptide displays characteristic
structures of the members of the RpoN family, including
an N-terminal glutamine-rich region (the first 50 amino
acids), a C-terminal X-link, a helix-turn-helix (HTH)
DNA-binding motif, and an RpoN box (ARRTVIKYRE)
[25].

Analysis of the chromosomal region surrounding the G.
sulfurreducens rpoN gene revealed that its downstream
genes encode a homolog of a ribosomal subunit interface
protein (GSU1886) whose N-terminal domain is homol-
ogous to the RpoN modulation protein found in Klebsiella
pneumoniae [26] and a homolog of Hpr (Ser) kinase/phos-
phorylase (GSU1885). The upstream genes encode an
ATP binding protein (GSU1888) and two conserved pro-
teins (GSU1889 and GSU1890) with unknown function

(Figure 1a).

In order to understand the physiological role of RpoN and
of genes it controls in G. sulfurreducens, construction of a
deletion mutant of the rpoN gene was attempted. How-
ever, an rpoN mutant could not be isolated under different
growth conditions using media with different electron
acceptors (fumarate or Fe(IIl) citrate) and amendments
(glutamine or glutamate) (Table 1). Different mutagene-
sis strategies were attempted, including deletion of the
whole coding region of the rpoN gene, only the 5'-end of
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The rpoN gene cluster and the mutation schemes. (a) Genes surrounding rpoN are shown as open arrows. HP: con-
served hypothetical protein with unknown function; YhbG: ABC transporter, ATP binding protein; YfiA: ribosomal subunit
interface-associated sigma-54 modulation protein; HprK: Hpr(Ser) kinase/phosphorylase. Insertion of a kanamycin resistance
cassette upstream or downstream of the intergenic region of the rpoN gene resulted in viable mutants (a). (b) Scheme showing
attempts of construction of deletion of (i) the 5'-end, (ii) the whole, or (iii) the 3'-end of the rpoN coding region. (c) An extra
copy of the rpoN gene was inserted on the chromosome and was under the control of the chloramphenicol resistance cassette
promoter. (d) An extra copy of the rpoN gene was introduced in trans under the control of a lac promoter (constitutively
expressed) or a taclac promoter (IPTG-inducible). The position of insertion of the antibiotic resistance cassette (kanamycin,
Kan or gentamycin, Gm) is indicated with an inverted triangle and a vertical bar. The regions which were attempted to replace
with the antibiotic resistance cassette insertion are indicated by dashed line.
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Table I: List of mutagenesis and selection media for attempts to generate a null rpoN mutant.

Mutagenesis

Selection medium (electron donor/acceptor)

|. Deletion and replacement of the rpoN gene by double-crossover (Figure |b)

Acetate/fumarate

Acetate/Fe(lll) citrate

Acetate/Fe(lll) citrate amended with glutamine

Acetate/Fe(lll) citrate amended with glutamate

Acetate/Fe(lll) citrate amended with both glutamine and glutamate

2. Deletion and replacement of the 5'-end of the rpoN gene by double-
crossover (Figure 1b)

Acetate/fumarate

Acetate/Fe(lll) citrate

3. Deletion and replacement of the 3'-end of the rpoN gene by double-
crossover (Figure 1b)

Acetate/fumarate

Acetate/Fe(lll) citrate

4. Deletion and replacement of the upstream intergenic region of the rpoN Acetate/fumarate
gene by double-crossover (Figure |a)
5. Deletion and replacement of the downstream intergenic region of the rboN  Acetate/fumarate
gene by double-crossover (Figure |a)
6. Integration of a linear DNA fragment on the chromosome, providing Acetate/fumarate

another copy of the rpoN gene on another location of the chromosome
(Figure lc)

Acetate/Fe(lll) citrate

7. Integration of a linear DNA fragment on the chromosome, providing
another copy of the rpoN gene in trans, which is either constitutively
expressed by a lac promoter, or is IPTG inducible (Figure 1d)

Acetate/fumarate

Acetate/Fe(lll) citrate
Acetate/Fe(lll) citrate amended with both glutamine and glutamate

the rpoN coding region, or only the 3'-end of the rpoN cod-
ing region (Figure 1b). No viable mutants were derived
from above attempts. We also constructed an rpoN diploid
strain (DLCN43) in which an extra copy of the rpoN gene
was integrated into the chromosome and controlled by
the promoter from a chloramphenicol resistance cassette
(Figure 1c). Attempts of deleting and replacing the origi-
nal rpoN gene from DLCN43 also failed. Furthermore, an
extra copy of the rpoN gene under the control of a consti-
tutively active lac promoter, or under the control of an
IPTG (isopropyl-B-D-thiogalactoside)-inducible taclac
promoter was introduced to the wild type strain in trans
(Figure 1d). Attempts of deleting the chromosomal rpoN
gene yielded viable isolates. However, further analysis of
these isolates indicated that none of them had deletion of
the chromosomal rpoN gene. In contrast, insertion of a
kanamycin resistance cassette at the intergenic regions
immediately upstream or downstream of the rpoN gene
yielded viable mutants, suggesting that the inability to iso-
late an rpoN-deletion mutant was not due to the polar
effects of the kanamycin resistance cassette. The condi-
tions and mutagenesis methods used in this work for our

attempts to isolate a null rpoN mutant are summarized in
Table 1, and mutation scheme is illustrated in Figure 1.

RpoN expression patterns and over-expression of RboN
In order to understand RpoN expression under different
growth conditions, Western blot analysis was performed
using anti-sera against RpoN with cell extracts prepared
from cultures grown with a variety of electron donors/
acceptors. RpoN levels were similar in cultures grown in
the presence of ammonium or when nitrogen fixation was
required in ammonia-free medium, and RpoN was consti-
tutively expressed under all other conditions tested (Fig-
ure 2a).

Because an rpoN deletion mutant could not be obtained,
a strain in which the rpoN gene was over-expressed under
the control of the IPTG-inducible taclac promoter was
generated to gain insights into the function of RpoN. The
strain capable of over-expressing RpoN (DL1/pCDrpoN)
and the control strain harboring the empty vector
pCD341 (DL1/pCD341) were designated RpoN+ and
WTV, respectively, for simplification. The over-expression
of the RpoN protein in RpoN+ after induction was con-
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RpoN expression. (a) RpoN expression under different
growth conditions. |: NBAF; 2: NBH,F; 3: NBLF; 4: ammo-
nium-free NBAF; 5: FWAFC; 6: FWH,FC; 7: FWLFC; 8:
FWAF; 9: FWH,F; 10: FWLF. Media abbreviations were
detailed in Methods. (b) RpoN over-expression. Total pro-
tein (5 pg) was separated by 10% SDS-PAGE and analyzed by
Western blot analysis with the RpoN-specific antiserum.
Two biological samples were shown for IPTG-induced WTV
and RpoN* strains. IPTG was added at final concentration |
mM.

firmed using Western blot analysis (Figure 2b). The abun-
dance of the RpoN protein in the RpoN+ strain was 5.4
times more than that of the wild type with IPTG induc-
tion, but it stayed at a similar level as that of the wild type
in the absence of IPTG. The WTV strain, with or without
the addition of IPTG, had levels of RpoN similar to those
in the wild type strain.

When induced with IPTG, the RpoN* strain grew slower
and had a longer lag phase than the WTV strain with either
fumarate or Fe(III) citrate as the electron acceptor and ace-
tate as the electron donor (Figure 3a, ¢ &3d). The effect of
over-expressing RpoN on growth was more pronounced
when cells were grown in media lacking ammonia (Figure
3b). The doubling times for the WTV and the RpoN+
strains were 7.5 and 9.7 hours, respectively, in the pres-
ence of IPTG in the NBAF medium (Figure 3a). Under
nitrogen fixation conditions, the doubling times for the
WTV and the RpoN+ strains were 12.5 and 51.3 hours,
respectively, in the presence of IPTG in the ammonium-
free NBAF medium (Figure 3b). For FWAFC media, the
doubling times were 9.6 and 14.9 hours with IPTG for
WTV and RpoN*, respectively (Figure 3d). The RpoN+
strain grew similarly with the WTV strain in the absence of
IPTG in all media. These results suggest that over-expres-
sion of RpoN inhibited growth under various conditions.

http://www.biomedcentral.com/1471-2164/10/331

The RpoN regulon identified by genome-scale
transcriptome analysis and prediction of RpboN-dependent
promoters

To elucidate the function of RpoN in Geobacter species, the
transcriptome of the RpoN+ and the WTV strains was com-
pared in order to identify those genes whose transcription
is regulated by RpoN. Due to different growth rates
between the two strains in the NBAF medium (Figure 3),
total RNA was isolated independently from three sets of
WTV and RpoN+ cultures during the exponential growth
phase, about OD600 = 0.3-0.35 and 0.2-0.25 for the WTV
and RpoN*+ strains, respectively.

With a 1.5 fold-change cutoff and a relatively strong cutoff
for false discovery rate (FDR) of p < 0.0005, the RpoN+
strain was found to have 138 genes with increased tran-
script levels and 59 genes with decreased transcript levels
when compared to the WTV strain. The fold change of the
transcription level of the rpoN gene itself was 6.61 higher
in the RpoN* strain than in the WTV strain, which is in
agreement with protein over-expression results obtained
by the Western blot analysis. A complete list of the differ-
entially expressed genes and their expression ratio is pro-
vided as additional files (see Additional files 1 &2). The
196 genes with significant changes in expression level in
the RpoN+ strain were assigned to 16 functional groups.
Most of them encoded hypothetical proteins or proteins
with unknown function (63 genes). The top three catego-
ries of genes with annotated functions consisted of genes
associated with protein synthesis (33), energy metabo-
lism (21 genes), and transport and binding (12).

In addition to observing the RpoN regulon by using gene
expression microarrays, we employed computational
analysis using the PromScan software [27] to identify
RpoN recognition sequence elements within the G. sul-
furreducens genome. The search identified 798 putative
RpoN recognition sequence elements with scores > 80
(data not shown). Among these sequence elements, 467
elements were located upstream of protein-coding genes,
in the same strand orientation as their potential target
genes. Of these possible promoter elements that could
potentially regulate transcription of protein-coding genes,
110 were located in noncoding regions. We considered
these 110 sequence elements to be the most likely RpoN-
regulated promoters. Their sequences and genome loca-
tions are provided in Additional file 3, while their pre-
dicted target genes and operons are provided in
Additional file 4. The consensus sequence of these 110
predicted G. sulfurreducens RpoN-regulated promoter ele-
ments listed in Additional file 3 was TTGGCACGGTTTTT-
GCT, where the -24 GG and the -12 GC dinucleotides are
in bold. The highest scoring RpoN-regulated promoter
was located upstream of the flagella biosynthesis operon
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Figure 3

Characterization of the RpoN over-expression strain. Cell growth with fumarate as an electron acceptor was moni-
tored by absorbance at 600 nm (a)(b). (a) acetate as the electron donor and fumarate as the electron acceptor (NBAF
medium); (b): ammonia-free NBAF. Growth with Fe(lll) as an electron acceptor was monitored by Fe(ll) production (c) as well
as cell numbers (d). Filled square: the WTY strain without IPTG; Empty square: the WTY strain with IPTG. Filled circle: the
RpoN* strain without IPTG; empty circle: the RpoN* strain with IPTG. (2)-(d): Data are means * standard deviations of tripli-
cates. The production of pili was measured by agglutination assays (e). Data are means * standard deviation of triplicates from
two independent experiments (e).
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containing the fliA gene encoding the RNA polymerase
sigma factor FliA (028) (see Additional file 4).

Genome locations of the 110 RpoN-dependent sequence
elements identified using the PromScan analysis were
cross-examined with the list of genes identified by the
transcriptome analysis with a fold change cutoff of 1.25.
The results of this comparison are listed in Additional file
5, and selected operons encoding genes related to nitro-
gen assimilation, appendages and solute transport are
listed in Table 2. These combined data showed that RpoN
regulatory elements can be found in not only up-regulated
genes, but also down-regulated genes. The increased tran-
script levels observed for some genes could result from
increased RpoN availability for transcription initiation
that is the limiting factor at a normal rpoN transcript level.
The decreased transcript levels for some genes could be
due to the fact that RpoN alone can bind to the -24/-12
elements without the core RNAP, and therefore the pro-
moter regions may not be accessible by other sigma fac-
tors, or less core RNAP may be available in the excess of
RpoN [1,28].

Both microarray transcriptome analysis and computa-
tional prediction of RpoN promoter elements concluded
that the dcuB gene, which encodes the fumarate/succinate
exchanger (C,-dicarboxylate transporter), is RpoN-
dependent. Both analyses also indicated that genes encod-
ing components for nitrogen assimilation, such as
glutamine synthetase (GS) (GSU1835), are RpoN-
dependent (Table 2). Furthermore, our computational
analysis identified an RpoN promoter upstream of the
glutamate synthetase (GSU1239, GOGAT) operon. The
microarray analysis indicated that the gene encoding
glutamate dehydrogenase (GDH) (GSU1305) is RpoN-
dependent.

In silico modeling analysis was utilized to understand the
role of GDH, GS and GOGAT enzymes in G. sulfurreducens
metabolism. The growth of G. sulfurreducens was simu-
lated under different growth conditions, varying electron
donors, electron acceptors, and nitrogen sources. In silico
modeling analysis suggested that missing both GS and
GOGAT enzymes or GDH, GS and GOGAT is lethal under
all growth conditions.

Other genes identified by both the transcriptome analysis
and the computational promoter prediction include those
encoding flagella biosynthesis, formate dehydrogenase,
alcohol dehydrogenase, and acetyl-CoA carboxylase
(Table 2 and Additional file 5).

An RpoN-dependent regulatory element, located
upstream of the pilA gene encoding pilin, the building
block for nanowires [29], was identified by the PromScan

http://www.biomedcentral.com/1471-2164/10/331

software in this study and by 5'-RACE analysis in an earlier
study [30]. Therefore, the effect of RpoN-overexpression
was tested on the pili formation via a cell agglutination
assay at 25°C [31]. In the presence of IPTG, the RpoN+
strain displayed less agglutination at 25°C than WTV and
WT (Figure 3e), which strongly suggests that RpoN is
involved in pili biogenesis.

Genes that were differentially expressed in the RpoN+
strain but for which no RpoN-dependent regulatory ele-
ments could be found include those encoding compo-
nents of stress response/molecular chaperones, central
metabolism, extracellular electron transfer, and genes
encoding regulatory proteins (see Additional files 1 &2),
suggesting their possible indirect regulation by RpoN or a
possibility that their RpoN promoters may be too diver-
gent from promoters in other bacteria to be detected using
computational approaches. Alternatively, the physiologi-
cal states caused by the overexpression of RpoN in the
RpoN* strain, which were different from those in the WTV
strain, such as slower growth, might affect gene regula-
tion.

Evaluation of predicted RpoN-dependent promoters via
primer extension analysis

In order to further validate the results of the microarray
transcriptome analysis and of the computational pro-
moter prediction and to examine promoters regulating
differentially expressed genes, primer extension assays
were carried out on 12 selected operons or singleton
genes, including seven genes with increased expression
and five genes with decreased expression in the microar-
ray analysis (Table 3). These selections included 1) genes
involved in cellular functions that were reported in other
bacteria to be RpoN-dependent, such as flagella biosyn-
thesis and nitrogen assimilation; or 2) genes involved in
physiological functions that were not previously reported
to be RpoN-dependent in other bacteria, but were pre-
dicted to have conserved RpoN-dependent -24/-12 pro-
moter elements in their regulatory regions, or 3) genes
encoding enzymes that are essential for cell growth. The
trend of changes in transcript levels observed in the
primer extension assays was similar to that reported in the
microarray analysis (Figure 4, Table 3 and Additional file
6), with an exception of GSU1836 (glnB), which encodes
a PII nitrogen regulatory protein.

Eight genes out of the 12 selected genes had promoter ele-
ments identified by the primer extension assays to match
those identified by the computational predictions, and six
of these eight genes were found to be regulated by pro-
moter sequences highly similar to other bacterial RpoN
promoter elements (Table 3). These six RpoN-regulated
genes were GSU0420 (fliL), GSU1836 (gInB), GSU2806
(nifEN), GSU3046 (flgf), GSU2751 (dcuB) and GSU0777
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Table 2: Genes containing RpoN-dependent promoters identified by the PromScan analysis and the transcriptome analysis.

Operons$ Genes Annotations

Fold changes* PromScan score

Amino acid biosynthesis and Nitrogen assimilation

Glutamine synthase (GS) GSU1835 (ginA)t  glutamine synthetase (GS) +1.39 80
GSU1836 (gnB)t  nitrogen regulatory protein PII +1.77
Glutamate synthase (GOGAT) GSUI1235 hypothetical protein N. D. 88
GSU1236 hypothetical protein N. D.
GSUI237 pyridine nucleotide-disulphide oxidoreductase family -1.44
protein
GSU 1238 iron-sulfur cluster-binding protein N. D.
GSUI1239 (gltB)t  glutamate synthase-related protein (GOGAT) N. D.
Nitrogen assimilation GSU2802 NAD(+) — dinitrogen-reductase ADP-D- N. D 86
ribosyltransferase
GSU2803 dinitrogenase iron-molybdenum cofactor family -1.21
protein
GSU2804 ferredoxin family protein -1.24
GSU2805 (nifX) nitrogenase molybdenume-iron cofactor biosynthesis -1.27
protein NifX
GSU2806 (nifEN)t  nitrogenase molybdenum-iron cofactor biosynthesis -1.34
protein NifEN
Appendages and Motility
Flagella biogenesis GSU3050 (figA) flagella basal body P-ring formation protein FigA -1.34 93
GSU3051 (figG) flagellar basal-body rod protein FigG N. D.
GSU3052 (figG) flagellar basal-body rod protein FlgG -1.19
GSU3053 (fliA)* RNA polymerase sigma factor for flagellar Operon/ -1.50
gene/gene
GSU3054 ParA family protein -1.21
GSU3055 (flhF) flagellar biosynthetic protein FIhF -1.34
GSU3056 (flhA) flagellar biosynthetic protein FIhA -1.42
Flagella basal body GSU0407 (figB) Flagellar basal-body rod protein FigB -1.38 92
GSU0408 (figC) Flagellar basal-body rod protein FIgC -1.31
Flagella biogenesis GSU0420 (fliL)t flagellar protein FliL -1.47 86
GSU0421 (fliM) flagellar motor switch protein FliM -1.35
GSU0422 (fliN) flagellar motor switch protein FliN -1.93
GSU0423 (fliP) flagellar biosynthetic protein FliP N. D.
GSU0424 (fliQ) flagellar biosynthetic protein FIliQ -1.32
GSU0425 (fliR) flagellar biosynthesis protein FIiR -1.72
GSU0426 (flhB) flagellar biosynthetic protein FIhB -1.11
Flagella biogenesis GSU3040 hypothetical protein N. D. 86
GSU3041 carbon storage regulator -1.04
GSU3042 (figl) flagellar hook-associated protein FlgL -1.05
GSU3043 (figK) flagellar hook-associated protein Figk -1.05
GSU3044 hypothetical protein -1.21
GSU3045 (figM)  negative regulator of flagellin synthesis FIgM -1.13
GSU3046 (fig)t flagellar protein Flg)-like protein -1.41
Metabolisms
Formate dehydrogenase GSU0777(fdnG)t  formate dehydrogenase, major subunit, N.D 90
selenocysteine-containing
GSU0778 formate dehydrogenase, iron-sulfur subunit N. D.
GSU0779 formate dehydrogenase, b-type cytochrome subunit -1.19
GSU0780 formate dehydrogenase accessory protein FdhD N. D.
GSU078I twin-arginine translocation protein, TatA/E family -1.41
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Table 2: Genes containing RpoN-dependent promoters identified by the PromScan analysis and the transcriptome analysis. (Continued)

Solute transporter

GSU2750
GSU2751 (deuB)t

Fumarate/succinate exchanger

hypothetical protein
C,-dicarboxylate transporter (DcuB)

+1.30 83
+1.63

§Operon predictions in G. sulfurreducens are described in [18].

tGenes were discussed in the text and/or RpoN regulatory elements have been confirmed in their promoter regions by primer extension analyses
*Not all genes listed in the table matched the criteria for > 1.25 fold-change cutoffs by the gene expression microarray analysis as described in
Methods, but these genes are listed because one or more genes from the same operon matched the cutoff criteria.

N.D.: Not detected.

(fdnG) (Figure 4 &5 and Table 3). Alignment of these six
G. sulfurreducens RpoN promoter elements and of the pro-
moter element upstream of the pilA gene identified in the
previous study [30] was shown (Figure 5).

While conserved RpoN-regulated promoters were pre-
dicted for other four genes/operons (GSU0939,
GSU2005, GSU2490 and GSU3206) by the computa-
tional tools (see Additional file 4), no -24/-12 RpoN-
dependent promoter elements could be identified by
primer extension assays for these genes/operons (see
Additional file 6). It is possible that the predicted RpoN-
regulated promoter elements for these four genes/operons
are activated only under certain conditions, such as nitro-
gen-fixing conditions, which were different from the con-
ditions for the primer extension assays.

In conclusion, the primer extension analyses showed that
RpoN-regulated promoters are located upstream of genes
for a fumarate/succinate exchanger (GSU2751, dcuB),
glutamine synthetase (GSU1836-1835 operon, glnB-
glnA), flagella biosynthesis proteins (GSU0420-0426,
and GSU3040-3046), nitrogen assimilation enzymes
(GSU2802-2806), and a formate dehydrogenase
(GSU0777-0781). In addition, an RpoN-regulated pro-

moter was also identified for the pilA gene (GSU1496) by
5'-RACE analysis [30].

Discussion

The G. sulfurreducens RpoN regulon

The G. sulfurreducens RpoN regulon was identified using
the microarray transcriptome analysis combined with the
computational analysis. Both methods indicated that
RpoN plays an important role in influencing the expres-
sion of a number of genes that are important for growth
in subsurface environment and in microbial fuel cells.
Most evidently, both methods demonstrated that the G.
sulfurreducens RpoN controls the expression of a fumarate/
succinate exchanger (DcuB), which is essential under
fumarate respiration [32]. Thus, no viable rpoN deletion
mutant was isolated when fumarate was the terminal elec-
tron acceptor. This is the first report to our knowledge
identifying a -24/-12 RpoN-dependent promoter element
in the dcuB regulatory region. In other bacteria, such as E.
coli, the dcuB gene is transcribed by RNA polymerase in
complex with the RpoD sigma factor, and its expression is
under a hierarchical control involving FNR, CRP, and a
two-component regulatory system [33].

Table 3: Summary of 12 genes whose 5' ends of mMRNA were analyzed by primer extension assays.

Gene # ID

Promoter elements validated

In agreement with microarray data  In agreement with PromScan

Up-regulated according to microarray analysis

GSUO0364 ppcB RpoD Yes Yes
GSU 1836 glnB RpoN No Yes
GSU2005 ABC transporter RpoD Yes No
GSU2302 Trehalose phosphatase RpoD Yes Yes
GSU2490  Oxalate-formate antiporter RpoD Yes No
GSU2751 dcuB RpoN Yes Yes
GSU3206 dksA RpoD Yes No
Down-regulated according to microarray analysis

GSU0420 fliL RpoN Yes Yes
GsuU0777 fdnG RpoN Yes Yes
GSU0939 PIl RpoD Yes No
GSU2806 nifEN RpoN Yes Yes
GSU3046 flg/ RpoN Yes Yes
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GSU1836-Nitrogen regulatory protein

*
GTTTAGGCAGACTATTTGCTTTTATATTTGCACC
-24 -12
AAAGACGCCGAGGGGGATACGCCTTGCTTTTTG

AGGGCGGCAAACCTATAATCCTCCAACTTTTCA
ACTATCCCAAGGGGGTGATGTGTCTTG
RBS Met

GSU2751- C, dicarboxylate transporter

*
CGTCCTTGGTATCCCCCTTGCTCATTGAAGGGTG
-24 -12
AATCTGACAGACAACAGGTGCGGATCCAACGGG
TCCGACCTAAGGGGAGGCAGTTATGATG
RBS Met

_— :

0

™

b A GcT WIYRpoN:

GSU0420-Flagellar protein

GGACTCCATTGATGCGACAACGCCGTTTCTGGC
-24
ATTTCGGTTGCAATAGCCGTATCGGTAC GTAGA
-12
GTCCCAAGGATTTCAACCATACAGAAGGAGGA
RBS

GTCTGATG
Met

GSU0777-Formate dehydrogenase

CCGAATTGGCACAATGCTTGCCCGTATACGCTTC
* 24 -12

GGCTATCTTCAAACCGGCCCGGAGGGGCCTGACA

CCTAAGGGGGATGTAATG

RBS Met

GSU2806-Nitrogenase biosynthesis protein

ATCGATTGGCACGTGGGGTGCAAAGGAGCGTTT
* 24 -12
GAACCATCAGTGAGCAGGGCAGAGACCGACGC
GGCAACGACGCCGCCATTCTCCGGAATGGCGGCG
TTTTCTTTTGCAGGAAACATTCGAGGTCACCATG
RBS Met

GSU3046-FlgJ
CCCTCTCGTGCAGTTTGGCACATAACATGCTGTC
-24 -12
CTCAGAACAGGGCCGGTAAGGCTAAAGTTTTTC
AGAAGTTGGCCGATAGGTGAATCATG
RBS Met

Figure 4

RpoN-dependent gene expression. Representative genes, (a) GSUI836 and GSU2751 (up-regulated in the RpoN* strain),
and (b) GSU0420, GSU0777, GSU2806 and GSU3046 (down-regulated in the RpoN* strain) identified by the microarray analy-
sis were further analyzed by primer extension assays. The results of the primer extension assays and their promoter regions
are shown. The 5' ends of MRNA are indicated by asterisks. The putative -24/-12 elements and RBS are underlined. Translation
start codons are shown in bold and are indicated by Met.

Page 10 of 19

(page number not for citation purposes)



BMC Genomics 2009, 10:331

http://www.biomedcentral.com/1471-2164/10/331

a glnB (GSU1836)
dcuB (GSU2751)
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fdnG (GSU0777)
nifEN (GSU2806)
flgdg (GSU3046)
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Figure 5

G. sulfurreducens RpoN-dependent promoter elements. (a) Alignment of G. sulfurreducens RpoN-dependent promoters
identified by primer extension assays in this study. Conserved nucleotides which are the same to the consensus sequences
from (b) are labeled in red. (b) Sequence logo of 110 G. sulfurreducens RpoN-regulated promoters predicted by PromScan in

non-coding regions upstream of target protein-coding genes.

Glutamate and glutamine, the essential biomass compo-
nents and major intracellular nitrogen donors, are the
products of ammonia assimilation and are synthesized in
bacteria via two pathways [34]. The G. sulfurreducens
RpoN controls the expression of enzymes involved in
both pathways for ammonia assimilation, namely, 1) the
GDH-dependent pathway, in which glutamate is synthe-
sized by reductive amination of 2-ketoglutarate and 2) the
GS-GOGAT pathway, in which GS converts glutamate and
ammonia to glutamine and GOGAT transfers the amide
group from glutamine to 2-ketoglutarate. Therefore, delet-
ing the rpoN gene would result in deficiencies in ammonia
assimilation and thus, cell death. In E. coli, the GS-
GOGAT pathway is used under energy-rich and nitrogen-
limiting conditions and the expression of both enzymes is
under the control of RpoN, whereas the GDH pathway is
employed under energy-limiting and excess ammonium
conditions, and the transcription of GDH is controlled by
RNAP/RpoD [34-36]. In fact, the expression of other
known bacterial GDHs is controlled by RNAP/RpoD,
including those in Neisseria meningitides, Klebsiella aero-

genes, Psychrobacter sp, Streptococcus pneumoniae and Pseu-
domonas aeruginosa [37-42].

Acetate is a primary electron donor for Geobacter species in
soils and sediments [43], especially during groundwater
uranium bioremediation [44]. The microarray study sug-
gests that RpoN positively regulates the expression of
genes essential for acetate oxidation coupled to metal
reduction such as fumarase (GSU0994) and acetyl-CoA
transferases (GSU0174 and GSU0490) [45]. The inability
to isolate an rpoN null mutant could also be due to the
poor expression of these essential TCA cycle enzymes in
the absence of RpoN. The ability to recover such a mutant
with Fe(III) as the electron acceptor would also be limited
due to low expression of the cytochromes essential for
Fe(III) reduction, such as the omcB gene [46], which was
up-regulated in the RpoN* strain (see Additional file 1).

Flagella are considered to play an important role in Fe(III)
oxide reduction by Geobacter species [47]. The regulatory
regions from both operons containing GSU0420 and
GSU3046 encoding flagella proteins contain sequences
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homologous to RpoN-dependent promoter sequences
(Figure 4 and 5). As presented in Table 2 and Additional
file 4, the operon containing the fliA gene (528, GSU3053)
along with other flagella biosynthesis genes (flg-1, flg-2,
flh-A, and others) was predicted to have the highest scor-
ing RpoN-regulated promoter, indicating that this pro-
moter was highly conserved and that 628 gene expression
in G. sulfurreducens is likely regulated by RpoN. Interest-
ingly, these results are similar to Campylobacter spp and
Vibrio spp, in which RpoN regulates the 528 gene expres-
sion (see reviews and references within [48-50]). In other
bacterial species, e.g. Salmonella enterica serovar Typhimu-
rium, the regulation of fliA is controlled by the FIhCD
transcriptional regulator [50]. FIhCD is absent from the G.
sulfurreducens genome, which also appears to lack FIhCD
binding sites [19]. It is interesting to note that C. jejuni
and V. cholerae use pili and flagella to achieve virulence
[50], whereas in Geobacter species, flagella and pili are
implicated in extracellular Fe(III) reduction [29,47] and
higher power production in microbial fuel cells [51].

Unique features of the G. sulfurreducens RpoN sigma
factor

In most bacteria that have been studied, the rpoN gene
deletion resulted in viable mutants or mutants requiring
certain nutrient addendum [8,52,53]. However, despite
the high amino acid sequence similarity of the G. sulfurre-
ducens RpoN to other bacterial homologs, an rpoN null
mutant was not obtained after multiple attempts. The
only other case in which the rpoN gene is essential was
reported in Myxococcus xanthus, another delta-proteobacte-
rium, for reasons that have yet to be elucidated [54].

This work also suggested that the expression of RpoN in G.
sulfurreducens is under a tight control in a complex man-
ner for several reasons: (1) over-expression of RpoN
inhibited growth under various growth conditions, (2)
over-expression of RpoN induced up-regulation of genes
involved in stress responses (see Additional file 1), and
(3) our inability to isolate a viable rpoN deletion mutant
even in the presence of another copy of the rpoN gene, in
trans or in cis, which was under the control of artificial pro-
moters such as the lac promoter or the promoter from the
chloramphenicol resistance gene. Furthermore, the G. sul-
furreducens genome contains 28 genes encoding transcrip-
tion factors from the EBP family, whose members are
required for transcription initiation directed by RNAP/
RpoN. This number of the EBPs is much higher than that
found in most bacteria. For instance, E. coli, which has a
larger genome (4.6 Mbp) than G. sulfurreducens (3.8
Mbp), has only 12 EBPs [4,55]. Approximately half of the
EBPs in G. sulfurreducens belong to two-component regu-
latory systems. This further suggests that cellular
responses to various environmental conditions are
directed by gene expression regulated by RpoN. It has
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been reported for other bacteria that EBP-encoding genes
are often located adjacent or close to their target promot-
ers (|3] and references within). This was also found to be
the case for some of the EBPs in G. sulfurreducens. 1t has
been shown that PilR, a member of the EBP family, regu-
lates the pilA gene, which has an RpoN-dependent pro-
moter and is located immediately downstream of the pilR
gene [30]. Genes encoding EBPs are also located upstream
of the dcuB and fdnG genes, which were shown to contain
an RpoN-dependent promoter (Figure 4). In addition, a
gene encoding an EBP is located upstream of GSU3364,
which was predicted to contain an RpoN-dependent pro-
moter (see Additional file 4). However, it appears that G.
sulfurreducens EBPs are not always located adjacent or
close to their target promoters for the cases of fliL, glnB
(GSU1836), nifEN, and flgJ, which were shown to contain
an RpoN-dependent promoter in their regulatory regions

(Figure 4).

Data analysis~-combining computational prediction with
microarray analysis

Due to the absence of an RpoN deletion mutant, our anal-
yses were restricted to the use of an RpoN over-expressing
strain. Activation of RpoN-dependent transcription
requires the presence of EBPs activated by modification
such as phosphorylation, and therefore, an increase in the
amount of RpoN alone would not directly lead to increas-
ing expression of every RpoN-regulated gene. This is
exactly what we have observed with our microarray anal-
ysis. With a relatively strong cutoff for false discovery rate
of p < 0.0005, the majority (~85%) of differentially
expressed genes had fold changes between 1.50 and 2.
When the results from the computational prediction are
compared with the results from the transcriptome analy-
sis, the use of an arbitrary cutoff level may not be able to
detect all RpoN-regulated genes in the RpoN over-express-
ing strain. For instance, from the transcriptome analysis,
the fold change of the nifEN gene encoding a subunit of
nitrogenase complex was -1.34 (Table 2), while an RpoN-
dependent promoter for this gene was identified in G. sul-
furreducens (Figure 4) and in other species [34]. Therefore,
it is likely that the fold change in expression of the nifEN
gene and other genes did not reach the 1.5 threshold due
to complexity of gene regulation in the RpoN over-
expressing strain. In order to provide a broader list of
potential RpoN targets, we therefore provided a list of
genes predicted to be under control of RpoN-regulated
promoters (see Additional file 4), with predicted
sequences. To increase the possibility of capturing even
weaker effects of RpoN on gene expression, the threshold
level for expression changes was set at 1.25 for compari-
son of the microarray transcriptome analysis and the com-
puter prediction (Table 2 and Additional file 5). By
lowering the cutoff of fold changes and by using addi-
tional validation by the primer extension assays, we were
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able to confirm RpoN regulatory elements located
upstream of operons/genes identified by both methods
(Table 2 &3), suggesting that this strategy is feasible.

The results from the transcriptome analysis and the
primer extension assays showed that RpoN-dependent
promoters can be found upstream of both up- and down-
regulated genes in the RpoN+ strain. For example,
increased transcript levels observed for some genes, such
as dcuB, could result from increased RpoN availability for
transcription initiation, which is the limiting factor at a
normal rpoN transcript level. Therefore, such genes were
up-regulated with the increase in the RpoN level. In con-
trast, excess RpoN may inhibit transcription due to lack of
proportional increase in EBPs and/or core RNAP, thereby
making excess RpoN an inhibitor or repressor instead of
an activator. This might be explained by the degree of the
conservation of the RpoN-recognition sequences. When
the RpoN-recognition sequences of glnB, dcuB, fliL, fdnG,
nifEN, and flgJ, for which their RpoN-recognition
sequences were identified by the primer extension assays
(Figure 4), were analyzed, it was found that the RpoN-rec-
ognition sequences of the genes repressed in the overex-
pressing strain (fliL, fdnG, nifEN, and flgJ) are slightly
more similar to the consensus of the RpoN-recognition
sequences (10 or 11 nucleotides conserved out of 13 con-
sensus nucleotides) than those for the up-regulated genes
(gInB and dcuB, 9 nucleotides conserved out of 13 consen-
sus nucleotides) (Figure 5a). This slight difference could
make significant difference in transcriptional activation
and repression. Therefore, RpoN might bind more tightly
to the promoters that are more similar to the consensus
and inhibit their transcription in the absence of a propor-
tionally increased amount of an EBP for these promoters.
Furthermore, the decreased transcript levels for some
genes could also be due to "sigma factor antagonism" in
which other sigma factor(s) could not access the promoter
regions that were engaged by RpoN [28], or because less
core RNAP may be available for other sigma factors in the
excess of RpoN. It is likely that more than one sigma factor
and/or transcriptional regulators can affect gene expres-
sion in the same cell. For example, it has been proposed
that the transcription of RpoN-dependent promoters is
affected by ppGpp and its cofactor DksA through a mech-
anism in which more core RNAP are available for RNAP/
RpoN holoenzyme formation due to the short half life of
RNAP/RpoD induced by binding to ppGpp and DksA
[56,57]. Alternatively, the physiological states caused by
the overexpression of RpoN in the RpoN+ strain, which
were different from those in the WTV strain, such as slower
growth, and/or growth conditions, which affect gene reg-
ulation, such as fumarate respiration, resulted in positive
effects on some genes and negative effects on others. For
instance, the dcuB gene was up-regulated in the RpoN+
strain, because the active EBP was likely present for the
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activation of the dcuB gene under the conditions for the
microarray transcriptome analysis, during which cells
needed to grow on fumarate, and thus the fumarate/succi-
nate exchanger encoded by the dcuB gene was required for
growth. In contrast, it is unlikely that the genes for nitro-
gen fixation such as nifEN were essential for growth in the
presence of ammonia and thus the active EBP for these
genes was scarce, if present, under the conditions for the
microarray transcriptome analysis, resulting in the inhibi-
tion of these genes in the RpoN* strain. It is also possible
that RpoN may affect regulation of different promoters
under a different set of conditions or different stages of
cell growth.

Conclusion

The results presented here demonstrate that G. sulfurredu-
cens has an RpoN ortholog, which exhibits typical struc-
tural characteristics shared by the RpoN family. However,
unlike most of other bacterial rpoN genes, the G. sulfurre-
ducens rpoN was indispensable for growth under all condi-
tions tested. By combining data from the computational
prediction with the microarray analysis of the RpoN over-
expression strain, the regulon of G. sulfurreducens RpoN
was identified, which includes a number of genes that are
important for growth in subsurface environments and
microbial fuel cells. The G. sulfurreducens RpoN regulates
the expression of the dcuB gene encoding a fumarate/suc-
cinate exchanger, which is essential for fumarate respira-
tion. The G. sulfurreducens RpoN controls both pathways
of glutamate/glutamine syntheses, including the GDH
(glutamate dehydrogenase) pathway and the GS/GOGAT
(glutamine synthase/glutamate synthase) pathway. Thus,
deletion of the rpoN gene would hinder cells' ability for
ammonia assimilation, and therefore this mutant would
not be viable. This study provides information on tran-
scriptional regulatory networks in G. sulfurreducens, which
would increase the predictive value of the regulatory mod-
ules in the genome-wide in silico models. Further studies
for the RpoN transcriptional network in global regulation
in G. sulfurreducens are currently underway to fine-tune
the regulatory modules in the models.

Methods

Bacterial strains and culturing conditions

Escherichia coli strain JM109 [endA-1 recA-1 gyrA-96 thi
hsdR-17(ry;, my*) relA-1 supE-44 A(lac-proAB)(F' traD-36
proAB lacliZAM15)] [58], or TOP10 [FmcrA A(mrr-
hsdRMS-mcrBC) @ 80lacZAM15 AlacX-74 recA-1 araD-139
A(ara-leu)7697 galU galK rpsL (StiR) endA-1 nupG| [59]
was cultured in LB medium at 37°C with shaking. Tar-
geted gene disruption experiments were performed on G.
sulfurreducens strain DL1 [60,61] to produce strains
DLCN29 (a kanamycin cassette insertion between
GSU1888 and 1887 (rpoN)), DLCN32 (a kanamycin cas-
sette insertion between GSU1887 and GSU1886) (Figure
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1) and an rpoN diploid strain DLCN43. G. sulfurreducens
strains were routinely cultured anaerobically in NB ace-
tate-fumarate (NBAF) or freshwater acetate-Fe(III) citrate
(FWAFC) medium at 30°C as previously described [61].
NB and FW are the two basic mineral solutions, and differ
mainly in buffering capacity and trace element contents.
Acetate (15 mM) and fumarate (40 mM) were the electron
donor and electron acceptor, respectively, for the general
propagation unless otherwise stated. Both can be substi-
tuted with either lactate (20 mM) or hydrogen as an elec-
tron donor, or Fe(Ill) citrate (55 mM) as an electron
acceptor when necessary (for a complete media composi-
tion please see references [61,62]).

DNA manipulations

Genomic DNA was extracted with the Qiagen Genomic-
tip 100/G. Plasmid DNA and PCR products were purified
with the Qiagen mini plasmid purification kits and PCR
purification Kkits, respectively (Qiagen). DNA cloning and
other manipulations were carried out according to the
methods outlined by Sambrook et al. [63]. Restriction
enzymes and other DNA-modifying enzymes were from
New England Biolabs. Probes for Southern blot analyses
were labeled with [a-32P]dCTP using the NEBlot kit (New
England Biolabs). [0-32P]dCTP was from PerkinElmer
Life and Analytical Sciences. Qiagen Taq DNA polymer-
ase, unless otherwise stated, was used for all PCR amplifi-
cations.

Single-step gene replacement

Sequences were deleted with single-step gene replacement
as previously described [64]. To disrupt the intergenic
regions either upstream (between rpoN (GSU1887) and
GSU1888) or downstream (between rpoN and GSU1886)
of the rpoN gene, a linear DNA fragment was generated by
recombinant PCR [64,65] from three primary PCR prod-
ucts. For disruption of the intergenic region upstream of
the rpoN gene, a 2.1 kb linear DNA fragment was com-
posed of three PCR products: (1) the 3' end of GSU1888
(0.5 kb, amplified with primers rpoNU-1 and rpoNU-2);
(2) 5' end of the rpoN gene (0.5 kb, amplified with prim-
ers rpoNU-5 and rpoNU-6); and (3) a kanamycin resistant
cassette (KanR) (1.1 kb, amplified with primers rpoNU-3
and rpoNU-4). For disruption of the intergenic region
downstream of the rpoN gene, three primary PCR reac-
tions were performed to amplify a 2.1 kb linear DNA frag-
ment: (1) the 3' end of rpoN [0.5 kb, position to position,
amplified with primers rpoND-1 and rpoND-2); (2) 5'
end of the GSU1886 gene (0.5 kb, amplified with primers
rpoND-5 and rpoND-6); and (3) a KanR cassette (1.1 kb,
amplified with primers rpoND-3 and rpoND-4). Recom-
binant PCR was performed with these three PCR products
as templates with distal primer pairs, rpoNU-1/rpoNU-6
and rpoND-1/rpoND-6 for upstream or downstream
intergenic region mutation respectively. PCR conditions
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were as previously described, except that the annealing
temperature was 58°C [64]. All primer sequences used in
this work are listed in Additional file 7.

Electroporation, mutant isolation and genotype confir-
mation were performed as previously described [61,64].
One of each of the mutants, designated DLCN29 and
DLCN32, was chosen as the representative strain.

Construction of an rpoN diploid strain of G.
sulfurreducens (DLCN43)

A 2.5 kb linear DNA fragment containing the chloram-
phenicol resistance cassette (CmR) followed by the coding
region of the rpoN gene was constructed using cross-over
PCR [65]. The chloramphenicol resistance cassette was
amplified with Cm-rpoNF1 (Cla I site) and Cm-rpoNR2
using pACYC184 as the template. The rpoN gene was
amplified with C-rpoNF3 and C-rpoNR4. The two PCR
products were joined together by cross-over PCR as
described in [64,65]. The resulted PCR product (Cm-
rpoN) was Klenow filled-in and ligated to the Sma I-cut
pLAO1 (as described below), resulted in plasmid pLAO3.

The plasmid pLAO1 is a derivative of pCR2.1-TOPO that
the 5'-end of the periplasmic c-type cytochrome gene
(ppcA) which was amplified with primer pair: ppcAF1 and
PPCAR2 was cloned into pCR2.1-TOPO using TOPO TA
cloning kit (Invitrogen). Therefore, plasmid pLAO3 con-
tains the 5'-end ppcA followed by Cm-rpoN: the CmR
resistance cassette and the rpoN gene, and the 3'-end of
ppcA. The plasmid pLAO3 was linearized and electropo-
rated into G. sulfurreducens DL1 and CmR transformants
were selected. The insertion of the Cm-rpoN construction
within the ppcA gene was verified by PCR and the resultant
strain was named DLCN43.

In order to interrupt any of the two copies of the rpoN
gene in DLCN43, a linear PCR fragment containing the
rpoN gene disrupted by the kanamycin resistance cassette
was constructed with cross-over PCR. The 5' region of
rpoN was amplified with primer pair: RpoNKmlII-1 and
RpoNKmlII-2. The 3' region of rpoN was amplified with
RpoNKmII-5 and RpoNKmII-6. The KanR cassette was
amplified with RpoNKmlII-3 and RpoNKmlII-4. The
recombinant PCR was carried out as described in the pre-
vious section and the resultant recombinant PCR product
was electroporated into the strain DLCN43. A total of 15
KanR transformants were isolated. However, all 15 trans-
formants had the KanR insertion within the Cm-rpoN
locus.

Over-expression of rpoN in trans under the control of a
lac or an IPTG-inducible taclac promoter

The complete rpoN coding sequence was amplified with
primer sets RpoNfor-Xbal and RpoNrev-EcoRI for inser-
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tion to pJMG (lac promoter, gentamycin resistant) [66,67]
or RpoNfor-EcoRI and RpoNrev-HindlIII for insertion to
pCD341 (taclac promoter, kanamycin resistant) [68]
using Phusion High-Fidelity DNA polymerase (New Eng-
land Biolabs) under the following conditions: 98°C, 30 s
followed by 30 cycles of 98°C,20 s; 58°C, 20's; 72°C, 60
s; and a final extension at 72 °C for 10 min. The PCR prod-
uct of the rpoN coding sequence was digested with restric-
tion enzyme sets of Xba [ and EcoR I or EcoR I and Hind 111
and inserted into the Xba I and EcoR I sites of the vector
pPIMG or the EcoR I and Hind I11 sites of the vector pCD341
via ligation; the resulting plasmids were designated pJMG
rpoN or pCD rpoN, respectively. The rpoN gene in pJM-
GrpoN or pCDrpoN was then sequenced to screen for
PCR artifacts.

Following electroporation of strain DL1 with pJMGrpoN
or pCDrpoN, a gentamycin-resistant transformant or a
kanamycin-resistant transformant, was isolated and desig-
nated DL1/pJMGrpoN or DL1/pCDrpoN (RpoN* for sim-
plification), respectively. The presence of the plasmid in
the DL1 strain was confirmed by plasmid purification and
PCR.

The over-expression of rpoN for the strain containing
pCDrpoN was achieved by adding 1 mM IPTG, a non-
degradable analog of lactose to the medium. In the
absence of lactose, transcription from the taclac promoter
is inhibited by the lacZ repressor [69]. Upon addition of
lactose or IPTG, the lacZ repressor is inactivated, therefore
inducing transcription of the rpoN operon.

Primer extension analyses

Total RNA was isolated from mid-exponential-phase cul-
tures with RNeasy Midi kits (Qiagen) followed by treat-
ment with RNase-free DNase (Ambion). Primer extension
experiments were performed at 42°C using AMV reverse
transcriptase  (Roche) with primers GSU0364-06,
GSU0420-04, GSU0777-04, GSU0938-06, GSU1836-04,
GSU2005-02, GSU2302-04, GSU2490-02, GSU2751-02,
GSU2806-08, GSU3046-02, and GSU3206-06, respec-
tively for the corresponding promoter regions. The
sequencing ladders presented in Figure 3 and Additional
file 6 were also generated with these same primers using
Thermo Sequenase Cycle sequencing kit (USB).

DNA microarray hybridization and statistical analysis

DNA microarray hybridization was carried out as previ-
ously described [70]. Briefly, total RNA was extracted from
three sets of identically treated batch cultures of the wild
type harboring an empty vector (DL1/pCD341 or WTV for
simplification) and the RpoN overexpressing strains
(RpoN+). Ten micrograms of RNA from the wild type and
the RpoN-~ strain samples were chemically labeled with
Cy3 or Cy5 fluorescent dyes respectively, using the Micro-
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Max ASAP RNA Labeling Kit (Perkin Elmer), according to
manufacturer's instructions. Labeled RNA was fragmented
in a 20 pl volume at 70°C for 30 min using Ambion's
Fragmentation Reagent and competitively hybridized to
12 K Arrays (Combimatrix) according to manufacturer's
protocol. The arrays were scanned using a GenePix 4000B
scanner (Molecular Devices), and analyzed using GenePix
and Acuity 4.0 software. LIMMA mixed model analysis (R-
package LIMMA [71]) was applied to the normalized Log,
expression ratios to identify differentially expressed genes.
The P-value was then corrected for multiple comparisons
according to Benjamini and Hochberg's procedure [72] to
control the false discovery rate (FDR). Genes whose
expression was significantly changed are listed in Addi-
tional files 1 &2 according to their fold changes (< -1.5 for
down-regulation and > +1.5 for up-regulation) and the P-
values (< 0.0005). A gene was considered differentially
expressed if at least half of its probes had a P <0.0005 and
a fold change <-1.5 or > +1.5.

Gene expression microarray data (raw data and statisti-
cally processed data files) for the G. sulfurreducens over-
expressing RpoN strain are available from the NCBI GEO
(Gene  Expression Omnibus) database  http://
www.ncbi.nlm.nih.gov/geo/, with accession GSE8022.

Computational analysis of RpoN-regulated promoters and
their target operons

RpoN-regulated promoters were predicted in the genome
of G. sulfurreducens using the PromScan software [27].
This software assigned scores representing the Kullback-
Leibler distance for predicted RpoN sites in the G. sulfurre-
ducens genome, based on 186 known RpoN promoter
sites from 47 bacterial species [2]. The predicted sequence
elements were ranked according to their PromScan scores,
and sequence elements with scores equal to or exceeding
the default cutoff of 80 were selected for further consider-
ation.

The operon organization of the G. sulfurreducens genome
was predicted using a commercial version of the FGENESB
software (V. Solovyev, A. Salamov, and P. Kosarev, unpub-
lished; Softberry, Inc; 2003-2008). The reference June 1,
2004 version of operon annotation used in this study has
been described previously [18]. For all RpoN-regulated
promoter elements predicted by PromScan, we compared
their genome location and strand orientation relative to
operons and singleton ORFs. Those sequence elements
that were located upstream of and in the same direction
with protein-coding genes were considered to be possible
RpoN-regulated promoter elements. Only those elements
that did not overlap with coding genes (according to gene
boundaries predicted by the FGENESB software) were
selected for further consideration.
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To compare the predicted locations of RpoN-regulated
promoters with experimental evidence, we identified pre-
dicted RpoN promoters located upstream of and in the
same orientation with genes with significantly altered
expression in the RpoN+ strain. This was achieved by com-
paring the list of suggested target genes located down-
stream of RpoN promoters (see Additional file 4) to the
list of genes with significantly altered expression in the
RpoN+ strain and identifying the genes present in both
lists.

Consensus sequences of predicted RpoN promoters was
computed using our software, CONSENS by J. Krushkal
[73]. Each nucleotide reported in the output consensus
sequence represents the most frequent nucleotide. For
ambiguous nucleotides co-occurring with equal highest
frequencies, degenerate symbols were used according to
the IUPAC-IUB ambiguity codes. Sequence logos of the
predicted promoter sites were drawn using the WebLogo
package v. 3 beta at http://weblogo.berkeley.edu/[74].

In silico analysis of G. sulfurreducens growth

In silico modeling was utilized to analyze the possible phe-
notypes of G. sulfurreducens mutants in which genes
encoding enzymes for ammonia assimilation pathway
were deleted. The constraint-based genome-scale meta-
bolic model of G. sulfurreducens [16] was applied in simu-
lating cell growth using flux balance analysis and linear
optimization [75] in SimPheny (Genomatica, Inc., CA).
Biomass synthesis was selected as the objective function
to be maximized in growth simulations. The following
external metabolites were allowed to freely enter and
leave the network for simulations of anaerobic growth on
minimal media: Ca2+, CO,, Fe2+, H+, H,0O, K*, Mg?+, Na+,
NH?#*+, PO,3, and SO,2". Acetate was supplied to the meta-
bolic model as electron donor and Fe(IIT) or fumarate was
supplied as electron acceptor for the simulations. All other
external metabolites were only allowed to leave the sys-
tem.

Preparation of antisera against RpoN

The rpoN coding region was amplified with primers
pGEXrpoNEcoRIfor and pGEXrpoNXholrev, digested
with EcoR I and Xho 1, and inserted into the EcoR I-Xho 1
sites of pGEX-4T-1 (GE). Competent E. coli strain JM109
was transformed with the resulting plasmid, pGEXrpoN.
The E. coli cell lysates containing the over-expressed GST-
tagged RpoN was size-fractioned by sodium dodecyl sul-
fate-polyacrylamide gel electrophoresis. The band corre-
sponding to RpoN protein was cut, crushed, and used to
immunize New Zealand rabbits for antibody production
against RpoN as described by Harlow and Lane [76].
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Analytical techniques

Protein concentration was determined using the bicin-
choninic acid method with bovine serum albumin as a
standard [77]. Western blot analyses were carried out by
using antiserum against RpoN according to the protocol
described by Ausubel et al [78]. Immunoreactive bands
were visualized using an alkaline phosphatase-conjugated
goat anti-rabbit secondary antibody (Pierce) and 1-step
NBT/BCIP plus suppressor (Pierce) according to the man-
ufacturer's instructions. Growth of fumarate cultures was
monitored by measuring turbidity at 600 nm in a Genesys
2 spectrophotometer (Spectronic Instruments). Cell den-
sity of Fe(III)-grown cultures were determined using epif-
luorescence microscopy with acridine orange staining
[79]. Fe(Il) concentrations were determined with the fer-
rozine assay as previously described [80]. Agglutination
assays were preformed as described by Reguera et al [31].
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List of up-regulated genes in the RpoN over-expressing strain as com-
pared to the wild type strain, based on fold change cutoff 1.5.

Click here for file
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2164-10-331-S1.pdf]

Additional file 2

List of down-regulated genes in the RpoN over-expressing strain as
compared to the wild type strain, based on fold change cutoff 1.5.
Click here for file
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Additional file 3

List of 110 predicted RpoN-regulated promoters located in the noncod-
ing regions, upstream of and in the same orientation with protein-cod-
ing genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-331-83.pdf]

Additional file 4

List of 110 predicted RpoN-regulated promoters and their target
downstream genes.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-331-S4.pdf]

Additional file 5

List of operons/genes containing RpoN-dependent promoters identified
by the PromScan analysis and also identified using transcriptome
analysis.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-331-S5.pdf]

Additional file 6

RpoN-dependent gene expression. Representative genes, (a) GSU0364,
GSU2005, GSU2302, GSU2490 and GSU3206 (up-regulated in the
RpoN+ strain), and (b) GSU0938 (down-regulated in the RpoN* strain)
identified by the microarray analysis were analyzed by primer extension
assays. The results of the primer extension assays and their promoter
regions are shown. The 5' ends of mRNA are indicated by asterisks. RBS
sites are underlined. Translation start codons are in bold and are indicated
by Met.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2164-10-331-S6.pdf]

Additional file 7

Primers used in this work.

Click here for file
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2164-10-331-57.pdf]
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