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Abstract

Background: Pseudogenes provide a record of the molecular evolution of genes. As glycolysis is such a highly conserved and
fundamental metabolic pathway, the pseudogenes of glycolytic enzymes comprise a standardized genomic measuring stick and
an ideal platform for studying molecular evolution. One of the glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), has already been noted to have one of the largest numbers of associated pseudogenes, among all proteins.

Results: We assembled the first comprehensive catalog of the processed and duplicated pseudogenes of glycolytic enzymes in
many vertebrate model-organism genomes, including human, chimpanzee, mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and
worm (available at http://pseudogene.org/glycolysis/). We found that glycolytic pseudogenes are predominantly processed, i.e.
retrotransposed from the mRNA of their parent genes. Although each glycolytic enzyme plays a unique role, GAPDH has by far
the most pseudogenes, perhaps reflecting its large number of non-glycolytic functions or its possession of a particularly
retrotranspositionally active sub-sequence. Furthermore, the number of GAPDH pseudogenes varies significantly among the
genomes we studied: none in zebrafish, pufferfish, fruitfly, and worm, | in chicken, 50 in chimpanzee, 62 in human, 33| in mouse,
and 364 in rat. Next, we developed a simple method of identifying conserved syntenic blocks (consistently applicable to the wide
range of organisms in the study) by using orthologous genes as anchors delimiting a conserved block between a pair of genomes.
This approach showed that few glycolytic pseudogenes are shared between primate and rodent lineages. Finally, by estimating
pseudogene ages using Kimura's two-parameter model of nucleotide substitution, we found evidence for bursts of
retrotranspositional activity approximately 42, 36, and 26 million years ago in the human, mouse, and rat lineages, respectively.

Conclusion: Overall, we performed a consistent analysis of one group of pseudogenes across multiple genomes, finding
evidence that most of them were created within the last 50 million years, subsequent to the divergence of rodent and primate
lineages.
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Background

Pseudogenes are inheritable genomic sequences sharing
large amounts of sequence similarity to genes but exhibit
limited or altered functionality because of disablements.
They occur in many prokaryotic and eukaryotic genomes
[1-11], but the abundance of pseudogenes is specific to
each species. Pseudogenes comprise a significant portion
of mammalian genomes and can be found primarily in
non-coding regions such as intergenic regions and
introns. Because of the high level of sequence similarity
shared with the parent genes, the genes from which they
were mostly likely generated, it has been a difficult task to
biochemically and computationally distinguish pseudo-
genes from genes. Resolving the functional differences
between genes and pseudogenes in spite of their sequence
similarity would increase our understanding of regulatory
mechanisms that determine gene expression [12,13].

Pseudogenes can be classified into two main types, proc-
essed and duplicated [6]. Processed pseudogenes are gen-
erated via retrotransposition of the mRNA of their parent
genes. After mRNAs of the parent genes are transcribed in
the usual fashion by RNA polymerases, they are reverse
transcribed and integrated into genomic DNA by reverse
transcriptases and endonucleases encoded by long inter-
spersed nuclear elements (LINEs) in primates and
humans [14,15,5,16,17]. Because these pseudogenes are
generated through mRNA intermediates, they are notable
for their lack of introns, spliced out during mRNA matu-
ration. On the other hand, duplicated pseudogenes are
generated via direct DNA-to-DNA duplication followed
by integration into genomic DNA and eventual disable-
ment [18]. They retain most of the exon-intron arrange-
ments with possible duplication of upstream and
downstream regions.

We have developed computational methods for catalogu-
ing processed and duplicated pseudogenes [19,3,4,20,2].
First we identify pseudogene candidates by aligning the
genome in all six frames of the translated amino acid
sequences to the known proteins in the organism [21].
Then we distinguish pseudogenes from their parent genes
by identifying disablements such as insertions, deletions,
and nonsense mutations, as these would interfere with the
potential transcription and translation of the pseudo-
genes into a fully functional protein.

Because pseudogenes are released from the pressures of
natural selection, they capture the sequences of genes at
points in time and are subsequently subject to mutations
at a neutral rate [22]. Understanding the subtleties of
pseudogenes that effect their inactivation would aid in
predicting genes de novo from genome sequences [23-25].
In addition to their passive role as genetic fossils, the func-
tional roles of pseudogenes are still being characterized.
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Pseudogenes have been found to interact with the mRNA
of their parent gene [26-28]. Some pseudogenes have also
been implicated in chromosomal recombination and
gene conversion events leading to diseases because of high
sequence homology to their parent genes [7,29]. Others
have been reactivated and become fully expressed variants
of their parent genes [30].

In order to characterize the factors influencing the genera-
tion of pseudogenes, it is useful to study a selected set of
genes that are common to multiple species and have
many associated pseudogenes [22]. We identified such a
set that encodes the enzymes in glycolysis, a fundamental
metabolic pathway conserved since ancient anaerobic
prokaryotes. Using our pseudogene pipeline, we assem-
bled the first detailed catalog of the processed and dupli-
cated pseudogenes of glycolytic enzymes in the well-
annotated eukaryotic genomes: human, chimpanzee,
mouse, rat, chicken, zebrafish, pufferfish, fruitfly, and
worm genomes [20,31-39]. By comparing pseudogenes of
orthologous genes in multiple genomes, we are able to
identify general characteristics as well as species-specific
characteristics. The dates of species divergence can be used
as landmarks in the temporal evolution of the glycolytic
pseudogenes.

From this analysis, we found that the number of proc-
essed and duplicated pseudogenes of GAPDH, as well as
its spermatogenic isozyme, far exceeded the numbers of
other glycolytic pseudogenes, and for this reason, most of
the present work focuses on GAPDH specifically. In order
to look for an evolutionary explanation for the large
number of GAPDH pseudogenes, we matched ortholo-
gous regions by extensive synteny analysis, using genomes
that had sufficiently complete and intact annotations and
significant numbers of GAPDH pseudogenes, namely the
human, mouse, and rat genomes. After considering vari-
ous methods that aligned large genomic segments by
nucleotide sequences [40], we decided to align the
genomes using orthologous genes as anchors. Then, after
applying Kimura's two-parameter model for neutral evo-
lution [41], we calculated a burst in retrotranspositional
activity dating to about 26 million years ago. This relative
recentness is consistent with the low numbers of GAPDH
pseudgenes syntenic between the primate and rodent lin-
eages. Our study documents a careful analysis of a group
of pseudogenes in multiple organisms, contrasting against
recent studies devoted to draft pseudogene annotation of
individual genomes and attempting to date the burst in
retrotransposition [28,42].

Methods

Genomic sequences and annotated genes

The human (Homo sapiens) NCBI 35 assembly, the chim-
panzee (Pan troglodytes) 4x shotgun assembly released on
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November 13th 2003 from the Chimpanzee Sequencing
Consortium, the mouse (Mus musculus) NCBI m34 assem-
bly, the rat (Rattus norvegicus) assembly version 3.4
November 2004 update from the Rat Genome Project,
and the chicken (Gallus gallus) first draft assembly were
downloaded from ENSEMBL release 33. The zebrafish
(Danio rerio) assembly version 7 (Zv7) released on 13 July
2007, the pufferfish (Tetraodon nigroviridis) assembly ver-
sion 7, the fruitfly (Drosophila melanogaster) BDGP assem-
bly release 5, and worm (Caenorhabditis elegans)
WormBase 180 frozen database were downloaded from
ENSEMBL release 49. Gene annotations, their intron and
exon positions, and their protein sequences were also
obtained from ENSEMBL. The segmental duplications for
the human NCBI 35 assembly were obtained from http://

eichlerlab.gs.washington.edu/database.html.

Computer programs were written in Perl and GNU Bash
to collect and process data. The Perl API provided by
ENSEMBL was used to query releases 33, 36, and 49 of its
genome databases.

Pseudogene pipeline

We used a pseudogene pipeline containing separate rou-
tines to identify processed and duplicated pseudogenes.
The pipeline had been tested on large parts of the human
genome [3,4,28,20,43]. On one hand, protein sequences
were used to query each genome for processed pseudo-
genes. Minimal thresholds for identifying processed pseu-
dogenes were optimized at 40% sequence identity and
70% alignment without an insertion longer than 60
nucleotides. Pseudogene candidates that did not meet the
second criterion were considered pseudogene fragments.
On the other hand, nucleotide sequences spanning a par-
ent gene's exons with 50-nucleotide extensions in both 5'
and 3' directions were used to query each genome for
duplicated pseudogenes. Repetitive sequences and exons
were masked in all candidate matches for processed and
duplicated pseudgenes. Please see the methods section of
Zheng and Gerstein (2006) for thorough specifications of
the pseudogene pipeline [43].

To examine the sensitivity of the pseudogene pipeline, we
varied both the percent identity and e-value threshold
used for the identification of the pseudogenes in the
mouse genome. The total number of pseudogenes varied
from 16,963 to 15,884 while the degree of similarity to
the parent protein was incremented from 25% to 50%,
which constituted a dramatic range. This showed that the
number of pseudogenes did not change significantly with
the sequence identity parameter, about 40 pseudogenes
per 1% increase in sequence similarity. We used an iden-
tity threshold of 40%, which yielded 16,730 pseudogenes.
We performed similar sensitivity analyses for other
parameters and present those results in Additional File 1.
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Synteny

Syntenic analysis was conducted between two genomes
using orthologous genes as anchors (Figure 1). A pair of
GAPDH pseudogenes found in two genomes was consid-
ered a syntenic pair if it was flanked by the same two
anchors. Gene orthology was assigned according to the
annotations in ENSEMBL release 33. The human, mouse,
and rat genomes were used for this analysis because they
offered the most complete genomic annotations. We con-
sidered including the chimpanzee genome, but with its
draft status and because it had only recently diverged from
the human genome 5.4 million years ago, the chimpanzee
genome would not have contributed significantly to the
analysis. In contrast, the mouse-rat divergence occurred
41 million years ago and the human-murine divergence
occurred 91 million years ago [44].

Pseudogene ages

At the nucleotide level, we aligned pairs of orthologous
GAPDH genes to each other and pairs of syntentic
GAPDH pseudogenes to each other [45-47]. As shown in
Table 1, nucleotide differences (P = fraction of transitions
and Q = fraction of transversions) were used to calibrate
Kimura's two-parameter model with the assumption that
they began to accumulate T million years ago at the times
of species divergence [41]. The divergence times between
each species pair were 91 million years ago for the human-
mouse divergence, 91 million years ago for the human-rat
divergence, and 41 million years ago for the mouse-rat
divergence [44]. The rates of transition and transversion
mutations, @ and £, respectively, were calculated by Equa-
tions 8-9 in Kimura (1980) as follows.

4aT=—hm1—2P—Q)+%h41—2Q)

8BT =-In(1-2Q)

The parameters {(; £)|i € {human-mouse, human-rat,
mouse-rat} } were calculated for GAPDH genes and pseu-
dogenes for each pairwise comparison among human,
mouse, and rat. We solved for the species-specific rates of
transitions as follows.

_ ®human +0-55-@mouse-rat-ancestor +9-45-%mouse

A human-mouse — 2
a _ ®human *t0.55-@mouse-rat-ancestor +0-45-%rat
human-rat = 2
a — %mouse*@rat.
mouse-rat — 2

Ahuman-mouse *®human-rat =0-99-¢mouse-rat
1.10

& mouse-rat-ancestor

The same equations are used, substituting f's for o's, to
solve for species-specific rates of transversions. ¢, ,se.rat.

ancestor ANA B ouse-ratancestor Were also calculated for the
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Syntenic analysis. Syntenic alignment using orthologous genes as anchors. In the example at top right, a orthologous pair of
TASPI genes is used as an anchor to determine that there is no syntenic mouse pseudogene corresponding to a human
GAPDH pseudogene located in an intron of TASPI. In the example at bottom right, two orthologous pairs of CST genes are
used as anchors to identify a syntenic pair of intergenic regions, in which we found a syntenic pair GAPDH pseudogenes. Solid
and open bars indicate exons and introns, respectively.

common ancestor of mouse and rat, in order to account  where « is taken to be the averaged transition rate for

for the time lapse of 50 million years between the human-
murine divergence and mouse-rat divergence (Figure 2).
The IQSUItant Values Of ahuman/ ﬁhuman' amouse' ﬁmouse' arat/
ﬂrat' amouse-rat-ancestor' and ﬁmouse-rat-ancestor are Shown in
Table 2. These parameters were then used to calculate the
age of each GAPDH pseudogene from the nucleotide dif-
ferences between it and its parent gene in the same species
by solving for T in Equation 10 in Kimura (1980) as fol-
lows

20T +4BT =K = —%m{( 1-2P-Q)\1-2Q }

Table I: Nucleotide differences

genes and pseudogenes and £ is taken to be the averaged
transversion rate for genes and pseudogenes.

For mouse and rat pseudogenes older than 41 million
years, o and fin the previous equation are replaced with

a= %mouse41+ mouse-ral-ancesmr'( T-41 ) B= Bmouse4 1+/jmouse-ral-ancesmr'( T-41 )
T T

and

o= Urat 4 1+amouse-rat-ancestor'( T-41 ) ’B — ﬁrat 4 1+ﬂmouse-rat-anceslor ( T-41 )
T T

Transitions

Transversions

Total Nucleotides Aligned

human < mouse 508
human < rat 369
mouse < rat 11046

399 2509
269 1710
6307 102905

From our human-mouse, human-rat, and mouse-rat synteny analysis, each pair of syntenic GAPDH pseudogenes were aligned and their nucleotide

differences were totaled in each pairwise genome comparison.
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91 million years

Mouse-Rat Ancestor

41 million years

Figure 2

Human-mouse-rat divergences. Rates of transitions and
transversions were calculated for the human, mouse, and rat
genomes as well as the presumed mouse-rat ancestral
genome, in order to compensate for the 50 million years
between the human-murine divergence and mouse-rat diver-
gence.

in order to accomodate the nucelotide substitution rates
in the common ancestor of mouse and rat.

In these calculations, we derive different rates of nucle-
otide substitution in genes and pseudogenes because
genes are subject to pressures of natural selection whereas
pseudogenes are not. Although Kimura's model assumes
neutral rates of nucleotide substitutions, we use it as an
approximation of the mutation rates of the GAPDH genes
for the sake of consistency, perhaps yielding conservative
estimates or upper bounds on the ages of pseudogenes.

Results

Pseudogene abundances

We assembled a comprehensive catalogue of the proc-
essed and duplicated pseudogenes of genes encoding gly-
colytic enzymes in the human, chimpanzee, mouse, rat,
chicken, zebrafish, pufferfish, fruitfly, and worm genomes
(Table 3, http://pseudogene.org/glycolysis/). The chicken,
zebrafish, pufferfish, fruitfly, and worm genomes contain
the least number of GAPDH pseudogenes, none or almost
none for each enzyme. The human and chimpanzee

Table 2: Kimura model parameters

http://www.biomedcentral.com/1471-2164/10/480

genomes both contain moderate numbers. The mouse
and rat genomes contain the most, approximately five
times as many as the primate genomes. The relative abun-
dances for both processed and duplicated pseudogenes
among the vertebrate genomes shows a consistent trend
for each glycolytic enzyme: chicken/zebrafish/pufferfish/
fruitfly/worm << primates << rodents. However, as previ-
ously reported, GAPDH surpasses the other glycolytic
enzymes by far in pseudogene abundance (p = 0.0023 by
Kolmogorov-Smirnov test), followed at a distant second
by LDH. Processed pseudogenes outnumber duplicated
pseudogenes in all the genomes except chicken, zebrafish,
pufferfish, fruitfly, and worm.

Overall distribution

We mapped the chromosomal locations of the GAPDH
pseudogenes in each genome. Figure 3 shows that
GAPDH pseudogenes are distributed throughout the
human, chimpanzee, mouse, and rat genomes, occuring
on all or almost all chromosomes. While clusters of pseu-
dogenes occur at some locations, the overall distribution
appears to be uniform and shows no bias towards or
against the locations of the parent genes. The other
genomes we studied are not shown here because of their
scarcity of processed and duplicated pseudogenes.

Evolutionary analysis with synteny and mutation

To investigate the evolution of GAPDH pseudogenes, we
attempted to identify syntenic relationships among them.
As demonstrated by Figure 1, orthologous genes were
used as anchors to delimit regions syntenic between two
genomes. Table 4 shows the number of syntenic pseudo-
genes in each species pair. There were many pairs of pseu-
dogenes syntenic between human and chimpanzee and
between mouse and rat while there were very few pairs
syntenic between the primate and rodent genomes, sug-
gesting either recent pseudogene production occurring
after the primate-rodent divergence or degradation
beyond recognizability of pseudogenes older than 75-100
million years (Figure 4).

We applied Kimura's two-parameter model of nucleotide
substitution to the orthologous GAPDH genes in human,

Human Mouse Rat Mouse-Rat Ancestor
Genes a 7.15 x 104 4,90 x |04 7.28 x 104 8.02 x 104
B 2.75 x 104 1.17 x 104 1.81 x 104 3.77 x 104
Pseudogenes a 1.84 x 10-3 1.20 x 103 1.94 x 103 2.06 x 103
p 522 x 104 4.14 x 104 3.83 x |04 6.24 x 104

Rates of transition and transversion substitutions per million years, represented by « and £, respectively, in Kimura's two-parameter model of

nucleotide substitution.
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Table 3: Processed/duplicated pseudogenes

http://www.biomedcentral.com/1471-2164/10/480

Human Chimp Mouse Rat Chicken Zebrafish Pufferfish Fruitfly Worm
HK 1/0 [4] 172 0/1 [3] - [3] 0/2 - - - -
GPI -[N - 1/0 [1] -[N - - - - -
PFK - [3] - - [3] - [3] - 0/1 - - -
ALDO 171 [3] 171 11/0 [2] 7/0 [3] 0/1 - - - -
TPI 3/0[1] 2/1 6/1[1] 3/1[1] - - - - -
GAPDH 60/2 [2] 47/3 285/46 [2] 329/35 [2] 0/1 - - - -
PGK 171 [2] 172 2/0 [2] 12/0 [1] - - - - -
PGM 12/0 [2] 13/1 9/0 [2] 3/0 [2] - - - - -
ENO 1/0 [3] 172 12/1 [3] 36/3 [3] - - - - -
PK 2/0 [2] 3/0 10/3 [2] 4/1 111 - - - - -
LDH 10/2 [3] 9/l 27/7 [3] 25/4 [3] - - - - -
Total 97 91 422 463 4 | 0 0 0

Numbers of pseudgenes (processed/duplicated) and [known parent gene isozymes] for each glycolytic enzyme. The numbers of known parent gene
isozymes are shown only for human, mouse, and rat because they constitute the most completely annotated genomes in ENSEMBL. A dash '-'
indicates that there are no processed or duplicated pseudogenes derived from a particular enzyme in a particular vertebrate genome. The chicken,
zebrafish, pufferfish, fruitfly, and worm genomes contain very few or no pseudogenes, the human and chimpanzee genomes a moderate number, and
the mouse and rat genomes significantly more. The pseudogene copy number for GAPDH far outnumbers those of any other glycolytic enzyme.
Abbreviations: HK, hexokinase; GPI, glucose-6-phosphate isomerase; PFK, 6-phosphofructokinase; ALDO, aldolase; TPI, triose-phosphate
isomerase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; PGK, phosphoglycerate kinase; PGM, phosphoglycerate mutase; ENO, enolase;

PK, pyruvate kinase; LDH, lactate dehydrogenase.

mouse, and rat to estimate their rates of transitions and
transversions in each species. We also applied this model
on the pairs of syntenic pseudogenes between primates
and rodents to estimate the rates of transitions and trans-
versions in the GAPDH pseudogenes of each species
(Table 2). Then we aligned each GAPDH pseudogene to
its parent gene in the same genome and calculated the
nucleotide difference in terms of transitions and transver-
sions. By estimating nucleotide substitution rates for the
GAPDH genes, our calculations compensated for muta-
tions occurring after they diverged from a common ances-
tral gene and the ages of the pseudogenes were adjusted
accordingly. From the nucleotide differences and the
above estimated rates of transitions and transversions in
genes and pseudogenes, we estimated the ages of the non-
syntenic GAPDH pseudogenes, as shown in Figure 5. The
ages of the non-spermatogenic GAPDH pseudogenes were
not included, as they appeared to have become more
severely degraded. These dating calculations are particu-
larly sensitive to the quality of the underlying genome
sequence and annotation. Consequently, we only report
data for the three most completely finished and annotated
genomes in our set: human, mouse, and rat. Because the
chimpanzee genome diverged from the human genome
so recently, we would not expect chimpanzee to have very
different numbers for the comparison.

Discussion

As a central pathway in metabolism, glycolysis has been
highly conserved across multiple species from archaea to
humans. The omnipresence of the glycolytic enzymes

makes for a crude but standardized genomic measuring
stick, comprising an ideal platform for studying pseudo-
genes.

Despite the high degree of conservation in the glycolytic
enzymes, there is much more variation in their pseudog-
ene abundances. Some genomes, like chicken, zebrafish,
pufferfish, fruitfly, and worm, have very few or none,
while others, like mouse and rat, have hundreds. The dif-
ferences in pseudogene abundances alone suggests signif-
icant differences in the processes of gene expression,
duplication, and retrotransposition in the different
genomes. Previous studies have suggested that the differ-
ence lies in the prolonged lampbrush stage of oogenesis in
mammalians as compared to non-mammalian organisms
[48,49].

Most glycolytic pseudogenes are processed and can be
assumed to be retrotransposed from an mRNA intermedi-
ate. It is possible that certain sequences intrinsic to the
GAPDH and LDH genes may predispose them to be pref-
erentially retrotranscribed, inserted, and preserved in the
genome. These pseudogenes are classified as processed
and not duplicated indicating their formation was the
result of a retrotransposition event of the parent gene,
rather than a duplication event. However, we must con-
sider the possibility of formation of a processed pseudog-
ene through a retrotransposition event and its subsequent
duplication giving rise to so called "duplicated-processed"
pseudogenes. Thus, while duplicated pseudogenes result
from the duplication of parent gene, duplicated-processed
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Figure 3

Pseudogene locations. Chromosomal distribution of GAPDH pseudogenes in the human genome. Pseudogenes are marked
by triangles. The parent genes are marked by solid circles, occuring on human chromosomes 12 and 19 (spermatogenic), chim-
panzee chromosomes 12 and |9 (spermatogenic), mouse chromosomes 6 and 7 (spermatogenic), and rat chromosome |

(spermatogenic) and 4. The tick marks along the right edge of a chromosome mark 20 million base pair intervals, starting from

the top.

Page 7 of 12

(page number not for citation purposes)



BMC Genomics 2009, 10:480

Table 4: Number of syntenic pseudogene pairs

Number of Syntenic Pseudogene Pairs

human < chimp 64

human < mouse 4
human < rat 3
mouse <> rat 135

Number of pseudogene pairs found to be syntenic between two
species. The more closely related the pair of species, the greater the
number of syntenic pseudogenes, as illustrated by the human-chimp
and mouse-rat comparisons.

pseudogenes result from the duplication of a processed
pseudogene [50,51]. One way to differentiate processed
pseudogenes from duplicated-processed pseudogenes is
to check if the segments of the genome surrounding a pair
of processed pseudogenes are also similar. Hence, we
checked for the presence of 60 processed pseudogenes of
human GAPDH in duplicated regions of the genome
called segmental duplications [52]. A pair of processed
pseudogenes located in segmental duplication pairs indi-
cates that one of the pseudogenes was likely formed by the
duplication of the other one and hence is a duplicated-
processed pseudogene (Figure 6). We identified eight
duplicated-processed pseudogenes by this analysis, listed
in Additional File 1. However, six of those eight pseudo-
genes occupy > 77% of the segments that are duplicated
and could be the result of independent retrotransposition
events. In this scenario perhaps the high sequence similar-
ity of these segments led to their annotation as segmental
duplications.

— Human
64 pseudogenes

(5.4+1.1 mya)

Chimpanzee
4 pseudogenes

(91+2 mya)
— Mouse
135 pseudogenes
0 pseudogenes (41£1 mya)
(310 mya) Rat

Chicken

Figure 4

Phylogeny and numbers of syntenic pseudogenes.
Phylogenic tree relating human, chimpanzee, mouse, rat, and
chicken. Branch points are labeled with the number of syn-
tenic GAPDH pseudogenes between the two branches and
the approximate date of divergence. Branch lengths are not
drawn in proportion to elapsed time.
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As a coincident finding, GAPDH has many more biologi-
cal roles outside glycolysis as compared to the other glyc-
olytic enzymes. For example, GAPDH functions in DNA
repair, telomeric DNA binding, transcriptional regulation,
nuclear RNA export, apoptosis, membrane fusion, phos-
phorylation, tubulin bundling, and sperm motility [53-
59]. Because the molecular processes of retrotransposition
are separate from the enzymatic functionalities, we can
only speculate that the preponderance of non-glycolytic
roles may be correlated to the enrichment of GAPDH
pseudogenes.

In an intergenomic analysis, GAPDH pseudogenes have
about five- to six-fold greater abundance in the rodent
genomes as in the primate genomes even though overall
the mouse genome was found to have about half as many
pseudogenes as the human genome [3]. The mouse
genome has higher rates of nucleotide substitution, inser-
tion, and deletion [33] than the human genome, leading
to a higher rate of pseudogene decay. However, the higher
rate of pseudogene decay seems to have preferentially
spared the GAPDH pseudogenes.

To further characterize the molecular history of pseudo-
genes in the human, chimpanzee, mouse, and rat
genomes, it was necessary to identify the pseudogenes
that were most likely present prior to the primate-rodent
ancestral divergence. We used orthologous genes to iden-
tify regions of synteny between primate-rodent genome
pairs. This approach is based on the assumption that
gene-coding regions are much less variable than inter-
genic regions because of functional constraints and are
therefore more reliably matched between genome pairs.

The scarcity of GAPDH pseudogenes syntenic between the
primate and rodent genomes suggests an increase in retro-
transpositional activity after the primate-rodent diver-
gence 91 million years ago, which is consistent with the
findings of previous investigators [6]. In order to achieve
more detail in the timeline and provide further corrobora-
tion, we used Kimura's two-parameter model of nucle-
otide substitution to estimate the rates of change in the
GAPDH genes and pseudogenes and thereby calculate the
insertion date of each pseudogene. The creation dates
formed three distinct distributions centered at 42.0, 36.3,
and 25.9 million years ago in the human, mouse, and rat
genomes, respectively, signifying a burst in retrotransposi-
tional activity around those times. Kimura's model
assumes neutrally evolving sequences, as in many pseudo-
genes [42], but some may initially be subject to natural
selection [12] and the ages of these pseudogenes may be
underestimated. In the human genome, the bursts in ret-
rotranspositional activity may coincide with the "Alu
burst" that occurred about 40 million years ago in primate
genomes [60,1,5,61]. By examining the sensitivity of our
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Figure 5

Pseudogene ages. Top three panels: Distributions of GAPDH pseudogenes by age in the human, mouse, and rat genomes.
There appear to be three distinct bursts in retrotransposition which gave rise to GAPDH pseudogenes centered around medi-
ans (middle 50%) of 42.0 million years ago (26.4-49.3 million years) in human, 36.3 million years ago (17.4-52.8 million years) in
mouse, and 25.9 million years ago (17.6-40.9 million years) in rat. Pairwise Kolmogorov-Smirnov testing shows that the age dis-
tributions among these three genomes are statistically different, with p-values of 0.01 (human-mouse), 7 x 107 (human-rat),
and 7 x |0-'0 (mouse-rat). Bottom two panels: Distributions of GAPDH pseudogenes syntenic between mouse and rat.
Although the majority did occur before the mouse-rat divergence 41 million years ago, there is some noise or variation in
nucleotide substitutions.
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Figure 6

Aectiology of a duplicated-processed pseudogene.
Alternative aetiology of a processed pseudogene. A parent
gene is first retrotransposed into a processed pseudogene.
Then the processed pseudogene undergoes segmental dupli-
cation to produce a duplicated-processed pseudogene.

pseudogene pipeline, as decribed under Methods, we
found that the number of pseudogenes does not vary sig-
nificantly with the threshold for sequence identity or
BLAST score when compared to the parent gene. Thus, we
believe this dating method accurately reflects all GAPDH
pseudogenes and is not significantly biased towards
longer and therefore younger pseudogenes.

Conclusion

The ubiquitous nature of glycolytic enzymes rendered
their pseudogenes most appropriate for comparing retro-
transposition among multiple genomes. There was no evi-
dence for preferential distribution of GAPDH
pseudogenes in relation to individual chromosomes and
to the location of the parent genes. We were able to calcu-
late synteny using orthologous genes as anchors between
two genomes. Whereas retrotransposition and gene anno-
tation have been previously characterized on an individ-
ual genome basis, our syntenic method allowed us to
perform a careful analysis of one pseudogene family
across multiple genomes. This and a molecular clock anal-
ysis indicated that three distinct bursts in the insertion of
GAPDH pseudogenes occurred at approximately 42, 36,
and 26 million years ago in the human, mouse, and rat
genomes, respectively, with evidence that most were cre-
ated within the last 50 million years, subsequent to the
divergence of rodent and primate lineages.
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