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Abstract

Background: Several global transcriptomic and proteomic approaches have been applied in order
to obtain new molecular insights on skeletal myogenesis, but none has generated any specific data
on glycogenome expression, and thus on the role of glycan structures in this process, despite the
involvement of glycoconjugates in various biological events including differentiation and
development. In the present study, a quantitative real-time RT-PCR technology was used to profile
the dynamic expression of 375 glycogenes during the differentiation of C2C|2 myoblasts into
myotubes.

Results: Of the 276 genes expressed, 95 exhibited altered mRNA expression when C2CI12 cells
differentiated and 37 displayed more than 4-fold up- or down-regulations. Principal Component
Analysis and Hierarchical Component Analysis of the expression dynamics identified three groups
of coordinately and sequentially regulated genes. The first group included 12 down-regulated genes,
the second group four genes with an expression peak at 24 h of differentiation, and the last 21 up-
regulated genes. These genes mainly encode cell adhesion molecules and key enzymes involved in
the biosynthesis of glycosaminoglycans and glycolipids (neolactoseries, lactoseries and
ganglioseries), providing a clearer indication of how the plasma membrane and extracellular matrix
may be modified prior to cell fusion. In particular, an increase in the quantity of ganglioside Gy at
the cell surface of myoblasts is suggestive of its potential role during the initial steps of myogenic
differentiation.

Conclusion: For the first time, these results provide a broad description of the expression
dynamics of glycogenes during C2CI|2 differentiation. Among the 37 highly deregulated glycogenes,
29 had never been associated with myogenesis. Their biological functions suggest new roles for
glycans in skeletal myogenesis.
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Background

Myogenesis is a complex process which leads muscle pro-
genitor cells to proliferate and then differentiate into
myotubes. This process is strongly controlled by the spa-
tio-temporal expression of myogenic regulatory factors
(MRFs) - MyoD, Myf5, myogenin and Mrf4 (or Myf6)
[1,2] - and by several transcription factors of the myocyte
enhancer factor-2 (MEF2) family [3]. Their expression
defines different stages in the myogenic process: myoblast
proliferation, cell-cycle withdrawal, cell fusion to form
myotubes, and the maturation of myotubes into myofib-
ers. MRFs are members of the bHLH (basic Helix-Loop-
Helix) protein family [4]. They cooperate with MEF2 tran-
scription factors to mediate the transcription of muscle-
specific genes [5]. bHLH proteins also form heterodimers
with E proteins [6,7], enabling binding to the E-box con-
sensus DNA sequence [8] and the transcription of specific
skeletal muscle genes, such as the myosin heavy chain
gene [9].

As well as myogenic factors, myogenesis involves other
molecular actors such as embryonic fibroblast growth fac-
tor (eFGF), cadherins, members of the cadherin-associ-
ated immunoglobulin superfamily such as CDO (CAM
(Cell Adhesion Molecule)-related/down-regulated by
oncogenes), BOC (brother of CDO) [10], neogenin [11]
and p38 MAP kinase [12]. These are the classic molecules
involved in cell interactions and signaling. In order to
monitor the expression of these actors, several studies
have exploited the development of high-throughput gene
expression profiling using microarrays and proteomic
approaches. Recent microarray studies on C2C12 cells,
mouse myoblasts that can differentiate into myotubes,
have afforded a broad molecular description of myogene-
sis and identified sets of genes that display transcriptional
variations in expression between proliferating and differ-
entiating cells [13-16]. These studies identified some
genes, as Zfp-51 and Ptger4, which were not previously
associated with skeletal myogenic differentiation. Some
proteomics studies on developing myotubes have par-
tially confirmed and completed these microarray-based
studies by providing evidence for the involvement of tran-
scription regulators, signaling factors, phospho-proteins
and adhesion molecules, as well as novel non-character-
ized proteins (Riken clones and unnamed proteins) in
skeletal muscle development and contractility [17,18].

The plasma membrane and extracellular matrix (ECM) of
myoblasts, like those of other eukaryotic cells, are rich in
glycoproteins and glycolipids. Despite all the data gener-
ated by transcriptomic and proteomic studies, little infor-
mation is available on the role of glycoconjugates in
myogenesis. The principal reason for this lies in the weak
expression of glycogenes which is hardly detectable using
pan-genomic microarrays. Nevertheless, some proteogly-
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cans of the ECM, e.g. syndecans, have been shown to play
different roles in myogenesis [19,20]. Inhibition of their
synthesis halts myoblast proliferation and fusion inde-
pendently of the expression of the myogenic bHLH factor.
In the same way, blocking N-glycan synthesis impairs
myoblast fusion [21] and the in vivo invalidation of
Mgat1, a gene involved in the synthesis of complex N-gly-
cans, generates mouse embryo death in utero [22]. Con-
versely, NCAM1 O-glycosylation promotes myoblast
fusion [23,24]. Glycolipids also play key roles in cell dif-
ferentiation [25,26]. They appear to be involved in muscle
development, since their membrane levels are altered dur-
ing G7 and G8 myoblast fusion, with an increase in gan-
gliosides and neutral glycolipid synthesis [27]. In other
myogenic cell lines, changes have been observed in the
activities of the glycosyltransferases that contribute to gly-
colipid synthesis [28].

In order to clarify the potential roles of glycosylation in
myogenesis, quantitative real-time RT-PCR was used to
analyze the expression of 375 glycogenes (that account for
more than 60% of the glycogenome) in differentiating
mouse C2C12 cells. Seventy-four percent of the genes
(276 genes) were expressed during C2C12 cell differenti-
ation: 181 of them were invariant while 37 displayed up-
or down-regulations of more than 4-fold. These genes
were clustered in three main groups. The first cluster con-
tained genes with gradually decreasing quantities of tran-
scripts. In the second set of genes, transcript levels reached
a maximum at 24-48 h of differentiation and then
decreased, while those in the third cluster increased
throughout differentiation. The functions controlled by
the clustered genes, as a function of their group, high-
lighted how the myoblast cell membrane and ECM could
be modified for cell fusion during C2C12 differentiation.
For the first time, this study provides a general framework
for glycogene expression during the onset of in vitro myo-
genesis.

Results and Discussion

The combined use of cell lines and microarrays offers a
major opportunity to study gene expression patterns and/
or dynamics during different physiological and patholog-
ical processes. However, the substantial findings gener-
ated by the use of pangenomic microarrays have generally
been difficult to interpret in terms of the gene regulation
controlling biological functions. In this study, we chose to
explore the expression dynamics of just one part of the
mouse genome, called the 'glycogenome’, in the context
of myogenesis. For this purpose, we first of all standard-
ized the experimental conditions for the differentiation of
C2C12 (a mouse myogenic cell line), and analyzed the
expression of myogenic markers by quantitative real-time
RT-PCR. The expression of 375 glycogenes was then mon-
itored in differentiating C2C12 cells using quantitative
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real-time RT-PCR with TLDA (TagMan Low Density Array,
see Methods section). Highly deregulated genes were next
clustered as a function of their expression profiles. Their
functions were analyzed and used to suggest new roles for
glycoconjugates in myogenic differentiation.

The expression of MRF and marker genes is consistent with
C2CI 2 cell differentiation

When cultured in vitro, C2C12 myoblasts start to differen-
tiate following serum deprivation. The first myotubes
appeared 48 hours after serum starvation and a maximum
of mature multinucleated cells was obtained after 11 days
in the differentiation medium (Figure 1A). Expression lev-
els of the four MRFs (Mrf4, Myf5, MyoD and myogenin)
and four marker genes (Csrp3, Hes6, Mef2a and Mef2d)
known for their involvement in myogenic differentiation
[29-31], were determined by quantitative real-time RT-
PCR at different time points following the induction of
C2C12 differentiation.

MyoD, Myf5 and myogenin genes were expressed through-
out C2C12 differentiation (Figure 1B). MyoD mRNA lev-
els only changed slightly, regardless of the time elapsing
after the start of differentiation. Beyond t = 48 h, the
expression of Myf5 decreased more than two-fold and
remained down-regulated, while the myogenin gene was
up-regulated (~100-fold). For Mrf4, transcripts were only
detected at t = 192 h. Therefore, the expression profiles of
myogenic regulatory factors during C2C12 differentiation
were in agreement with their expression patterns (top dia-
gram inset in Figure 1B) described in the literature
[15,16,32,33].

Expression of the muscle transcription factors Mef2a and
Mef2d increased as from 6 h of differentiation to reach 60-
fold for Mef2a and 3.4-fold for Mef2d at the end of the
experiment (Figure 1C). Their expression was in line with
their myogenic activator roles [29]. Interestingly, the
increase in Hes6 expression started at t = 6 h of differenti-
ation and reached 6.5-fold after 72 h. As demonstrated
elsewhere [31], this last result argued in favor of Hes6
involvement at the onset of C2C12 differentiation and
more generally of the myogenic process. Unlike the Hes
and Mef genes, Csrp3 expression was first detected att = 18
h of differentiation and increased to reach a peak at t =
120 h (Figure 1C). The expression profile of Csrp3, encod-
ing the LIM protein, correlated with its activator function
of C2C12 differentiation. Indeed, it has been showed that
LIM protein is not necessary for myoblast proliferation
but plays a key role in upcoming myogenic differentiation
[30]. Thus, the transcriptional expression profiles of both
myogenic marker genes and MRFs genes attested to the
accurate time course of C2C12 differentiation.
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Most glycogenes are expressed during the onset of C2CI2
differentiation

The glycogenome refers to all genes involved in glycosyla-
tion. It includes ~600 genes and accounts for ~2 percent
of the mouse genome. The expression of 375 glycogenes
was analyzed during the first 72 h of C2C12 differentia-
tion, when the first myotubes are formed. These 375 gly-
cogenes account for more than 60% of the mouse genes
known to be related to glycosylation (Table 1). The pro-
teins encoded by these genes belong to glycosyltran-
ferases, glycosidases, lectins, sulfotranferases or proteins
involved in sugar metabolism or transport [see Additional
file 1]. Given the known weak expression of most glyco-
genes, their expression patterns were determined by quan-
titative real-time RT-PCR using the TLDA technology
which allows the simultaneous analysis of 375 selected
genes [see Additional file 2].

Three-quarters of the genes analyzed were expressed
(Table 1): 276 genes displayed significant quantities of
transcripts (Ct < 33) during at least one point of the differ-
entiation time course. Among the 375 glycogenes of this
study, 202 genes were also analyzed in Tomczak et al.
study [16]. The microarray and TLDA approaches gave
similar results for 91 genes, 43 were expressed and 48
unexpressed. For the remaining common genes (111),
only TLDA revealed significant expression levels. This
could be explained by the methodologies employed, inso-
far as microarray techniques are less precise and sensitive
than quantitative real-time RT-PCR [34].

Among the genes expressed, 34% had a minimum 2-fold
modification of their expression for at least one kinetic
time, and 10% displayed a variation of at least 4-fold
(Table 1). The significant number of glycogenes thus reg-
ulated underlined the critical function of glycosylation in
this differentiation process. Lectin genes appeared to be
regulated preferentially, because only 57% of them were
expressed, compared to 73% or more for the other gene
families. Within each glycogene family, it is interesting to
note that no correlation was observed between the
number of genes analyzed and the number of those regu-
lated. Indeed, glycosyltransferase genes accounted for
about 40% of analyzed genes and only 11% of them dis-
played an mRNA variation of more than 4-fold. At the
same time, ~50% of lectin and sulfotransferase genes, rep-
resenting ~27% and ~6% of analyzed genes respectively,
were significantly modified in terms of their expression.
In addition, no glycogene sub-family, such as fucosyl-
transferases or sialyltransferases, was preferentially
repressed or expressed.

Genes displaying more than 4-fold variation (37 genes)
were distributed into four groups according to their glyco-
family (Table 1). The first group included lectin and sul-
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Figure |

Time course of C2CI2 differentiation. (A) C2CI2 cells were placed in differentiation medium when culture reached 80%
of confluence (t = 0 h). After 48 hours, the first myotubes, indicated by arrows, had clearly formed and after || days (t = 264
h), most of the cells had merged into myotubes. C2C12 RNA was extracted at several differentiation time points and tested
for the presence of (B) mRNA from the myogenic markers Myf5, MyoD, Myogenin and Mrf4 and (C) mRNA from the muscle-
specific markers Csrp3, Hesé, Mef2a and Mef2d. Transcription levels are expressed as relative quantities (RQ) compared to the
initiation of differentiation (t = 0 h). The grey area includes no significant variations (RQ < % 2). For (B), standard deviations
were calculated on three separate experimental values. No significant transcriptional expression of Mrf4 was detected before t
= 192 h (Ct>33, dotted line). The top inset presents the standard expression patterns of the four myogenic markers Myf5,
MyoD, Myogenin and Mrf4 as found in the literature.
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Table I: Data summary of Mus musculus glycogene expression during C2C12 differentiation.

Protein function Number of known Number of ana-

Number of Genes with 2% up- or

Genes with 4% up- or

genes! lyzed genes? expressed genes? down-regulation4 down-regulation4

Glycosyltransferase 209 146 (70%) 108 (74%) 37 (34%) 12 (11%)
Glycosidase 75 53 (71%) 47 (89%) 8 (17%) 2 (4%)

Sugar carrier 34 26 (76%) 19 (73%) 7 (37%) 3 (16%)
Translocase 2 2 (100%) 2 (100%) 0 (0%) 0 (0%)

Sugar metabolism 28 24 (86%) 23 (96%) 4 (17%) 0 (0%)

Lectin 193 102 (53%) 58 (57%) 29 (50%) 15 (26%)
Sulfotransferase 53 22 (42%) 19 (86%) 10 (53%) 5 (26%)

Total 594 375 (63%) 276 (74%) 95 (34%) 37 (10%)

IThe number of known genes was determined in the MGI database [61] according to their functions.
2The number of analyzed genes, except for the sulfotransferase family, corresponded to assays available from the manufacturer. For sulfotransferase
genes, 22 probes were chosen from the 35 available. Values in brackets indicate percentages of analyzed genes compared to known genes.
3Number of expressed genes corresponded to significantly expressed genes for at least one kinetic point according to their mRNA quantification by
qRT-PCR (Ct<33). Values in brackets indicate percentages of expressed genes compared to analyzed genes.

4Up- and down-regulations correspond to variations in transcript quantity with a minimum factor of 2 or 4. Values in brackets correspond to

percentages of deregulated genes compared to expressed genes.

fotransferase genes (26% of them with significant mRNA
variations), the second contained glycosyltransferase and
sugar carrier genes (11-16% deregulated), the third
included glycosidase genes (only 4% of genes deregu-
lated), and the final group comprised translocase and
sugar metabolism genes in which no gene displayed a var-
iation in mRNA expression. Thus, a large proportion of
the modifications to glycogene expression that occurred
during C2C12 differentiation mainly seemed to affect
proteins giving rise to the glycans or lectins required for
cell contacts. These results are consistent with the cellular
events involved in myotube formation, i.e. cell interac-
tions and fusions.

Among the genes analyzed, 99 were poorly or not
expressed. Their corresponding mRNA were not detected
(Ct = 40) or not significantly quantified (Ct>33). These
genes encoded proteins involved in physiological proc-
esses unrelated to myogenesis. For example, Has3 encodes
a hyaluronan synthase which is active in hyaluronan/
hyaluronic acid synthesis and known to be involved in the
inflammatory response [35], and Icam2 encodes a lectin
which mediates adhesive interactions during the immune
response.

Nearly half of analyzed glycogenes could be cell
homeostasis genes

Among the 276 genes expressed, 181 were invariantly
transcribed (Table 1). These constitutively expressed genes
could be divided into three sets, according to their func-
tions. The first set corresponded to genes involved in cell
homeostasis, the second to genes involved in myogenic
cell homeostasis and the third to myogenic genes that
could probably undergo a late modification to their
expression. In this respect, most of the genes encoding

proteins involved in N-glycan precursor synthesis and
present on our mouse glycogenome TLDA were homeos-
tasis cell genes and were constitutively expressed. Alg2,
Alg3, Alg9, Alg12 (mannosyltransferase genes) and Alg6 (a
glucosyltransferase gene), which are responsible for N-
glycan precursor synthesis, were expressed without any
significant variations. This was also the case for Dpia3 (or
Erp57), an ER chaperone-encoding gene involved in
disulfide bond formation [36]. The second set of genes,
although constitutively expressed during the first 72 h of
differentiation, could have crucial functions at all stages of
myogenesis. The myogenic factor MyoD, or the sialidase
gene Neu3 are representative of this group [37]. Finally,
the expression of the third set of genes may be modified
after 72 h of differentiation and be required for later stages
of myogenesis. For example, the expression of Pomtl,
encoding an O-mannosyltransferase which is known to
glycosylate the muscle membrane protein a-dystroglycan
linking cytoskeleton actin to ECM components, could be
tardily up-regulated [38].

Glycogenes with significant mRNA variations are
sequentially expressed

On the 95 regulated genes, 37 whose expression levels
were modified more than 4-fold were retained for further
analyses. In order to obtain a global vision of their expres-
sion profiles, Principal Component Analysis (PCA) was
performed. Its efficiency was excellent since ~89% of
information in the data set was recovered on the first ordi-
nate (~70% on component 1 and ~19% on component
2). The localization of each gene in the Figure indicates its
expression as a function of differentiation times (6 to 72
h), compared with the precursor state at t = 0 h of differ-
entiation (Figure 2A). The position of a gene in the same
direction as a vector indicates an increase of expression. By
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Figure 2

Expression dynamics of up- and down-regulated glycogenes during the onset of mouse C2C|2 differentiation.
(A) According to their expression profiles, the 37 glycogenes expressed with more than-4 fold variations were analyzed using a
principal component analysis (PCA). Gene expression profiles in differentiated C2C12 cells were plotted according to the plan
defined by the two first principal components, PC| and PC2. The PCI axis corresponds to the gradient of gene expression
occurring in the time course. Each vector, numbered 0 to 72 h, represents the orientation for genes increasing along each time.
In the opposite direction to these vectors are genes whose expression decreased. (B) A dendrogram representation of the
hierarchical cluster analysis of the 37 gene expression levels shows three distinct clusters. (C) Expression dynamics of glyco-

genes were modeled according to their membership cluster.

contrast, the position of a gene in the opposite direction
to a vector means that the gene was down-regulated.
Because of their reduced sizes, 12 h and 18 h vectors were
only weakly informative.

Gene clustering was performed using the Euclidean dis-
tances calculated with their coordinates on the first plan
of PCA. This clearly highlighted three groups (Figure 2B).
The first contained 12 genes, the second four and the third
21. The myogenic marker Myf5 was classified in cluster 2,
MyoD and myogenin in cluster 3 (data not shown); Mrf4
was not clustered since it was not expressed during the
first 72 h of differentiation. mRNA levels in the cluster 1
displayed a general tendency to decrease that was more
pronounced towards the end of the time course (Figure
2C). Cluster 2 included genes with a peak mRNA expres-
sion at 24 h of differentiation. Genes in cluster 3 had
expression profiles opposite to those of cluster 1 because
these expressions increased and became more important
at the end of the time course (Figure 2C).

The 37 highly regulated glycogenes were examined
according to the activity/function of the enzymes they
encode. Only their functions linked to myogenesis were
considered (Figure 3). Functions unknown or unrelated to
myogenesis, such as intracellular transport, were grouped
in "other function". In the light of the literature, several

functions could be assured by one protein. Genes in clus-
ter 1 encoded proteins mainly involved in cell adhesion
and interaction, GAG biosynthesis and signal transduc-
tion. The down-regulation of most of them could be
required for the early mechanisms of myogenesis, espe-
cially for the switch from a proliferative to a quiescent
state and then to a differentiated state. The four genes in
cluster 2 were mainly involved in glycosphingolipid and
GAG biosynthesis (Figure 3). These functions suggest
early rearrangements of the plasma membrane and ECM,
leading to the first fusion events. Among the up-regulated
genes in cluster 3, some genes were also involved in gly-
cosphingolipid biosynthesis while the others encoded
proteins that were mostly implicated in cell adhesion and
interaction and in intracellular biological functions. These
functions were consistent with the fusion events leading
to myotube formation and maturation beyond 48 h of
serum deprivation.

With regards the sequential expression of > 4-fold variant
glycogenes and the function of encoded proteins, the early
differentiation of C2C12 cells seemed mainly to require:
(i) the specific expression of molecules involved in cell
signaling and a modification to ECM composition, (ii)
the expression of CAMs, and (iii) qualitative and/or quan-
titative modifications to plasma membrane glycoconju-
gates.
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Cell functions in which regulated glycogenes are
involved. The function assigned to each gene was extracted
from the Kegg Pathway database [64]. Numbers indicate how
many genes are concerned for each function, one gene being
able to be involved in different processes. "Other functions"
corresponds to functions unrelated to developmental proc-
esses, such as exocytosis and apoptosis.

Cell signaling and GAGs sulfation contribute to the
initiation of myogenesis

The functions assured by some down-regulated genes in
cluster 1 suggested an involvement of cell signaling in
myogenic differentiation. The commitment of C2C12
cells to the myogenic or adipogenic lineage is controlled
by specific transcription factors. Myogenesis is regulated
by MRFs [4], while adipogenesis is controlled by PPAR-y
and the C/EBP families of transcription factors [39,40].
The Olrl gene encodes a lectin which is activated by
PPAR-y signaling [41]. The down-regulation of Olr1 is
consistent with the commitment of C2C12 to myogenic
differentiation. Lfng is an enzyme that elongates O-fucose

http://www.biomedcentral.com/1471-2164/10/483

on some EGF-like domains of the Notch receptor. It
belongs to the Fringe family [42] and acts as a modulator
of the Notch signaling pathway [43]. It also influences cell
fate during embryonic development [44]. Given the
involvement of Notch in the myogenic process [45], Lfng
down-regulation in differentiating C2C12 cells argues for
the involvement of Lfng in myogenic differentiation.
Interestingly, among the up-regulated genes in cluster 3,
Lgals12 encoded the galectin-12 which is required for adi-
pogenic signaling and adipocyte differentiation [46]. This
gene is indeed weakly expressed at early stages, but its
important transcriptional induction beyond 48 h of dif-
ferentiation suggests, for the first time, its later implica-
tion in myogenesis.

GAGs are known to have many biological functions,
including cell adhesion, migration and signaling [47].
Three sulfotransferase genes from cluster 1 (Chst1, Chst2
and Hs3st3b1) are known for GAG sulfation. Chst1 and
Chst2 are involved in the sulfation of keratan GAG and
Hs3st3b1 in that of heparan GAG. Because Hst3st3b1 is
the only gene in cluster 1 which was up-regulated at an
early stage (Table 2), heparan GAG could become prefer-
entially sulfated. Moreover, the Extll gene in cluster 3
encoded a glycosyltransferase that contributes to heparan/
heparin sulfate biosynthesis. Thus when C2C12 cells dif-
ferentiate, they seem to undergo a switch from the sulfa-
tion of keratan GAG to the predominant sulfation of
heparan GAGs. Such a modification has not previously
been reported in myogenesis and it could contribute to
the activation of myogenesis. Keratan sulfate GAG may
have anti-adhesive properties [48] that are obviously
incompatible with up-coming myoblast fusion events
during myogenic differentiation.

CAM:s, glycosphingolipids and glycoproteins of the C2CI2
plasma membrane appeared to be reshaped for cell fusion
Myoblast fusion into myotubes requires cell interactions.
Ten highly regulated glycogenes are involved in cell adhe-
sion (Figure 3). Among the genes in cluster 1, four
encoded lectins (Itga3, Itgb7, Siglecg and Selp) and one a
sulfotransferase (Chst10). These five genes have been
described in different developmental processes. For exam-
ple, Itga3 associated with Itg1 have been shown to medi-
ate the migration of endothelial cells and angiogenesis
[49]. In the present case, the down-regulation of Itga3
may have been linked to the arrest of myoblast migration
and proliferation. In addition, five lectin genes encoding
for three integrins (Itgo4, Itga7 and ItgB1bp2), one galec-
tin (Lgals7) and Ncam1, belonged to up-regulated genes
(Cluster 3). Most of them have important functions in
myogenesis: NCAM1 in myoblast fusion [23,24], melusin
(encoded by Itgb1bp2) in the maturation and/or organiza-
tion of muscle cells [50], and Itga7 (with ItgB1) in myo-
genesis [51,52]. Up-regulation of these CAM-encoding
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Table 2: Deregulated glycogenes during the onset of C2CI12 differentiation.

mRNA Relative Quantity according to differentiation time

Gene Symbol Protein function Cluster number 0h 6h 12 h 18 h 24 h 48 h 72 h
Lfng GTase | | -1.86 -2.19 -2.36 -3.04 -5.18 -5.53
Clecl la Lectin | | -1.28 -1.67 1.05 -1.81 -4.86 -5.24
Itga3 Lectin | | 1.25 -1.15 -1.14 -1.51 -2.55 -4.17
Itgb7 Lectin | | -1.27 -1.38 -1.52 -1.46 -10.31 -27.41
Lgals2 Lectin | | -1.49 -2.69 -2.84 -3.37 -6.38 -10.55
Olrl Lectin | | -3.31 -5.40 -8.14 -6.10 -8.38 -8.74
Selp Lectin | | -4.82 -7.69 -10.04 -9.78 -15.30 -38.60
Siglecg Lectin | | 1.22 1.20 1.44 1.20 -3.34 -6.88
Chstl Sulfotransferase | | -1.22 1.38 -1.52 -1.95 -2.61 -5.20
Chst2 Sulfotransferase | | 1.02 -1.70 -1.70 -2.20 -5.54 -8.52
Chstl0 Sulfotransferase | | -1.69 -3.77 -4.11 -2.69 -3.43 -3.77
Hs3st3bl Sulfotransferase | | 5.85 335 2.67 1.27 111 1.57
B3galt! GTase 2 | 0.81 1.29 2.01 4.87 1.69 0.68
Fut4 GTase 2 | 1.25 1.19 1.87 4.31 1.87 1.06
Secl GTase 2 | -1.69 1.22 2.35 7.21 4.04 -1.37
Chst4 Sulfotransferase 2 | 0.92 1.52 2.95 6.30 2.48 1.08
Letl Glycosidase 3 | 1.15 -1.88 -3.04 -3.10 2.0l 4.12
Neu2 Glycosidase 3 | 1.00 -1.18 1.10 1.00 3.63 18.97
B3galt5 GTase 3 | -1.13 1.40 3.19 5.91 6.34 16.14
Extll GTase 3 | -1.80 1.49 -2.14 1.73 46.03 9.90
Futl GTase 3 | -1.14 2.16 2.20 6.11 24.61 4.70
Fut2 GTase 3 | -2.00 1.46 1.75 5.26 5.73 3.02
Galnt5 GTase 3 | -1.76 -7.21 -7.36 2.01 3.50 25.31
Galnté GTase 3 | -1.25 1.20 1.08 2.24 34.32 28.52
St8sia2 GTase 3 | 1.90 2.09 2.18 3.05 3.1 4.08
St8sia5 GTase 3 | 18.06 -1.13 1.05 27.43 264.72 1345.50
Clec3b Lectin 3 | -1.89 -6.66 -1.56 -1.22 1.64 4.84
Cpix3 Lectin 3 | 9.55 12.32 2.35 16.42 219.09 36.18
Itga4 Lectin 3 | 1.23 1.74 2.32 4,57 12.41 9.28
Itga7 Lectin 3 | 1.37 1.63 1.90 2.67 4.84 451
Itgb1bp2 Lectin 3 | -1.01 1.46 -1.75 2.10 41.75 49.78
Lgals|2 Lectin 3 | -22.54 -1.48 -20.60 -13.28 11.47 40.29
Lgals7 Lectin 3 | 2.44 2.69 1.38 1.81 3.68 6.63
Ncam| Lectin 3 | -1.10 -1.04 1.09 1.41 7.38 8.09
Slc2a4 Sugar carrier 3 | 1.09 2.11 2.24 1.81 11.97 14.68
Slc2a5 Sugar carrier 3 | 1.60 2.62 5.92 14.15 10.40 11.05
Slc2aé Sugar carrier 3 | 2.28 1.55 1.23 2.28 13.71 22.33

Only genes whose expression levels are modified more than 4-fold (bold type) for at least one time course point are presented. Their symbols,
functions, PCA clusters and relative quantities of mMRNA at each kinetic time point are given.

genes, combined with the down-regulation of the four
genes in cluster 1 mentioned above, also suggests a poten-
tial switch of CAM during myogenic differentiation.

Cell fusion obviously requires a modification to the qual-
ity and quantity of glycans in plasma membrane glycolip-
ids and glycoproteins. Three genes in cluster 2 (£#3GalT1,
Fut4 and Sec1) encoded glycosyltransferases implicated in
glycosphingolipid biosynthesis (Figure 4). f3GalT1 is
responsible for synthesizing the precursor of lactoseries
glycolipids. Fut4 and Secl are involved in the terminal
fucosylation of lacto and/or neo-lactoseries glycolipids.

Four other genes involved in these different biosyntheses
were found in cluster 3 (Figure 3). They encoded two
other fucosyltransferases, a sialyltransferase and a galacto-
syltransferase. The sialyltransferase is involved in ganglio-
side synthesis, while the three other enzymes are required
for lacto and/or neo-lactoseries glycolipid biosynthesis.
For glycoproteins, three genes in cluster 3 were revealed:
Galnt5 and Galnt6 encoded O-glycan synthesis proteins
and St8sia2 a sialyltransferase involved in the biosynthesis
of Ncam1 polysialic acid (PSA). The latter bears polysia-
lylated N-glycans and mucin type O-glycans on a muscle-
specific domain which is involved in myoblast fusion

Page 8 of 14

(page number not for citation purposes)



BMC Genomics 2009, 10:483

http://www.biomedcentral.com/1471-2164/10/483

Ceramide ——> Glucosylceramide ——> LACTOSYLCERAMIDE

B4galt6

|

GIcNAcB1-3GalB1-4GlcfB1-1Cer

Galactosylceramide

B4galntl \L

| Gt ]

Gala1-4GalB1-4GlcB1-1"Cer

| e

GA2 GM3

| p3gaits |

l

GalB1-3GIcNAcB1-3GalB1-4GlcB1-1"Cer

NN
[ sect |

\'2
LACTOSERIES

NEOLACTOSERIES

Figure 4

GalBl-4GIcNAcB1-3GalB1-4GlcB1-1"Cer

\Vm B3galt5 E
\J/ GANGLIOSERIES i
\
GLOBOSERIES

| Fuc Jruo
L Fus | sect

mRNA Relative quantity
f G s

Schematic representation of glycosphingolipid synthesis pathways. The enzymes responsible for the main steps of
glycosphingolipid biosynthesis are indicated. The expression levels (relative quantity of mMRNA) of the corresponding genes are
reported. NA: Not Analyzed; Rq: Relative quantity; Und: Undetermined.

[24]. The up-regulation of these three genes was in good
agreement with the findings of the previous study. There-
fore, myoblast fusion may require some glycosphingoli-
pid rearrangements and/or terminal modifications (as
fucosylation and sialylation) to glycans of membrane
glycoproteins and glycolipids.

G, ; ganglioside levels increase in differentiating C2C|2
cells

In order to confirm some of these membrane glycoconju-
gate rearrangements, glycolipids were considered for fur-
ther analyses. According to their metabolic pathways and
gene expression patterns, lactosylceramid seemed to be
preferentially synthesized when compared to galactosyl-
ceramid (Figure 4). Indeed, the Ugt8 gene was weakly
expressed (Ct>33), while the Ugcg and f4galt6 genes were
strongly expressed (Ct<25). Lactosylceramid is the com-
mon precursor of four biosynthesis pathways. The expres-
sion levels of the analyzed genes implicated in these
pathways indicated that some compounds could be pref-
erentially synthesized and/or reshaped. Among these,
only G,,; (and its derivatives) could be enhanced because
the St3gal5, #3GalT4 and St8sia5 genes were up-regulated
(Figure 4). In order to test this hypothesis, immuno-cyto-
staining was used to analyze G,,; gangliosides on differen-
tiating myoblasts (Figure 5). Only a few myoblasts are
positively stained at 0 h and 12 h of differentiation.
Beyond 24 h, the immunostaining increased, and most of
the cells were stained at 48 h and 72 h. This result showed
that levels of G,,; indeed increased in the plasma mem-

brane during the onset of C2C12 differentiation. Interest-
ingly, beyond 48-72 h of differentiation, cells with
stronger staining were mostly elongated and underwent
differentiation, which argues for a role of G,,; in C2C12
differentiation and fusion.

Conclusion

Little is known about the importance of glycosylation in
myogenesis because of the poor representativeness of gly-
cogenes, i.e. ~2% of the genome, and because the weak
expression of most of them is not revealed by microarrays.
In order to determine how glycosylation could be
involved in this process, we used a quantitative real-time
RT-PCR technology to analyze the expression of 375 gly-
cogenes representing more than 60% of the mouse glycog-
enome, during the onset of differentiation of the
myogenic C2C12 cell line. The glycogenome includes
genes encoding for proteins involved in the transport, syn-
thesis and/or recognition of monosaccharide precursors,
glycans and glycoconjugates. This study presents for the
first time a focused transcriptomic analysis of the glycoge-
nome during myogenic differentiation.

Around 75% of the glycogenes thus analyzed was
expressed, one third being deregulated by at least 2-fold,
showing the importance of glycosylation in this process.
Among these deregulated genes, 37 were modified more
than 4-fold. Most of these genes (29 genes) had never
been associated with myogenesis before. The functions of
these 37 glycogenes suggested new roles for glycoconju-
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Figure 5

Gu; ganglioside staining in differentiating C2C12
cells. Cells were labeled with an anti-Gy; antibody. This pri-
mary antibody was detected by a secondary antibody cou-
pled to FITC. Isotypic controls for each differentiation time
point are given.

gates in myogenic differentiation (Figure 6). The initia-
tion of C2C12 differentiation may require specific cell
signaling mediated by glycans such as PPAR, and Notch
signaling. At the same time, a modification to ECM com-
position may occur by means of a switch of keratan sulfate
GAG to heparan sulfate GAG, in order to promote cell dif-
ferentiation. Initiation may be followed by the reshaping
of membrane glycoconjugates such as cell adhesion mol-
ecules, glycolipids and glycoproteins, in order to prepare
cells for fusion into myotubes. The lag time in expression
between genes encoding CAMs and genes encoding gly-
colipid synthesis proteins suggests that cell interactions
precede membrane glycolipid rearrangements. Finally,

http://www.biomedcentral.com/1471-2164/10/483

initial myotube maturation in late-appearing myofibers
involves various intracellular processes dependent on gly-
cosylation. Indeed, a variety of cell functions are associ-
ated with proteins encoded by some markedly up-
regulated genes. Some of these sugar carriers (GLUT4 and
GLUT5) have already been associated with myogenesis
[53-55]. Other functions, such as glucose transport by
GLUTG6 [56], exocytosis by tetranectin (CLEC3b) [57], or
the non-lysosomal catabolic pathway by Klotho-related
protein (KLrP or LCTL) [58] are suggested by these tran-
scriptional data. Thus, this screening of glycogenome
expression provides clues to a clearer understanding of
certain stages in myogenesis.

Methods

Biological materials

C2C12 mouse myoblasts (strain C3H, American Type
Culture Collection (ATCC), Manassas, VA, USA) were cul-
tured in DMEM (Dubelco's modified Eagle's medium,
Eurobio, Courtaboeuf, France) supplemented with 10%
fetal calf serum (Eurobio), 2 mM L-glutamine, 50 units/
mL penicillin and 50 pg/mL streptomycin. Cells were
grown to 80% confluence and were differentiated into
myotubes with DMEM supplemented with 2% horse
serum. After 48 h of differentiation, the medium was
changed every day. For each kinetic point analyzed, cells
were rinsed briefly with PBS and harvested following
trypsinization (1x PBS, 1 mM EDTA, 0.05% (w/v)

trypsin).

RNA extraction and cDNA synthesis

Total RNA from each sample was obtained by anion
exchange chromatography (RNeasy mini Kit, Qiagen Inc.,
Hilden, Germany). The integrity and quantity of total
RNA were measured using a micro fluidic-based platform
(Agilent 2100 Bioanalyser, Agilent Technologies Inc.,
Santa Clara, CA, USA). The High Capacity cDNA Archive
Kit (Applied Biosystems, Foster City, CA, USA) was used
to convert 5 or 10 pug of total RNA into single-stranded
cDNA.

Design of the glycogenome TaqMan Low Density Array
(TLDA)

A micro-fluidic card dedicated to quantitative real-time
RT-PCR analyses of part of the mouse genome, the 'gly-
cogenome', was designed. The glycogenes thus analyzed
encode proteins involved in glycan synthesis or glycan
recognition. They were selected from GenBank, CAZY and
MGI databases [59-61]. They include glycosidases, glyco-
syltransferases, sugar carriers and sugar metabolism pro-
teins, translocases, sulfotransferases and lectins. These
genes control glycosylation functions which likely regu-
late myogenesis. When this work started, ~600 corre-
sponding murine genes were listed (Table 1). The TLDA
technology used is based on quantitative real-time RT-
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PCR with TagMan probes validated by the manufacturer.
Among the 600 genes listed, only 389 validated probes
were available for gene expression studies https://prod
ucts.Appliedbiosystems.com/ab/en/US/adirect/ab. = The
technology operates on 384 well plates and allows a
simultaneous analysis of 375 candidate glycogenes, 9
wells being dedicated to 6 reference genes. Consequently,
among the 389 genes, for which validated probes were
available, some sulfotransferase genes were not selected in
order to preferentially analyze all available genes involved
in glycan biosynthesis and not in glycan modification.
Thus, for genes encoding sulfotransferases, only 22 probes
of the 36 listed were considered (Table 1), reducing to 375
the number of glycogenes analyzed using TLDA, that is
~60% of the mouse genes known to be related to glyco-
sylation.

Quantitative real-time RT-PCR

The quantity of each mRNA was determined by quantita-
tive real-time RT-PCR on an ABI Prism 7900 Sequence
Detector System using TaqMan probe-based chemistry

(Applied Biosystems). 6-carboxyfluorescein (FAM) was
used as a reporter. The amplification reactions for each
gene were performed with 2 ng cDNA for 96-well plates
(analysis of myogenic markers) and with 3 ng cDNA for
TagMan Low Density Arrays (TLDA) (analysis of glyco-
genes). This relative quantification was reliant on the use
of several reference genes: 18S RNA, G6pdx, Gapdh, Tcea,
Tbp.

Data analysis

Gene mRNA expression data were collected and analyzed
using SDS 2.2.2 software (Applied Biosystems). The com-
parative AACt method was used to quantify the relative
abundance of mRNA. This method uses a calibrator sam-
ple to enable a comparison of gene expression levels in
different samples. During this study, we used time t=0h
of differentiation as the calibrator sample. The values
obtained indicated the changes in expression in the sam-
ple of interest by comparison with the calibrator sample
after normalization to 18S RNA. Relative quantities were
regarded as significant for genes whose Ct (Threshold

Page 11 of 14

(page number not for citation purposes)


https://products.Appliedbiosystems.com/ab/en/US/adirect/ab
https://products.Appliedbiosystems.com/ab/en/US/adirect/ab

BMC Genomics 2009, 10:483

Cycle) was lower than 33. Genes that were not expressed
were given a Ct value of 40 by default.

Relative levels of mRNA in the 37 selected genes were log-
transformed and analyzed using Principal Component
Analysis (PCA) and hierarchical cluster analysis (HCA)
with PAST version 1.78 [62,63] in order to reveal trends in
their expression. This mathematical procedure reduces the
number of possibly correlated variables (seven dimen-
sions corresponding to the different differentiation times)
to a smaller number. Thus, most of the data are projected
in a 2D-space defined by the two principal components
PC1 and PC2, which are synthetic axes expressing the per-
centage of data variance. Indeed, PCA extracts the direc-
tion where the cloud of values is extended, constituting
the first component or principal component (PC1). The
next direction (PC2) is orthogonal to the first one. The
cloud of points reflects the level of expression of each gene
as a function of its position relative to the vectors. Vectors
indicate the orientation of variation and correspond to
most representative expression profiles. Samples belong-
ing to a same pattern are therefore expected to be grouped
in a similar area. The coordinates of each gene on the ordi-
nation plan were used to calculate Euclidean distances
between all pair-wise combinations. The unweighted pair-
group average was taken as an agglomeration method to
construct the Hierarchical Component Analysis.

Immuno-cyto-chemistry

C2C12 cells were grown on glass cover-slips. After remov-
ing the medium, the cells were washed twice with PBS and
fixed for 15 min in 4% paraformaldehyde. After two
washes of 5 min each in 1x PBS, the cells were further
incubated for 1 h with a blocking solution (1x PBS with
10% fetal bovine serum (Eurobio)), and labeled with an
anti-G,,; primary antibody (Seikagaku Corporation,
Japan) diluted 1/100 in blocking solution for 1 h at room
temperature. A control was performed using cells incu-
bated with a mouse isotypic IgM (Santa Cruz, CA, USA) at
the same concentration as the anti-G,,; primary antibody.
The cells were rinsed in 1x PBS, incubated for 1 h with an
FITC-conjugated secondary antibody (Sigma-Aldrich,
Saint Quentin Fallavier, France) and then washed 3 times
for 5 min with 1x PBS. The cover-slips were washed in PBS
and mounted on glass slides. The cells were then observed
under an Olympus epifluorescence microscope.

Abbreviations

CAM: Cell Adhesion Molecule; ECM: ExtraCellular
Matrix; GAG: GlycosAminoGlycan; HCA: Hierarchical
Cluster Analysis; Itg: Integrin; LIM: protein containing a
cystein-rich domain described in Lin-11, II-1 and Mec-3
proteins; MRF: Myogenic Regulatory Factor; Ncam: Neu-
ral cell adhesion molecule; PCA: Principal Component
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