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Abstract

Background: Microarray technology provides a powerful tool for defining gene expression
profiles of airway epithelium that lend insight into the pathogenesis of human airway disorders. The
focus of this study was to establish rigorous quality control parameters to ensure that microarray
assessment of the airway epithelium is not confounded by experimental artifact. Samples (total n =
223) of trachea, large and small airway epithelium were collected by fiberoptic bronchoscopy of
144 individuals and hybridized to Affymetrix microarrays. The pre- and post-chip quality control
(QQ) criteria established, included: (I) RNA quality, assessed by RNA Integrity Number (RIN) >
7.0; (2) cRNA transcript integrity, assessed by signal intensity ratio of GAPDH 3' to 5' probe sets
< 3.0; and (3) the multi-chip normalization scaling factor < 10.0.

Results: Of the 223 samples, all three criteria were assessed in 191; of these 184 (96.3%) passed
all three criteria. For the remaining 32 samples, the RIN was not available, and only the other two
criteria were used; of these 29 (90.6%) passed these two criteria. Correlation coefficients for
pairwise comparisons of expression levels for 100 maintenance genes in which at least one array
failed the QC criteria (average Pearson r = 0.90 £ 0.04) were significantly lower (p < 0.0001) than
correlation coefficients for pairwise comparisons between arrays that passed the QC criteria
(average Pearson r = 0.97 £ 0.01). Inter-array variability was significantly decreased (p < 0.0001)
among samples passing the QC criteria compared with samples failing the QC criteria.

Conclusion: Based on the aberrant maintenance gene data generated from samples failing the
established QC criteria, we propose that the QC criteria outlined in this study can accurately
distinguish high quality from low quality data, and can be used to delete poor quality microarray
samples before proceeding to higher-order biological analyses and interpretation.
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Background

The assessment of gene expression of the human tran-
scriptome using microarray technology is a powerful tool
for identifying genes and gene expression patterns
involved in mechanisms of normal organ function and
the pathogenesis of disease [1-3]. Microarray technology
is ideal for studies of the human airway epithelium in
health and disease in that the airway is one of the few
internal organs where it is possible to repetitively sample
sufficient quantities of pure populations of parenchymal
cells from healthy individuals as well as individuals with
lung disease [4-11]. In this regard, we and several other
groups have used human gene expression microarrays to
assess the expression of genes in the human airway epithe-
lium, cell populations easily attainable via fiberoptic
bronchoscopy [4,9,12-15].

While it is easy to obtain the cells, the output from micro-
array data critically depends on the quality of the RNA and
the cRNA derivatives hybridized to the microarray [16-
27]. Although several different cutoff criteria for RNA
integrity and microarray data quality have been proposed,
they are not consistently applied. In this context, the focus
of this study is to establish rigorous quality control (QC)
criteria to ensure high quality data from arrays that is com-
parable and reproducible among different investigators
and laboratories. Our strategy is based on the concept that
the quality of expression data can be efficiently assessed
using three discreet QC metrics computed on the sample
and chip level, and that application of these metrics can
ensure uniformly high quality microarray data. Using
Affymetrix Human Genome U133 Plus 2.0 arrays to sam-
ple a total of 223 samples of tracheal, and large and small
airway epithelium from 144 individuals [healthy non-
smokers, healthy smokers, symptomatic smokers, smok-
ers with lone emphysema with normal spirometry, and
smokers with COPD (GOLD I - I1I)], we have established
pre- and post-chip QC criteria based on empirical obser-
vations of our data in conjunction with published sugges-
tions that include: (1) RNA quality, assessed by RNA
Integrity Number; (2) cRNA transcript integrity, assessed
by signal intensity ratio of the glyceraldehyde-3-phos-
phate dehydrogenase (GAPDH) 3' to 5' probe sets; and
(3) a defined upper limit for the multi-chip normalization
scaling factor. Of the 223 samples, all three criteria were
assessed in 191; of these 184 (96.3%) passed all three cri-
teria. For the remaining 32 samples, the RIN was not avail-
able, and only the other two criteria were used; of these 29
(90.6%) passed these two criteria. Expression data for 100
maintenance gene probe sets on the array demonstrates
that among the samples failing QC criteria, there is greater
variability among reported expression levels for mainte-
nance genes compared to randomly selected samples
passing the QC criteria. The QC criteria proposed in this
study should provide a useful guideline for future studies
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using microarrays to assess mRNA levels in human airway
epithelial samples, and should be adaptable to assessment
of microarray data from other cell populations.

Some of the results of these studies have been previously
reported in the form of an abstract [28].

Results

Airway Epithelium

A total of 223 samples of airway epithelium were
obtained by bronchial brushing from three different loca-
tions (trachea, large airway, small airway) from 144 sub-
jects with 5 different pulmonary phenotypes (healthy
non-smokers, healthy smokers, symptomatic smokers,
smokers with lone emphysema with normal spirometry,
and smokers with COPD; Table 1). The mean ages varied
from 36 to 52 yr, and males represented the majority in all
but one group. The ancestries varied among those of Euro-
pean, Hispanic, Asian and African. The lung function fit
the criteria for each group. A range of 4.4 to 7.6 x 10° cells
were recovered from trachea, large airway and small air-
way in all five pulmonary phenotypic groups and cell
counts were not dependent upon phenotype of the sub-
ject or site of bronchial brushing (p > 0.05 by ANOVA).
From all locations, an average of 99 to 100% of all cells
recovered were epithelial with less than 1% contamina-
tion by non-epithelial cells. The cell differentials varied
depending on location as previously described [4,29,30].
The average yield of extracted RNA was 25.3 + 10 pg. var-
ying from 3.5 to 53.9 pg.

Establishment and Testing of Quality Control Criteria
The overall strategy was to utilize the data on 223 samples
to establish prospectively applicable QC criteria that
would ensure high quality expression microarray data for
biological interpretation in our ongoing studies. The QC
criteria were selected as rigorous and objective quality
control metrics at three distinct stages of the microarray
workflow, and were applied to all 223 samples hybridized
to microarray in this study; for the RIN assessment, the n
= 191 (32 samples were unavailable for RIN analysis
because the samples were hybridized to microarray prior
to the development of the Bioanalyzer RIN software). For
the GAPDH 3'/5' signal intensity ratio and scaling factor
criteria, all 223 samples were included.

Of the 223 samples, all three criteria were assessed in 191;
of these 184 (96.3%) passed all three criteria. For the
remaining 32 samples, the RIN was not available, and
only the other two criteria were used; of these 29 (90.6%)
passed these two criteria. Only 10 (4.5%) failed at least
one QC criterion, and were therefore considered to have
failed QC. The overall breakdown of samples failing QC
was: 2 large airway samples (1 healthy non-smoker and 1
healthy smoker) and 8 small airway samples (1 healthy
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Table I: Demographic of the Study Population and Biologic Samples!

Parameter Healthy nonsmoker Healthy smoker Symptomatic smoker Lone COPD?’
emphysema
with normal
spirometry$
Trachea Large Small Trachea Large Small Trachea Large Small Small Small
airway airway airway airway airway airway airway airway
n 17 21 35 15 32 44 3 4 10 22 20
Age 42+7 429 4310 437 44+ 6 4416 366 396 41 £ 10 49+7 52+8
Gender? 13/4 15/6 26/9 13/2 22/10 31713 2/1 3/ 5/5 16/6 16/4
Ancestry3 6/4/0/7 8/3/1/9 15/4/1/15 5/5/0/5 7/4/0/21 1 1/4/0/29 0/2/0/1 1/2/0/1 3/3/0/4 4/1/0/17 8/4/1/7
Smoking history <1.0 <1.0 <1.0 28+ 16 28+ 18 28+ 16 14+ 4 16 £9 21 13 3118 38+23
Pulmonary function parameters*
FvC Ir+1é6 105 £ |1 109 £ 11 108 £ || 109 £ 12 109 £ 12 6 £6 1137 110 £ 109 102 £ 11 93+23
FEVI I +18 101 £26 105 + 21 108 £ 13 109 £ 13 109 + 14 12+ 16 12+ 13 108 £ 20 97 £ 12 7222
FEVI/FVC 837 82+6 807 8216 8l £5 8l 5 806 8l £3 8l £ 13 79+4 6l £9
TLC 106 + 17 99+ 14 104+ 13 100 +8 102 + 12 100 + 12 106 + 4 108 + 4 10419 93+ 13 105 + 22
DLCO 110+9 101 £ 18 1ol £ 17 94+7 96 + |1 96 £ |1 92+ 14 95+ 13 94+ 18 65+8 73+ 19
Average # of cells 54 6.8 5.7 44 6.4 6.4 6.6 7.6 6.2 5.9 6.3
recovered (% 109)
Cell differential®
% epithelial 100 £0.2 100 £ 0.7 100 £ 0.6 100 £ 0.2 100 £ 0.7 100 £ 0.5 100 £ 0.0 100 £ 0.6 100 £ 0.4 99+£0.8 9+ 1.7
% inflammatory 0.1 £0.2 03+£07 03£06 0.1 £0.2 03£07 02+05 0.0 04 £06 04 £04 0.6+08 1517
% ciliated 49+ 7.1 55+3.9 77 £ 5.6 27 £82 49+£9.0 72+ 6.7 26+28 47+ 16 76 £ 5.4 73+ 87 69+28
% secretory 6.6 £4.0 12+ 4.0 68+3.5 88+ 44 I £4.1 7.1£3.0 12+ 4.6 14+1.2 59+3.0 9.7+£72 12£29
% basal 29+ 8.6 20+ 34 9.1 £34 39+52 24+5.6 99 £33 3754 17£10 10+25 9.9 +48 82+23
% undifferentiated 15+6.0 13+38 73+36 25+ 11 1577 I1+5.6 25+ 1.0 22+£60 78 1.1 73+24 96+ 1.8

I Data is presented as mean * standard deviation.

2 Male/Female.
3 European/Hispanic/Asian/African.

4Pulmonary function testing parameters are given as percent of predicted value with the exception of FEVI/FVC, which is reported as % observed; FVC - forced vital capacity, FEV| - forced
expiratory volume in | sec, TLC - total lung capacity, DLCO - diffusing capacity. For individuals with COPD, FVC, FEVI, and FEVI/FVC are post-bronchodilator values.
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5% epithelial and inflammatory are based on the total number of cells recovered; % ciliated, secretory, basal and undifferentiated cells are based on the total number of epithelial cells recovered.
6 Lone emphysema with normal spirometry smokers.
7 COPD smoker, GOLD stage In=9,1In=9,1lln=2.
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smoker, 4 symptomatic smokers, and 3 smokers with
COPD). The greatest source of failure was the scaling fac-
tor criterion, which contributed to 70% of the overall fail-
ures. All of the 10 samples failing the QC criteria failed the
RIN and/or scaling factor criterion, indicating that these
metrics may be the most sensitive to technical variance,
and therefore are central to assessing overall array quality.
While 7 samples failed by one criterion each, 1 sample
failed by both the RIN and GAPDH 3'/5' ratio criteria, and
2 samples failed by both the RIN and scaling factor crite-
ria, suggesting that the quality control parameters exert
correlated effects on array performance.

RIN

The RNA quality was examined by the Bioanalyzer-gener-
ated RIN score in 191 samples for which there was data
available (see above). Based on published data [26,31-
33], samples with a RIN < 7.0 were designated to have
passed QC (Figure 1). Five out of the 191 samples (2.6%)
had RIN scores <7.0. The RIN values were not significantly
dependent upon the phenotype or biologic origin of the
RNA sample (p > 0.1 by ANOVA), with n = 4 small airway
samples (1 healthy smoker, 2 symptomatic smokers, 1
smoker with COPD) and 1 large airway sample (healthy
nonsmoker) failing on the basis of RIN <7.0.

GAPDH 3'/5’ Signal Intensity Ratio
As a metric for the efficiency of transcription and amplifi-
cation of antisense cRNA from the cDNA derivative of the
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Figure |

Assessment of RNA quality in airway epithelial sam-
ples. Integrity of 180 RNA samples was scored using the
RNA Integrity Number (RIN) generated by Agilent 2100 Bio-
analyzer Software (I = highly degraded; 10 = intact). Samples
are grouped by phenotype as defined in Methods, and within
each phenotype the site of the epithelial sample is indicated
(trachea; large airway; small airway). Samples with RIN > 7.0,
shown by the dotted line, passed QC criterion, while the 5
samples below the dotted line failed the QC criterion.
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starting RNA material, the signal intensities for the probe
sets for GAPDH residing at the 5' end and within the 600
nucleotides most proximal to the priming site at the 3'
end of the transcript were compared. For all samples
hybridized to microarrays, 3' to 5' probe set intensities for
the GAPDH gene were extracted to compute the 3'/5' sig-
nal intensity ratio. Based on published data [16,23,34-
36], the criterion for passing QC was established as
GAPDH 3'/5' ratio < 3.0 (Figure 2). By this criterion, only
1 small airway sample from a symptomatic smoker failed
QC. The Affymetrix expression microarray also returns 3'/
5' ratios for other genes including B-actin. But due to the
strong correlation in 3'/5' ratios for B-actin and GAPDH
(r2=0.92; p < 0.0001), application of addition cutoff cri-
teria beyond GAPDH was considered redundant. In the
context of airway epithelium, although GAPDH is not an
ideal "housekeeping" gene as its expression may vary
under different conditions, this does not interfere with its
use in assessing cRNA quality [37].

Multi-chip Normalization Scaling Factor

The scaling factor was used as an overall index of the
microarray hybridization, washing, and scanning process.
Scaling factor values for all 223 samples computed at a
target intensity value of 500 were examined. The criterion
of scaling factor values < 10.0 was established (Figure 2).

20 1

Scaling factor

GAPDH 3’/5’ signal intensity ratio

Figure 2

Assessment of GAPDH 3'/5' and Chip scaling factor.
Ratios of signal intensities for GAPDH 3' and 5' probe sets
for 223 samples were extracted from the GeneChip Operat-
ing Software (GCOS) Quality Report and plotted against the
Scaling Factors analyzed with a target intensity value of 500
extracted from the GCOS Quality Report. Samples with
GAPDH 3'/5' ratio < 3.0, to the left of the vertical dotted
line, passed QC criterion, while the one sample to the right
of the dotted line failed the QC criterion. Samples with scal-
ing factor values < 10.0 passed QC criterion (below the hor-
izontal dashed line) while the 7 samples above the dashed
line failed the QC criterion.
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Seven out of the 223 samples (3.1%) had scaling factor
values above the acceptable cutoff. The scaling factor val-
ues were not significantly dependent upon the phenotype
or biologic origin of the sample (p > 0.1 by ANOVA), with
n = 5 small airway samples (1 healthy smoker, 2 sympto-
matic smokers, 2 smokers with COPD) and n = 2 large air-
way samples (1 healthy nonsmoker, 1 healthy smoker)
failing on the basis of scaling factor >10.0.

The interdependence of failing different QC criteria was
assessed (Table 2). Of the total 7 samples that failed RIN,
three failed one of other the other QC criteria with 1 fail-
ing GAPDH 3'/5' test and 2 failing scaling factor test.
There was no pattern of repeated QC failure by a single
subject sampled on more than one occasion, neither was
there correlation of failure with differential or % non-epi-
thelial contamination.

Maintenance Gene Expression Levels

To assess whether the gene expression data derived from
samples that pass all of the QC criteria was more robust
than that derived from samples that failed one or more
conditions, for every sample, regardless of QC metric val-
ues, expression levels were extracted for the 100 mainte-
nance genes. For the 10 samples failing QC criteria and 24
randomly selected samples passing the QC criteria, the
expression profile for all 100 genes was compared. Pear-
son's correlation was calculated for all pairwise compari-
sons (i.e., 24 x 24 comparison of samples both passing
QC, 24 x 10 among samples passing QC and samples fail-
ing QC, and 10 x 10 comparison of samples both failing
QC). Correlation coefficient values indicated that samples
passing QC criteria were highly correlated with other sam-
ples passing QC criteria (average Pearson r = 0.97) while
samples failing QC criteria showed lower correlations
with all other samples (average Pearson r = 0.90; Figure
3). The range of correlation coefficient values obtained for
pairwise correlations of samples passing QC criteria was
0.92 t0 0.99. In contrast, when comparing samples failing
QC criteria with all other samples, the range of correlation

Table 2: Classification of Quality Control Failures by Criterion !

RIN2 GAPDH 5'/3' Scaling factor
Alone 2 0 5
+ RIN 0 | 2
+ GAPDH 5'/3' | 0 0
+ Scaling factor 2 0 0
Total 5 | 7

I The 233 samples were assessed by the established QC criteria and
all those failing one or more were classified by which QC criteria
were failed.

20Only 191 of the 223 samples were assessed for RIN.
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coefficient values was 0.76 to 0.97. There was no differ-
ence in the correlation coefficient values for samples fail-
ing QC for RIN criterion versus other causes (p > 0.4). The
distribution of correlation coefficients for the pairwise
comparisons of samples passing QC criteria was signifi-
cantly different from the distribution of values for pair-
wise comparisons where at least one sample failed the QC
criteria (p < 0.0001, Mann-Whitney U Test; Figure 4).

Of the 24 samples passing QC criteria that were used for
the correlation matrix analysis, 10 samples matched in
airway location with the 10 samples failing QC criteria
were selected to assess coefficient of variation of each of
the 100 maintenance genes. Expression levels for the 100
maintenance genes showed significantly greater variabil-
ity among the 10 samples failing QC criteria ("fail" data
set) than among the 10 samples passing QC criteria
("pass" data set, Figure 5). Across the "pass” data set, the
median coefficient of variation for the maintenance genes
was 21.7% (5t to 95t percentile 13.0 to 31.0%). By con-
trast, across the "fail" data set, the median coefficient of
variation for the 100 genes was 35.7% (5t to 95t percen-
tile 21.8 to 52.5%; p < 0.0001, Mann-Whitney U test).

Similarly, the coefficient of variation for all probe sets was
greater for microarrays that failed QC compared to that
for microarrays that passed. Two datasets of 9 microarrays
each were compared giving a mean coefficient of variation
of 34 + 0.1% for the arrays that passed QC and 43 + 0.1%
for the arrays that failed QC. The impact on discovery of
biological differences (for example impact of smoking on
gene expression profile [12]), was assessed by power cal-
culations. If two groups of 15 smokers and 15 non-smok-
ers were compared, the required true difference of means
for detection with p < 0.05 with and power of 0.95 rises
from 0.46 with arrays that pass QC to 0.58 with arrays that
failed QC (i.e., small biological effects become more diffi-
cult to detect).

To examine potential causes of the variation in mainte-
nance gene expression levels unrelated to the QC criteria,
differences among the subjects were assessed. The 223 air-
way epithelial samples acquired for this study were
derived from 144 individuals, as it was possible for a sin-
gle individual to undergo bronchial brushing at one or
more of the three target sites: trachea, large airway, and
small airway. By independent linear regression, there was
no correlation of gene expression level for the 100 main-
tenance genes (r2<0.05 for all genes) with age (average 45
+ 8.8) across the 144 individuals from whom airway epi-
thelium was derived. None of the genes showed strong
correlation (12<0.15) with smoking history (average pack-
yr 30 + 18). Correlation analysis of expression levels with
pulmonary function parameters showed no relationship
(r2<0.09 for all genes with all parameters).
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Figure 3

Pairwise correlations of expression levels for 100 maintenance genes. Expression levels for 100 maintenance genes
were determined for 34 airway epithelial samples of which 24 randomly selected samples passed the pre-determined QC crite-
ria and 10 failed one or more of the criteria. The vertical and horizontal numbers refer to the 34 samples, categorized as "pass"
or "fail"; LA = large airway; SA = small airway. Pearson correlation coefficients for all pairwise comparisons between the 34
samples were determined and are plotted in grey-scale, with each cell representing a single correlation between two samples
(white, r > 0.94; gray, 0.92 < r < 0.94; black, r < 0.92). Shown are the 24 x 24 comparison of samples both passing QC, the 24
% |0 between samples passing QC and samples failing QC, and the 10 x |0 comparison of samples both failing QC. Note that
all of the correlation values <0.92 are derived only from pairwise comparisons including samples failing the QC criteria.

Impact of QC Failures on Global Lung Biology

In order to assess the functional consequences of the QC
criteria on the gene expression data, a Principal Compo-
nents Analysis (PCA) was used to compared samples that
passed QC to those that failed. For this analysis, an inde-
pendent set of microarray data that failed QC was availa-
ble from a technician training program in the Weill
Cornell Medical College Department of Genetic Medi-
cine. From this training program, 11 microarrays that
failed QC were available from small airway epithelium
samples collected from individuals with COPD (n = 1
failed due to the RIN criteria; n = 6 failed the GAPDH cri-
teria; n = 3 failed the scaling factor criteria; and n = 1 failed
both the GAPDH and scaling factor criteria.). The data
from these 11 samples was compared to microarray data

from n = 11 samples (matched for ancestry, age, gender,
pack-years and pulmonary function test results) from the
small airway epithelium of individuals with COPD that
passed all QC criteria (see Additional file 1 for demo-
graphics of the 2 groups). The PCA revealed broad, global
differences in genome-wide expression levels in the small
airway epithelium of individuals with COPD in samples
that pass QC vs those that fail (Figure 6). Using the criteria
of P call of "Present” in 20% of samples, magnitude of
fold-change in passed vs failed samples >1.5, and p < 0.01
using a t test with a Benjamini-Hochberg correction to
limit the false positive rate, a total of 888 probe sets are
differentially expressed between the 2 groups (Additional
file 2), indicating that data from microarrays that fail QC
criteria is not necessarily only more variable or "noisy,"
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Frequency distribution of correlation coefficients cal-
culated for pairwise comparisons. Shaded dark grey
region represents pairwise comparisons (n = 285) where at
least | sample failed the QC criteria. Light grey region repre-
sent pairwise comparisons (n = 276) where both samples
pass QC criteria. The majority of samples passing the QC
criteria have correlation values >0.94.

but in fact is significantly different biological data com-
pared to data obtained from samples that pass QC criteria.

Discussion
Epithelial samples (n = 223 total) of trachea, large airway
and small airway were obtained from healthy subjects and
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Variability in maintenance gene expression levels in
samples that pass or fail QC criteria. The coefficients of
variation for each of the 100 maintenance genes were calcu-
lated across 2 data sets: a data set of 10 samples failing QC
criteria (red squares), and a randomly selected data set of 10
samples that pass QC criteria (blue triangles). Upper and
lower boundaries of shaded regions represent 95t and 5th
percentiles, respectively, of coefficient of variation across
samples failing the QC criteria (red box) and coefficient of
variation across samples passing the QC criteria (blue box).
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Principal components analysis of genome-wide gene
transcriptome data in failed and passed COPD sub-
jects. The axes have been rotated presenting a top view to
highlight the 2 standard deviation ovoid clustering of expres-
sion from failed and passed COPD subjects. Each axis repre-
sents one principal component (PC), with PCI on the x axis,
PC3 on the y axis and PC2 on the z axis. Failed COPD sub-
jects are represented by red spheres and passed COPD sub-
jects by green spheres.

from subjects with lung disease, including smokers and
non-smokers, to assess quality control criteria for microar-
ray analysis. Using Affymetrix Human Genome U133 Plus
2.0 arrays, a tripartite QC cutoff was established consist-
ing of: (1) RNA quality, assessed by RNA Integrity
Number (RIN) > 7.0 using Agilent 2100 Bioanalyzer soft-
ware; (2) cRNA transcript integrity, assessed by signal
intensity ratio < 3.0 of GAPDH 3' to 5' probe sets; and (3)
the multi-chip normalization scaling factor < 10.0. Of the
223 samples, 10 failed one or more of the QC criteria in a
way that did not depend on phenotype of the subject or
location of sampling. By using the QC cutoff criteria, the
inter-array variability, as assessed by the coefficient of var-
iation in the expression levels for 100 maintenance genes,
decreased significantly. These QC criteria should be appli-
cable to minimize experimental variation in gene expres-
sion microarray experiments.

RNA Quality as Assessed by RIN

We have previously utilized the 28s/18s rRNA peak ratio,
as calculated by electropherogram, to verify quality of
RNA samples prior to microarray hybridization [38].
However, the 28s/18s ratio does not always provide a suf-
ficient basis for distinguishing high quality from low
quality RNA for microarray experiments [21,26,27,32,39-
41]. For example, in an analysis of the effects of technical
variability on gene expression in unfixed snap frozen vs
formalin-fixed paraffin-embedded (FFPE) pelleted
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human bone marrow stromal cells, despite all RNA sam-
ples having equivalent and comparable 28s/18s ratios as
visualized by computerized gel electrophoresis, more
than twice as many genes were identified as expressed in
snap frozen cells than in formalin-fixed paraffin-embed-
ded cells, reflecting possible RNA quality effects in play
that were not captured by quantitative assessment of the
rRNA subunit peak heights [42].

Since the implementation of the Agilent Bioanalyzer RIN
software, we have relied on the RIN as the primary indica-
tor of RNA integrity, based on published data showing
that the RIN accounts for numerous properties of the RNA
degradation process to provide an unambiguous and
comprehensive index of the overall quality of the starting
material [21,41,43,44]. We found that the RNA quality in
this study, as assessed by RIN, was generally good with a
failure rate of 2.8% based on RIN > 7.0. The low percent-
age of failures probably reflects rigorous training and
standard operating procedures that ensure that epithelial
cells are homogenized in Trizol in less than 60 minutes
from the time of bronchial brushing. Using a single tech-
nician for this process with space, equipment and reagents
that are not used for other purposes is also critical. The
increased interest in using clinical specimens for research
has led to widespread establishment of human tissue
banks. In many cases, the RNA for microarray studies is
extracted from tissues samples that may have been kept at
room temperature and/or undergone repeated thawing
and freezing, thereby affecting the quality of the RNA
[24,32,45-47]. For example, microarray experiments
involving pancreatic tumor tissue have had to discard the
majority of the extracted RNA samples, due to the RNAse-
rich content of the organ and the rapid degradation of the
RNA material [48,49]. For those types of samples with
possible RNA degradation, consistent application of the
RIN > 7.0 cutoff is useful for obtaining high quality gene
expression microarray data.

Illustrating the predictive power of the RIN as a pre-chip
criterion, linear regression modeling and ordinary least
squares linear regression have shown that the scaling fac-
tor and GAPDH 3'/5' signal intensity ratio are negatively
correlated with the RIN value [50]. Interestingly, the tan-
dem failures by two samples in the present study by the
RIN and scaling factor criteria, and by one sample by the
RIN criterion and GAPDH 3'/5' signal intensity ratio crite-
ria, are in concordance with the concept that poor RNA
quality adversely affects synthesis of full-length cRNA as
well as the hybridization efficiency of probe-target bind-
ing [19,33,34,39,50-52]. Since failure of the RIN test pre-
dicts failure at downstream steps, the application of this
cutoff prior to in vitro transcription reactions and hybridi-
zation has the potential to save substantial costs in wasted
reagents and technical time.

http://www.biomedcentral.com/1471-2164/10/493

Scaling

Published recommendations for an acceptable range of
scaling factors computed at the same target intensity value
vary in numerical fold cutoffs, or alternately, suggest all
values within 2 standard deviations from the mean in
either direction [16,34,35]. However, because the Gene-
Chip Scanner 3000 7G used in this study, and generally
employed by most institutional microarray core facilities,
can resolve 65,535 levels of fluorescence in 16 bits of res-
olution (allowing for detection of very low levels of fluo-
rescence), scaling factors for arrays can theoretically, and
in practice, range well into the hundreds. Since a mutable
scaling factor range can be continually subject to fluctua-
tion as new samples are added to ongoing studies, and
skewed by the presence of even one or two outlying chips
with extremely high scaling factors, we chose a finite
upper limit of 10.0 for the scaling factor criterion. As 97%
of the scaling factor values for the samples examined in
this study were < 10.0, this is a practical and attainable
cutoff that can accurately identify outlying poor quality
samples.

In gene expression profiling studies of samples obtained
from biopsies, cell sorting, or laser capture microdissec-
tion, yields of cellular RNA are often small quantities (e.g.,
ng) and require specialized amplification methods to gen-
erate sufficient biotinylated cRNA for array hybridization
[53,54]. In these types of studies and others examining in
vivo tissue from which sample RNA is limiting and alter-
nate technical procedures are utilized, the scaling factor
metric can be useful to assess the impact of technical arti-
fact, and the quality of the expression data. For example,
in an analysis of small sample RNAs from rat liver, signif-
icantly increased scaling factor values indicated that the
amplification technique used contributed to technical
variability in the form of a substantial decrease in the per-
cent of transcripts detected on the array [55]. In contrast,
in a study of small amounts of RNA derived from breast
cancer tissue from mastectomy specimens, consistent scal-
ing factor values across all amplified samples confirmed
the validity and comparability of the expression data [56].

Quality Control for Expression Microarray Analysis

Despite large amounts of published lung gene expression
data, there is often little attention focused on microarray
quality control, with the consequent risk of skewing the
data by including poor quality arrays in the analysis
[35,57-63]. Further, different effects of RNA quality on
specific ontological categories can complicate the extrac-
tion of biological information from microarrays of vary-
ing quality. For example, in an analysis of the effects of
RNA integrity on gene expression in breast cancer sam-
ples, it was found that specific categories of genes such as
those related to deoxyribonuclease activity, regulation of
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cell adhesion, and NADH dehydrogenase activity, were
most affected by RNA quality [26].

One methodology for testing data integrity is that of unsu-
pervised hierarchical sample clustering based on Spear-
man correlations-based distance metric [64,65]. The
resulting clusters are inspected manually for clustering of
samples by non-biological parameters, such as the dates
of sample collection and RNA extraction, the batch of in
vitro transcription and amplification reagent used, and the
date of array hybridization. These factors may contribute
to batch effects, where the overall intensity of a batch of
microarrays more closely resembles the batch than the rest
of the group of arrays [60,66]. While these clustering
methods provide insight into experimental variability,
they provide no quantitative guidelines for eliminating
microarrays from analysis and it is sometimes difficult to
determine if the clusters have any relationship to biologi-
cal variability.

Another strategy often used for differentiating high qual-
ity from low quality microarray data is based on outlier
status of any given sample in an experiment. Software
packages such as dChip (DNA-chip analyzer) and Probe
Profiler can identify intensity outliers of a sample in a
group of microarrays, and take into account such features
of the array hybridization such as brightness, saturation,
dynamic range, and background [65-67]. The caveat is
that all chips must be from biologically comparable ori-
gins and that only a small number of experimental out-
liers must exist.

QC Criteria Presented in this Study

The current study provides an efficient and simple
approach for quality assessment of gene expression micro-
array data. It emphasizes good experimental execution
and discarding unsatisfactory microarrays rather than sal-
vaging data through complex statistical analyses of array
data of variable quality. We provide a standardized tripar-
tite criteria specifically addressing starting RNA quality,
integrity of the cRNA transcript, and hybridization effi-
ciency. Each parameter has been assigned a threshold
value, outside of which samples are readily identifiable as
being low quality and can be eliminated or re-hybridized
before proceeding to analysis. All measures are available
through Agilent Bioanalyzer software and the Affymetrix
GCOS report automatically generated after array washing
and scanning. Although the Agilent Bioanalyzer and
Affymetrix platforms are widely used, analogous criteria
may be applied for alternate methodologies. For example,
assessment of the relative signal for probes representing
the 3' and 5' ends of any mRNA could be included as QC
for any microarray platform.

In the context of data sharing via public repositories, the
criteria presented in this study has the benefit of including

http://www.biomedcentral.com/1471-2164/10/493

two parameters that are guaranteed to be available for any
Affymetrix data deposited in GEO. The initial processing
by GCOS of CEL files produces a Quality Report contain-
ing the 3'/5' GAPDH signal intensity ratio and a multi-
chip normalization scaling factor for the array. The GCOS
software is available for free download from Affymetrix
and can be applied by all investigators. In this way, two of
the three QC criteria discussed in this paper provide a con-
sistent quality control approach to not only current data,
but also to previously published, archived data. Even
though the RIN criterion as applied here requires special-
ized equipment and software, the RIN can be indirectly
predicted from the 3'/5' ratio which is extracted from the
CEL files deposited in GEO [50].

Conclusion

In the context that minimizing undesirable technical var-
iation allows for more accurate analysis of gene expres-
sion and increased power for significance testing, we
propose that the simple method described here, consist-
ing of a universally available set of three criteria, can
ensure that microarray data reflects biological differences
as opposed to experimental variability.

Methods

Study Population

After signing informed consent, subjects were evaluated in
the Weill Cornell NIH Clinical and Translational Science
Center and Department of Genetic Medicine Clinical
Research Facility under protocols approved by the Weill
Cornell Medical College Institutional Review Board. All
individuals were assessed by standard history, physical
exam, complete blood count, coagulation studies, liver
function tests, HIV-1 test, urine studies, chest X-ray, EKG,
and pulmonary function tests. All individuals were
assessed for smoking status with urine nicotine and coti-
nine levels, and blood carboxyhemoglobin levels. A total
of 223 airway epithelial samples in this study were derived
from three sites: trachea, large airway (2nd-3rd order bron-
chi) and small airway (10%-12th order bronchi) in five
phenotypic groups (Table 1): healthy non-smokers (tra-
chea chean =17, large airway n = 21, small airway n = 35),
healthy smokers (trachean = 15, large airway n = 32, small
airway n = 44), symptomatic smokers (trachea n = 3, large
airway n = 4, small airway n = 10), smokers with lone
emphysema with normal spirometry (small airway n =
22) and smokers with COPD GOLD stages I-I1I (small air-
way n = 20). Healthy non-smokers had no symptoms ref-
erable to the lungs, normal lung function and normal
chest X-ray, and all laboratory tests within normal limits.
The criteria for healthy smokers were identical to that of
healthy non-smokers except urine nicotine and cotinine
and blood carboxyhemoglobin levels confirmed current
smoking status. Symptomatic smokers were similar to
healthy smokers except they had cough or sputum score of
3 or greater, or dyspnea score on the Modified Medical
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Research Council (MMRC) dyspnea scale of 2 or greater
[68-71]. The lone emphysema with normal spirometry
phenotype was defined by normal FEV1/FVC, reduced
DLCO, and evidence of emphysema on quantitative CT
scan (>1% of lung with <-950 Hounsfield units [30]).
Smokers with established COPD included current smok-
ers who met the Global Initiative for Chronic Obstructive
Lung Disease (GOLD) criteria for GOLD [, II, and IIT [72].
An independent data set from n = 11 individuals with
COPD was available from a technician training program
in the Weill Cor-nell Medical College Department of
Genetic Medicine. The small airway epithelium samples
from these subjects, which failed QC criteria, were com-
pared to 11 matched small airway epithelium samples
from individuals with COPD that passed QC criteria (see
Additional file 1).

Sampling of Airway Epithelium and RNA extraction
Fiberoptic bronchoscopy was performed to obtain pure
populations of tracheal, large and small airway epithe-
lium by using methods previously described [4,29,73].
Briefly, after mild sedation with meperidine and mida-
zolam and routine anesthesia of the vocal cords and bron-
chial airways with topical lidocaine, a fiberoptic
bronchoscope (Pentax, EB-1530T3) was taken proximal
to desired collection location. A 2.0 mm disposable brush
is used for brushing immediately distal to the location of
the bronchscope (for trachea or large airway) or by
advancing 7 to 10 cm further into the 10t to 12th genera-
tion branching for small airway. Epithelium was collected
by gently gliding the brush back and forth 5 to 10 times in
8 to 10 different locations in the same general area. Cells
were detached by immersing the brush into 5 ml of ice-
cold bronchial epithelial basal medium (BEBM, Clonet-
ics, Walkersville, MD) and flicking five to ten times. An
aliquot of 0.5 ml was used for differential cell count and
the remainder (4.5 ml) was centrifuged at 6,000 rpm for
10 minutes within less than 60 minutes from the time of
bronchial brushing. Pelleted airway epithelial cells were
lysed with the TRIzol reagent (InVitrogen, Carlsbad, CA),
and after chloroform extraction the RNA was purified
directly from the aqueous phase using the RNeasy MinE-
lute RNA isolation kit (Qiagen, Valencia, CA). For each
sample, 1 pl of RNA was used for quantification of yield
by NanoDrop ND-1000 spectrophotometer (NanoDrop
Technologies, Wilmington, DE) and quality assessment
by Agilent 2100 Bioanalyzer software. The samples were
stored in RNA Secure (Ambion, Austin, TX) at -80°C until
time of biotin-labeled cRNA preparation.

Microarray Processing

Double stranded cDNA was synthesized from 1.0 to 2.0
pg of total RNA using the GeneChip One-Cycle cDNA
Synthesis Kit, followed by cleanup of the double stranded
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product with the GeneChip Sample Cleanup Module. The
GeneChip IVT Labeling Kit was used for the 16 hr in vitro
transcription reaction and the Genechip Sample Cleanup
Module was used for cleanup of the biotin-labeled cRNA
(all kits from Affymetrix, Santa Clara, CA). Final yield of
biotin-labeled cRNA was confirmed by NanoDrop spec-
trophotometric analysis. For each sample, 10 pg of biotin-
labeled cRNA was fragmented, and hybridized to the
Human Genome U133 Plus 2.0 array (54,675 probe sets)
according to Affymetrix protocols, processed by the
Affymetrix GeneChip Fluidics Station 450 and scanned
with an Affymetrix GeneChip Scanner 3000 7G http://
www.affymetrix.com/support/technical/manual

expression _manual.affx, as previously described [4]. Cap-
tured images were analyzed using Microarray Suite ver-
sion 5.0 (MAS 5.0) algorithm (Affymetrix). The data was
normalized per array using GeneSpring version 7.3 soft-
ware (Agilent Technologies, Palo Alto, CA), by dividing
the raw data by the 50t percentile of all measurements on
that array. All microarray data has been deposited at the

Gene Expression Omnibus (GEO) site (http://
www.ncbi.nlm.nih.gov/geo/; accession number
GSE11906).

Quality Control Parameters

The selection of the three QC criteria was targeted towards
addressing quality control in the three integral stages of
the microarray process: (1) extraction of the starting RNA
material; (2) synthesis of cDNA and antisense biotin-
labeled cRNA target; and (3) the array hybridization effi-
ciency.

RIN

An RNA Integrity Number (RIN) for each RNA sample in
this study was generated by an Agilent Bioanalyzer algo-
rithm that uses a Bayesian approach to train and select a
prediction model incorporating features extracted from an
electropherogram including pre-region, 5S-region, fast-
region, 18S-fragment, inter-region, 28S-fraction, precur-
sor-region, and post-region [41,44]. RIN values range
from 1 to 10, with 1 indicating a high level of degradation
and 10 indicating fully intact RNA. RIN was assessed on
180 of 223 epithelial RNA samples. The 43 RNA samples
not assessed by RIN had been processed and hybridized to
microarray before the development of the RIN software
and residual RNA was unavailable for testing. Published
suggestions of a RIN cutoff value to distinguish poor qual-
ity from good quality RNA samples vary from 3.9 to 7.8
[19,26,32,40,50,74]. Based on literature indicating a sub-
stantial increase in the rate of false positives on the array
when the starting RNA had a RIN value of <7.0, an accept-
ance criterion of RIN > 7.0 was established [33]. Available
RIN values for the 180 RNA preparations were assessed by
this criteria and passing or failing samples were grouped
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by phenotype, and each phenotype was separated by bio-
logic origin.

GAPDH 3'/5' signal intensity ratio

Per Affymetrix guidelines, the ratio of the 3' to 5' signal
intensity values can be used as a method of quality control
for the array data [23,35,36,75]. As the GeneChip system
utilizes polyadenylation complementary oligonucleotides
as a primer for reverse transcription of the starting RNA
template, inefficiency of first strand cDNA synthesis and/
or in vitro transcription of cRNA can result in under repre-
sentation of the 5' moiety of the transcript [34,52]. In
accordance with recommendations by Affymetrix and
others, an acceptance criterion of GAPDH 3'/5' ratio < 3.0
was established [16,34,35]. To accomplish this, for each
sample hybridized to microarray, a GeneChip Operating
Software report file was generated using the Affymetrix
GeneChip Operating Software (GCOS), a software system
that automates the acquisition of data by GeneChip fluid-
ics stations and scanners, and provides workflow tracking
of experiment, image and analysis data. Among the QC
metrics summarized in the report file are the signal inten-
sity values for the 3' and 5' probe sets for the GAPDH
gene. The ratio of 3' to 5' signal intensities for the GAPDH
probe set was extracted from the GCOS report file for each
of 223 samples and those with GAPDH 3'/5' ratio > 3.0
were scored as failures.

Multi-chip normalization scaling factor

According to Affymetrix microarray guidelines, compara-
ble scaling factors between arrays in a given experiment
are critical to minimizing differences in overall signal
intensities, thereby allowing for more reliable detection of
biologically relevant changes [35,52]. Based on the distri-
bution of data for 223 samples, a criterion of scaling factor
<10.0 was established, above which samples were consid-
ered to demonstrate poor hybridization and labeling effi-
ciency. Scaling factor values for all 223 samples were
assessed against this acceptable level. To accomplish this,
for each sample hybridized to a microarray, the Affymetrix
GeneChip Scanner 3000 7G was set to a target intensity
value of 500 and the GCOS image analysis software
extracted pixel values from the raw image file, producing
a CEL file containing fluorescence intensities for each
probe. A CHP file was then generated from each CEL file
through GCOS consolidation of all probe pairs interrogat-
ing a gene into a single signal value and an Absent/Mar-
ginal/Present call for the probe set. The creation of CHP
files from CEL files generated a scaling factor for each
array which was applied to normalize signal intensity
thereby permitting comparisons among arrays. The scal-
ing factor is the multiplication factor applied to the
trimmed mean of probe set intensities to equalize this
value to the target intensity value. Scaling factor values
were extracted from the GCOS report file for all 223 sam-
ples.

http://www.biomedcentral.com/1471-2164/10/493

Analysis of Maintenance Gene Expression Levels

Samples that failed any one of the three criteria described
were considered to have failed the QC criteria, while those
samples that passed all three criteria were considered to
have passed the QC criteria. To confirm the validity of this
quality assessment strategy, expression levels were deter-
mined for a set of 100 constitutively expressed mainte-
nance genes and differences in gene expression profile for
these genes were compared between the samples failing
the quality control criteria and the samples passing the
QC criteria. The set of control genes was selected by
Affymetrix using the a priori knowledge that they exhibit
relatively low signal variation over different sample types
and are consistently called Present in a large number of
different tissues and cell lines (list available at the NetAffx
Analysis Center, http://www.affymetrix.com/support/
technical/technotes/hgu133_p2_technote.pdf). In the
present study, for notational convenience, we use the term
"gene" in place of "probe set", as each one of the 100
probe sets represents a different gene.

Statistical Analysis

To examine potential causes for variation in QC criterion
values between samples, the effects of differences in phe-
notype or biologic origin of the sample were assessed by
ANOVA.

In regard to the maintenance genes we used Pearson's cor-
relation to assess correlation in expression levels for the
100 maintenance genes among the 10 samples (2 large
airway epithelium, 8 small airway epithelium) that failed
the QC criteria and 24 randomly selected samples that
passed QC criteria (8 tracheal epithelium, 8 large airway
epithelium, and 8 small airway epithelium; see Results)
[76]. The identities of the 24 samples passing QC criteria
were randomly generated using a random number gener-
ator and sample origin was evenly distributed among tra-
chea (n = 8), large airway (n = 8), and small airway (n =
8). Significance of the difference in correlation coefficients
for pairwise correlations where at least one sample failed
QC criteria and for pairwise correlations where both sam-
ples passed QC criteria was assessed by nonparametric
analysis. Coefficient of variation analysis was used to
determine variability in expression levels for each of the
100 maintenance genes across the 10 samples failing QC
criteria and across 10 samples passing QC criteria. For this
analysis, the 10 samples passing QC criteria were ran-
domly selected using a random number generator, with
the stipulation that these samples were matched in origin
with the 10 samples failing QC criteria (i.e., 2 large airway
epithelium, 8 small airway epithelium). For the purposes
of the coefficient of variation analysis, the data set of 10
samples passing QC criteria was termed "pass", and the
data set of 10 samples failing QC criteria was termed
"fail". Significance of the difference in coefficients of vari-
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ation of gene expression levels across the "pass" and "fail"
data sets was determined by Mann-Whitney U test.

To compare gene expression profiles in samples that passed
QC to those that failed QC, principal components analysis
was carried out using Partek® Genomics Suite software (ver-
sion 6.8 Copyright®2008) for 11 COPD subjects who failed
chip quality control and 11 COPD subjects who passed
(matched for gender, age, ethnicity, and smoking history).
Affymetrix HG-U133 Plus 2.0 CEL files were imported into
Partek using the Robust Multi-chip Average (RMA)
method. All 54,675 log2-transformed small airway gene
expression data were mapped to principal components to
preserve the variation of this data, projected in 3 dimen-
sions, and plotted. In order to identify the specific probe
sets that were differentially expressed between the two
groups, microarray data were processed using the MAS5
algorithm (Affymetrix Microarray Suite Version 5 soft-
ware), which takes into account the perfect match and mis-
match probes. MAS5-processed data were normalized
using GeneSpring by setting measurements <0.01 to 0.01
and by normalizing per chip to the median expression
value on that array and, per gene to the median expression
value for each gene across all arrays. Genes that were signif-
icantly differentially expressed between the two groups
were selected according to the following criteria: (1) P call
of "Present" in 20% of samples; (2) magnitude of fold
change in average expression value for pass QC vs fail QC
of >1.5; and (3) p < 0.01 using a t test with a Benjamini-
Hochberg correction to limit the false positive rate [77].
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Additional file 2

Significant Genes in the Small Airways Epithelium of Smokers with
COPD Between Chips that Failed QC and Chips that Passed QC.
Shown are the 888 probe sets that are differentially expressed (using cri-
teria of a fold change greater than 1.5 and a p value, with Benjamini-
Hochberg correction, less than 0.01, in n = 11 pass QC samples and n =
11 fail QC samples, all from the small airway epithelium of individuals
with COPD.
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