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Abstract
Background: The nuclear receptor superfamily currently consists of seven gene subfamilies that encompass over
80 distinct receptor proteins. These transcription factors typically share a common five-domain structure with a
highly conserved DNA-binding domain. Some nuclear receptors are ubiquitous among the metazoans, while
others are unique to specific phylogenetic groups. Crustaceans represent the second largest group of arthropods
with insects being the largest. However, relative to insects, little is known about the nuclear receptors of
crustaceans. The aim of this study was to identify putative nuclear receptors from the first assembled genome of
a crustacean Daphnia pulex http://wFleaBase.org. Nuclear receptor expression was evaluated and receptors were
subjected to phylogenetic analyses to gain insight into evolution and function.

Results: Twenty-five putative nuclear receptors were identified in D. pulex based on the presence of a conserved
DNA-binding domain. All of the nuclear receptor protein sequences contain a highly homologous DNA-binding
domain and a less conserved ligand-binding domain with the exception of the NR0A group. These receptors lack
a ligand-binding domain. Phylogenetic analysis revealed the presence of all seven receptor subfamilies. The D. pulex
genome contains several nuclear receptors that have vertebrate orthologs. However, several nuclear receptor
members that are represented in vertebrates are absent from D. pulex. Notable absences include receptors of
the 1C group (peroxisome proliferators-activated receptors), the 3A group (estrogen receptor), and the 3C
group (androgen, progestogen, mineralcorticoid, and glucocorticoid receptors). The D. pulex genome also
contains nuclear receptor orthologs that are present in insects and nematodes but not vertebrates, including
putative nuclear receptors within the NR0A group. A novel group of receptors, designated HR97, was identified
in D. pulex that groups with the HR96/CeNHR8/48/DAF12 clade, but forms its own sub-clade. Gene products
were detected in adult female D. pulex for 21 of the 25 receptors.

Conclusion: Nuclear receptors are ancient proteins with highly conserved DNA-binding domains. The DNA-
binding domains of the nuclear receptors of D. pulex contain the same degree of conservation that is typically
found within nuclear receptors of other species. Most of the receptors identified in D. pulex have orthologs within
the vertebrate and invertebrate lineages examined with the exception of the novel HR97 group and the Dappu-
HR10 and potentially the Dappu-HR11 receptors found in D. pulex. These groups of receptors may harbour
functions that are intrinsic to crustacean physiology.
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Background
Nuclear receptors constitute a large superfamily of tran-
scription regulators. They are involved in a vast array of
diverse physiological functions such as the control of
embryonic development, the regulation of cell differenti-
ation, and the maintenance of homeostasis. Nuclear
receptors interact with cofactors and hormone response
elements (HRE) on target genes and function either as
monomers, homodimers, or heterodimers [1]. Often,
transcriptional regulation by nuclear receptors is depend-
ent upon binding of receptor ligands, which typically con-
sists of small, lipoidal molecules such as steroids and
retinoids. However, for some receptors (orphan recep-
tors) regulatory ligands are not known or may not exist
[2].

Nuclear receptors are evolutionarily conserved proteins
that are divided into seven distinct subfamilies [3] and
contain a characteristic modular structure [4] (Figure 1).
The A/B domains contain a transcriptional activation
function (AF-1). The length of these domains is highly
variable among nuclear receptors with very little evolu-
tionary conservation. The C or DNA-binding domain
(DBD) is the most conserved among the nuclear receptor
domains. The DBD contains two typical cysteine-rich zinc
finger motifs in tandem spanning ~80 amino acids which
are directly involved in HRE recognition. The D domain
functions as a hinge between the DBD and the ligand-
binding domain (LBD). The LBD or E domain contains a
hydrophobic ligand-binding pocket, which is specific to
each receptor and is the source of the sequence variability

within the LBD. In addition, the E domain mediates
dimerization and ligand dependent transcriptional activa-
tion functions (AF-2) [5]. The C-terminal contains the F-
domain, which is not present in all NRs and is highly
diverse.

Comparative studies into functional conservation of
genes and genomes will provide information on genetic
diversity and similarities among major groups of organ-
isms and give insight into protein family expansions [6,7].
Nuclear receptors have undergone many gene duplication
events during metazoan evolution [8]. The estimated
number of nuclear receptors is 48 in Homo sapiens, 21 in
Drosophila melanogaster, and over 270 in Caenorhabditis ele-
gans [9-11]. This diversity makes nuclear receptors ideal
candidates for investigating the functional roles of gene
duplications and phylogenetic reconstructions [12] and
highlights the need to expand the repertoire of species for
which nuclear receptors have been characterized.

Daphnia pulex, is the first crustacean for which the genome
has been fully sequenced. D. pulex is used extensively in
research studies in the fields of ecology, evolution, devel-
opment, toxicology, and genetics. The recent release of the
genome makes it a useful addition to the growing list of
sequenced genomes for comparative evolutionary
genomic research [13,14]. The aims of this study were to
identify and annotate all of the nuclear receptors that are
present in the D. pulex genome, to assess evolutionary
conservation, divergence, or emergence of the crustacean
receptors using phylogenetic comparison to the nuclear
receptors of a vertebrate H. sapiens, an insect D. mela-
nogaster, and a nematode C. elegans, and to evaluate the
expression of these receptors in parthenogenetically
reproducing females.

Results and Discussion
Nuclear receptor genes
Twenty-five putative full-length nuclear receptor genes
were identified in the D. pulex genome. All 25 genes were
identified based upon the presence of a conserved DBD.
Subsequent BLAST searching of the wFleaBase database
http://wFleaBase.org with each of the H. sapiens and D.
melanogaster nuclear receptors, listed in Additional File 1,
revealed no additional nuclear receptor sequences. Fifteen
of the nuclear receptor subfamilies consist of single copy
genes; two subfamilies (0A and 1H) have two paralogs
each; and, two subfamilies (1L and 2E) have three para-
logs each. Dappu-ECRa/Dappu-ECRb (1H), Dappu-
HR97a/Dappu-HR97b (1L) and Dappu-KNR-R1/Dappu-
KNR-R2 (0A) were found in close proximity as tandem
repeats.

The D. pulex nuclear receptor family contains members
that represent each of the seven subfamilies of receptors

Common structural elements of nuclear receptorsFigure 1
Common structural elements of nuclear receptors. 
The variable A/B region contains a transcriptional activation 
function (AF-1) as well as regions that are targets for post-
translational modification and interact with other cofactors. 
The highly conserved C region or DNA-binding domain 
(DBD) contains two typical cysteine-rich zinc finger motifs. 
The D region links the DBD and the ligand-binding domain 
(LBD). The E region contains the LBD. This domain is 
involved in dimerization, contains the ligand --binding pocket, 
modulates positively or negatively transcription activity, and 
has an activation function helix (AF-2) for ligand dependent 
transactivation. The F region represents the COOH terminal 
end of the receptor.
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(Table 1). There are 13 members of the NR1 nuclear recep-
tor family in D. pulex, which makes up 52% of the total
number of nuclear receptors. In comparison, 8 out of 21
receptors (38%) of D. melanogaster are NR1 members. The
expansion of the NR1 family is the result of the existence
of the Dappu-HR10 and Dappu-HR11 receptors, an addi-
tional Dappu-EcR receptor, and the three Dappu-HR97
receptors in D. pulex. There are also 7 NR2 members, 2
NR5 members, and one member each of the NR3, 4, and
6 nuclear receptor subfamilies. Annotated gene and pro-
tein sequences, and D. pulex genome browser links for the
25 receptors are provided in Additional File 2.

Phylogenetic analyses
Phylogenetic analyses were performed using the amino
acid sequences from the DNA and ligand binding
domains and trees were constructed using three different
approaches: Bayesian Inference, Maximum Parsimony,
and Protein Distance (Neighbor-Joining (NJ)). Different
models gave similar results at the group and subfamily
levels, but Bayesian Inference showed greater resolution at
the base of the phylogram. Results generated from Baye-
sian Inference are presented along with the bootstrap val-
ues from Maximum Parsimony and NJ (Figure 2). An
expandable pdf file of the phylogram is available as Addi-
tional File 3, and a phylogram from a tree constructed
from full length nuclear receptors is provided as Addi-
tional File 4. The full length phylogram showed much
poorer resolution compared to the DBD/LBD-only phylo-
gram, especially at the left hand nodes (base of the phylo-
gram).

The D. pulex nuclear receptor phylogenetic tree segregates
into four major clades (NR1, NR2, NR3/5/6, and NR4)
each further dividing into several sub-clades. The NR3/5/
6 clade further subdivides into the NR3 and NR5/6 subc-
lades. The NR2 clade divides into two distinct subclades,
and the NR1 clade divides into at least two distinct subc-
lades. Differences between the three methods of tree con-
struction were observed. In general, Maximum Parsimony
provided the least resolution at the base of the tree.

Significant differences among the phylogenetic trees are as
follows. The NJ tree placed Dappu-HR11 in the NR1A/B
groups of the NR1 clade. However, no other trees includ-
ing the full length trees segregated Dappu-HR11 or
Dappu-HR10 into any of the NR1 groups; only as NR1
subfamily members. Dappu-HR10 and Dappu-HR11 may
be sufficiently distinct from the other clade members to
warrant distinct group designations (e.g., NR1M, NR1N;
Table 1). The NJ tree also predicts that Dappu-EcRa is
more closely related to DmEcR than to Dappu-EcRb.
There is also disagreement among trees with respect to
FXR's place within the NR1H group.

The Knirps that lack a LBD (group NR0A) group within
the NR1 clade. It is not surprising that the NR0 subfamily
members fit within other clades as the NR0 subfamily was
derived to accommodate nuclear receptors that lack either
the LBD or the DBD, independent of phylogenetics [3].
For example, the mammalian NR0B members that all lack
a DNA binding domain, were assigned to the NR2 clade.
In the Maximum Parisimony and NJ trees, the Knirps,
NR1I, and NR1L groups form their own subclade, but in
the Bayesian tree, these groups are separate, but within the
NR1C-F groups. The exact relationship of each of the
Knirps to each other is also contentious as NJ and Maxi-
mum Parsimony suggest the presence of a KNRL and an
EGON in D. pulex, but do not agree as to the exact identity
of each. Bayesian Inference suggests that the Knirps of D.
pulex and the Knirps of D. melanogaster are more closely
related to each other and thus duplication of the Knirps
occurred after the divergence of insects and crustaceans.
Analysis of the full length receptors suggests that
DmEGON is orthologous to Dappu-KNR-R2 and DmKNR
is orthologous to Dappu-KNR-R1. Because of the vast dis-
agreement among methods, we named the D. pulex recep-
tors Dappu-KNR-R1 and Dappu-KNR-R2 for KNR related
1 and 2.

There are few differences among the trees as they relate to
the D. pulex NR2 receptors. For example, in the NJ tree,
Dappu-HNF4 is not as closely related to DmHNF4, but
instead branches from an ancestral precursor to all of the
NR2A group members. Similarly DmUSP segregates from
all of the RXR genes, including Dappu-RXR in the NJ and
Maximum Parsimony trees. The placement of DmFAX1
and CeFAX1 is also contentious, but this was not related
to any of the D. pulex receptors. Lastly, the placement of
Dappu-HR78 differs between the three trees. The Bayesian
tree shows Dappu-HR78 as members of the NR2D group.
However, the NJ tree places Dappu-HR78 in the NR2C
group, while DmHR78 and CeNHR41 are 2D members.
The Maximum Parisimony tree has all five members
related with the CeNHR41 as the most distal member.
Clearly, the NR2C and 2D groups are related (Fig. 2).

There were no significant differences in the NR3, NR4,
NR5, or NR6 subfamilies in the trees related to D. pulex
receptors. The NR3 subfamily only showed one difference
because the NJ tree did not agree with the other trees as to
the placement of the androgen receptor. The NR4 sub-
family also only showed one difference between the trees
and that was related to the relationship of CeODR7 to the
rest of the NR4 subfamily. All of the trees were in agree-
ment as it related to the NR5 subfamily, and the only dif-
ference in the NR6 subfamily was due to the positioning
of the CeNHR91 in the Maximum Parsimony tree.
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Table 1: Nuclear receptors in Daphnea pulex, Drosophila melanogaster, Homo sapiens and Caenorhabditis elegans.

Group D. pulex Protein ID Scaffold D. melanogaster H. sapiens C. elegans

0A Dappu-KNR-R1 290673 43 KNI
Dappu-KNR-R2 290668 43 KNRL

EGON
0B DAX1

SHP
1A THRa

THRb
1B RARa

RARb
RARg

1C PPARa
PPARb
PPARg

1D Dappu-E75 442814 1 E75 Rev-erb-a NHR85
Rev-erb-b

1E Dappu-E78 442769 23 E78
1F Dappu-HR3 442731 5 DHR3 RORa NHR23

RORb
RORg

1G CNR14
1H Dappu-EcRa 319648 30 EcR LXRa

Dappu-EcRb 442737 135 LXRb
FXR

1I VDR
PXR
CAR1

1J Dappu-HR96 442778 2 DHR96 DAF12
NHR8
NHR48

1K NHR1
1L Dappu-HR97a 442812 28

Dappu-HR97b 442724 28
Dappu-HR97 g 442655 40

1 M1 Dappu-HR10 442777 17
1N1 Dappu-HR11 316465 193
2A Dappu-HNF4 442738 80 HNF4 HNF4 NHR49

HNF4G NHR64
NHR69

2B Dappu-RXR 442727 328 USP RXRa
RXRb
RXRg

2C TR2
TR4

2D Dappu-HR78 442757 58 DHR78 NHR41
2E Dappu-TLL 442885 2 TLL TLX FAX1

Dappu-PNR 442739 45 PNR PNR
Dappu-DSF 442884 23 DSF NHR67

FAX-1
2F Dappu-SVP 442743 4 SVP COUP-TFa UNC55

COUP-TFb
EAR2

3A ERa
ERb

3B Dappu-ERR 442810 11 ERR ERRa
ERRb
ERRg

3C GR
MR
PR
AR
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Overall, the D. pulex nuclear receptor genes are distinctly
placed within 18 subclades or groups based upon the phy-
logenetic tree (Fig. 2) and are named in agreement with
the unified nomenclature system for nuclear receptors [3]
(Table 1). Seven of these groups also were represented in
D. melanogaster, C. elegans, and H. sapiens (groups 1D, 1F,
2A, 2E, 2F, 4A, 6A). The ubiquity of these groups among
protostomes and deuterostomes suggests that these recep-
tor groups evolved prior to the protostome/deuterostome
divergence. Two of these groups are represented in D.
pulex and D. melanogaster but not in H. sapiens (groups 1J,
2D). Representatives from these groups are also absent
among the nuclear receptors of other sequenced verte-
brates, including mammals and the teleost, Fugu rubripes
[15] and may represent groups that emerged within some
protostome lineage after the protostome/deuterostome
divergence.

Expression of nuclear receptor mRNAs
Individual nuclear receptors were evaluated for the tran-
scription of mRNA using PCR with receptor-specific prim-
ers (Table 2). RNA isolated from whole homogenates of
adult female, parthenogenetically reproducing D. pulex
yielded mRNA species that corresponded to 21 of the 25
receptors (Figure 3). All amplicons were of the molecular
mass derived from the predicted mRNA sequences and
nucleotide sequencing of the amplicons confirmed iden-
tity of the gene products (Additional file 5). Thus, at least
21 of the identified receptor genes are functional.

We were unable to generate amplicons using various
primer sets designed to amplify the products of the genes
Dappu-EcRb, Dappu-TLL, Dappu-PNR, and Dappu-DSF.
However, EcRb transcript is present within the EST librar-
ies reported by the Daphnia Genomics Consortium
https://dgc.cgb.indiana.edu/display/daphnia/
cDNA+sequencing+project. Dappu-TLL, Dappu-PNR, and
Dappu-DSF transcripts are not present in these libraries.
Efforts to detect the NR2E group members are ongoing. In
D. melanogaster, NR2E group members function in
embryonic development, sexual behavior, and sex-spe-
cific neuronal development [4]. We cannot exclude the
possibility that these genes are not expressed in mature,

parthenogenetically reproducing females, but would be
expressed during specific stages of embryo development,
in sexually reproducing females, or in male daphnids.

Nuclear Receptors of D. pulex
NR0 subfamily
The D. pulex genome contains two nuclear receptors that
bear similarity to the D. melanogaster Knirp receptors
KNRL and EGON (Table 1, Figure 2). Both of the D. pulex
Knirps lack LBDs which is characteristic of the NR0A
group [4]. NR0A group members were previously known
to exist only in insects [16]. The ODR7 receptor of C. ele-
gans is also a member of the NR0A group, based not upon
its phylogenetic relatedness to other group member, but
because it lacks a LBD [4]. ODR7 phylogenetically groups
best with the NR4 members (Figure 2). Because direct
orthology cannot be assigned, the D. pulex Knirps were
named Dappu-KNR-R1 and Dappu-KNR-R2.

The Dappu-KNR-R1 and Dappu-KNR-R2 receptors share
62% identity to each other at the 5' end (Additional File
2). The 3' ends of the two receptors share little similarity.
D. melanogaster KNRL possesses a 19 amino acid kni-box
motif located adjacent to the zinc fingers [17]. This motif
is fully conserved in Dappu-KNR-R1 and in 17 out of 19
amino acids in Dappu-KNR-R2. In D. melanogaster, KNRL
and EGON contribute to the orchestration of embryogen-
esis and cell fate [17-20]. No NR0B members were identi-
fied in D. pulex based upon similarity to the vertebrate
nuclear receptors SHP or DAX1.

NR1 subfamily
The NR1 subfamily comprises the largest subfamily of
nuclear receptors found in D. pulex with thirteen mem-
bers. Two of the members did not associate with specific
NR1 groups and were named Dappu-HR10 and Dappu-
HR11 (Fig. 2); the first number marking the family desig-
nation and the second number assigned in order. Dappu-
HR10 shows similarity to RAR-like receptors from lower
vertebrates in BLAST comparisons. This receptor segre-
gated into the NR1 clade during phylogenetic analyses but
displayed little identity with any of the NR group mem-
bers and was therefore assigned to a new NR1 group,

4A Dappu-HR38 442749 2 DHR38 NGFIB CNR8
NURR1
NOR1

5A Dappu-FTZ-F1 442811 39 FTZ-F1 SF1 NHR25
LRH1

5B Dappu-HR39 442817 61 DHR39
6A Dappu-HR4 442822 145 DHR4 GCNF NHR91
Total 25 21 48 284

Known receptor members for each nuclear receptor subfamily group are listed and compared to corresponding D. pulex nuclear receptors, 
including manual annotated protein identification number (Protein ID) and scaffold identity. Receptor group designations are based upon 
nomenclature adopted by the Nuclear Receptors Nomenclature Committee [3].

Table 1: Nuclear receptors in Daphnea pulex, Drosophila melanogaster, Homo sapiens and Caenorhabditis elegans. (Continued)
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Phylogenetic relationship of nuclear receptors in Daphnia pulex, Drosophila melanogaster, Caenorhabditis elegans and Homo sapi-ensFigure 2
Phylogenetic relationship of nuclear receptors in Daphnia pulex, Drosophila melanogaster, Caenorhabditis ele-
gans and Homo sapiens. The nuclear receptors from four different species were subjected to phylogenetic comparisons 
using Bayesian Inference, Maximum Parsimony, and Neighbor-Joining methods. The Bayesian tree is shown with posterior 
probabilities from the Bayesian tree, and bootstrap support values (frequency of occurrence) from the Maximum Parsimony 
and Neighbor-Joining trees provided in order from left to right, respectively. Probability values are separated by forward 
slashes at each corresponding node; an X indicates an area of disagreement from the Bayesian tree. Notations Dp, Dm, Hp, 
and Ce in association with receptor names denote sequences from D. pulex, D. melanogaster, H. sapiens, and C. elegans, respec-
tively. Numbers at nodes are posterior probabilities. All D. pulex sequences are in red. Figure 3 is also available in an expanda-
ble pdf format in Additional File 3
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NR1M (Table 1). Dappu-HR11 shares 60% identity with
the DBD and 36% with the LBD of the sea urchin Strong-
ylocentrotus purpuratus SpTHR [21]. The DBD of Dappu-
HR11 shows similarity to human THR receptors in BLAST
comparisons; however, little phylogenetic similarity exists
between these receptors. Accordingly, Dappu-HR11 is ten-
uously assigned to its own group, NR1N (Table 1).

D. pulex possesses a single receptor of the NR1D group
designated Dappu-E75 based upon its similarity to the
E75 receptor of D. melanogaster (Figure 2). E75 previously
has been identified in a decapod crustacean [22]. A NR1D
member is also evident in C. elegans and was earlier desig-
nated as nhr-85. E75 is induced by ecdysteroids and
juvenoids in insects and functions in larval molting and
metamorphosis [23,24].

Insect E75 serves as a dimerization partner to HR3, an
NR1F member, and in doing so, represses its action. E75
also accommodates heme and has the ability to bind
small signalling molecules such as nitric oxide (NO) and
carbon monoxide (CO) via this heme moiety [25]. Intra-
cellular NO/CO binding inhibits the interaction of E75
with HR3. Thus, E75 suppresses the action of HR3 in a
NO/CO permissive fashion [25]. HR3 was previously
cloned from the lobster Homarus americanus and D. pulex
is therefore the second crustacean species shown to pos-
sess this NR1F group member [26]. In insects [27,28] and
lobsters [26], HR3 is induced by ecdysteroids and studies
in insects have shown that HR3 mediates certain develop-
ment-specific responses to ecdysteroid pulses. NR1F is
represented by ROR in vertebrates and CHR3 (aka, NHR-
23) in C. elegans [29].

The NR1E group was established to accommodate
another rev-erb homolog initially described in insects and
designated E78 (Table 1). D. pulex is the first non-insect
that has been shown to possess this receptor gene. Like
E75, insect E78 is ecdysteroid inducible and appears to
contribute to the orchestration of development [30]. A
function for E78 in crustaceans has not yet been estab-
lished.

Analysis of the D. pulex genome revealed the presence of
two ecdysteroid receptors, Dappu-EcRa and Dappu-EcRb,
belonging to the NR1H group (Table 1). Both receptors
share an overall identity of 60% at the amino acid level
and 81% and 78% similarity between their DBD and their
LBD, respectively. Upon activation by ecdysteroids, EcR
regulates embryo development and molting in daphnids
[31,32]. Interestingly, EcR has not been identified in
roundworms though these organisms reportedly respond
to ecdysteroid treatment [33,34]. NR1H group members
in vertebrates include LXR and FXR.

The daphnid genome contained one nuclear receptor with
significant homology to insect HR96. This receptor was
assigned to the NR1J group and was designated Dappu-
HR96. This represents the first identification of a NR1J
group member in a crustacean. Dappu-HR96 contains the
conserved 13 sequential amino acid residues and the
base-contact residues ESCKAFFR, that are unique among
all NR1J group members [35]. The NR1J group appears to
be unique to ecdysozoans but the DBD shares similarity
with the DBD of the vertebrate VDR (NR1I). Previous phy-
logenetic analysis has indicated that the the NR1I and
NR1J groups share a common receptor ancestor but
diverged between the Deuterostomes (NR1I) and the Pro-
tostomes (NR1J) [36]. Little is known of the function of
HR96 receptors in ecdysozoans. However, recent studies
revealed that DHR96 might play a role in xenobiotic stress
responses in D. melanogaster [37]. Additionally, DAF-12, a
NR1J member in C. elegans has been implicated in dia-
pause [38].

Receptor gene identification and accompanying phyloge-
netic analyses revealed that D. pulex possesses a unique
group of nuclear receptors consisting of three genes that
share sequence similarities with HR96 and to a lesser
extent VDR. These receptors have been tentatively pro-
vided the group designation NR1L and the receptor names
Dappu-HR97a, Dappu-HR97b, and Dappu-HR97g (Table
1, Figure 2). Dappu-HR97a and Dappu-HR97b are tan-
dem duplicated genes with a DBD and LBD that are 100%
and 78% identical, respectively. Phylogenetic analyses
(Figure 2) suggest that the ancestral Dappu-HR97a/b was
derived from the duplication of the HR97g gene. Both
Dappu-HR97a and Dappu-HR97b lack a conserved intron
found within Dappu-HR97g, DHR96, and Dappu-HR96.
The GT/AG sites that are required to form this intron are
absent from Dappu-HR97b, but not Dappu-HR97a. How-
ever, this potential intron is not excised from the
expressed Dappu-HR97a mRNA (Additional File 2 con-
tains the genome browser links to the Dappu-HR97
genes). At the amino acid level, Dappu-HR97a and
Dappu-HR97g are 41% identical, with a 63% and 45%
identity between their DBD and LBD respectively. Dappu-
HR97g contains the same conserved base-contact residues
(ESCKAFFR) found in all NR1J members (see above)
while Dappu-HR97a and Dappu-HR97b have one amino
acid difference. The DBD/LBD domains and full-length
proteins of each of the Dappu-HR97 receptors cluster
within the HR96/DAF12/NR0A group; however, Dappu-
HR97 comprises its own subclade resulting in its unique
group designation.

The function of the Dappu-HR97s is not known. The sim-
ilarity of its LBDs to HR96 and the NR1I subfamily sug-
gests a role as a xenobiotic or endobiotic sensor. In
Page 7 of 14
(page number not for citation purposes)



BMC Genomics 2009, 10:500 http://www.biomedcentral.com/1471-2164/10/500
contrast, the similarity of the DBD to the NR0A members
(Knirps) suggests a role in development. It is interesting to
speculate that the Dappu-HR97s may play a role in medi-
ating developmental and life-stage changes such as male
offspring and diapause egg production that are mediated
by environmental cues.

NR2 subfamily
The D. pulex genome contains a single member of the
NR2A group that has been designated Dappu-HNF4 due
to its similarity to HNF4 in H. sapiens and D. melanogaster
(Table 1). An HNF4 ortholog in C. elegans is known as

NHR49. Dappu-HNF4 is the first NR2A member to be
described in a crustacean. Dappu-HNF4 possesses the P-
box sequence DGCKG, which is characteristic of members
in this group [16]. Expression patterning and gene dele-
tion experiments in D. melanogaster indicate that HNF4 is
involved in orchestrating the development of compo-
nents of the digestive system [27,39].

RXR, a NR2B group member, is represented in the D. pulex
genome and has been designated Dappu-RXR (Table 1).
This receptor has been cloned previously from crustaceans
including D. magna [40]. RXR is ubiquitous among the
Bilateria with the notable exception of C. elegans [36]. This
gene is best recognized in insects as the partner to EcR.
Retinoids, most notably 9-cis-retinoic acid, serve as a high
affinity ligand to RXR in vertebrates [41] and molluscs
[42]. Terpenes such as juvenile hormone and methyl far-
nesoate have been proposed as ligands to insect and crus-
tacean RXR [40,43,44].

The NR2C and NR2D groups represent different group-
ings within related subclades (Figure 2). The D. pulex
genome contains one member of this clade that we have
designated Dappu-HR78. Dappu-HR78 shows greater
phylogenetic relation to the NR2D members from D. mel-
anogaster (DHR78) and C. elegans (NHR41), than to the
NR2C members from H. sapiens, TR2 and TR4. Numerous
NR2C/D orthologs have been identified in a variety of
species. In vertebrates, TR2 and TR4 have diverse func-
tions and are able to either activate or repress target genes
[45]. Recent studies suggest that TR2/4 might play a role
in sequential, gene-autonomous silencing of the e and g -
globin genes during development [46]. The function of
HR78 in arthropods is still unknown but it has been
shown to be induced by 20-hydroxyecdysone and to
inhibit the transcriptional activity of EcR in a reporter
gene assay [27,47]. Dappu-HR78 represents the first
NR2C/D member identified in a crustacean.

The D. pulex genome possesses three receptor genes from
the NR2E group (Table 1). Dappu-TLL is a homolog to
TLL of D. melanogaster and TLX of H. sapiens. Dappu-PNR
is a homolog to PNR of insects and vertebrates. Dappu-
DSF is a homolog to DSF in D. melanogaster (Table 1). The
NR2E group members are important in aspects of neural
and optic development in both insects and vertebrates
and appear to be ubiquitous among the Bilateria [34].
Two receptors, FAX-1 and CeNHR67 are found in C. ele-
gans [48]. The daphnid NR2E members possess the
unique structural features of other NR2E genes including
a very short A/B domain and a characteristic P box
sequence (CDGCSG, CDGCAG, or CNGCSG) [49-51]. A
NR2F group member that is homologous to SVP in D.
melanogaster and COUP-TF in vertebrates is represented in
the D. pulex genome as Dappu-SVP (Table 1). Dappu-SVP

Nuclear receptor RT-PCR productsFigure 3
Nuclear receptor RT-PCR products. Products were 
generated using cDNA produced from total RNA extracts of 
adult female D. pulex and nuclear receptor-specific primers 
described in Table 2. All presented amplifications were per-
formed as described in the Methods except for results in 
lanes 8-11 for which the amount of template cDNA was 2 ml 
with 40 amplification cycles. Gene products are as follows: 1 
and 13 -- molecular mass ladder, 2 -- actin, 3 -- Dappu-
HR97b, 4 -- Dappu-SVP, 5 -- Dappu-ERR, 6 -- Dappu-EcR-a, 
7 -- Dappu-FTZ-F1, 8 -- Dappu-HR3, 9 -- Dappu-HR10, 10 -
- Dappu-KNR-R1, 11 -- Dappu-HNR4, 12 -- Dappu-HR11, 
14 -- Dappu-HR4, 15 -- Dappu-HR38, 16 -- Dappu-HR39, 
17 -- Dappu-HR78, 18 -- Dappu-HR96, 19 -- Dappu-E75, 20 
-- Dappu-E78, 21 -- Dappu-RXR, 22 -- Dappu-KNR-R2, 23 -
- Dappu-HR97 g, 24 -- Dappu-HR97a.
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possesses two DBDs which is characteristic of NR2F mem-
bers based upon the conserved domain database (CDD)
[52]. This is the first report of a NR2F receptor gene in a
crustacean. COUP-TF in vertebrates and SVP in insects
have been shown to be potent transcriptional suppressors
that negatively regulate the transcriptional activity of
other nuclear receptors such as EcR, RAR, VDR, TR, and
HNF4 [53-55].

NR3 subfamily
The NR3B group is represented by a single gene in the D.
pulex genome designated Dappu-ERR (Table 1). Estrogen-
related receptors (ERRs) are ubiquitous among metazoans
including Trichoplax [56] a basal metazoan [57]. Yet, aside
from known importance in placental development, little
is known about its function [58,59]. Recent studies sug-
gest that ERR could be part of the estrogen signalling and
metabolism pathway [60].

NR4 subfamily
A single gene in the D. pulex genome represents the NR4A
group and is designated Dappu-HR38 (Table 1). This
group is ubiquitous among the Bilateria and homologs
include NGFIB, NURR1, and NOR-1 in vertebrates; HR38
in insects; NHR6 in C. elegans (Figure 2), and NR4A5 in
Schistoma mansoni [34,47,61,62]. In D. melanogaster,

DHR38 plays an important role in cuticle formation and
is induced by ecdysteroids [63]. HR38 may be a true
orphan receptor since its 3D structure revealed no ligand-
binding pocket and coactivator-binding site. These
unique features seem to be conserved in vertebrate NGFIB
members and might indicate similar biological function-
alities [64].

NR5 subfamily
D. pulex contains two genes in the NR5 subfamily, desig-
nated Dappu-FTZ-F1 (NR5A) and Dappu-HR39 (NR5B)
(Table 1). Dappu-FTZ-F1 is highly conserved among the
Bilateria [65]. In D. melanogaster, FTZ-F1 orchestrates
stage-specific responses to ecdysteroids [27,30]. Two
NR5A nuclear receptors are present in mammals, SF1 and
LRH1. SF1 is a transcription factor for genes involved in
reproductive physiology and endocrine functions [66,67],
while LRH1 regulates genes important for cholesterol
metabolism [68]. Dappu-FTZ-F1 possesses a sequence
that is highly conserved in all NR5A members called the
FTZ-F1 box (Table 3) which is located immediately after
the DBD and plays an important role in the high affinity
interactions of the receptor with DNA [69].

NR5B previously was known to exist only in insects as
HR39. The revelation that this group exists in crustaceans

Table 2: Oligonucleotide primers used in RT-PCR analyses of nuclear receptor gene products.

Primers (5'to 3')
Gene Reverse Forward

Dappu-KNR-R1 CATTCGGACCTCTCCATGTT TCCAATTCCGTCAGGATCTC
Dappu-KNR-R2 GGTTTCCATCAGCACCACTT CTCCTCACCGACAGATCCAT
Dappu-HR11 TCACGCCAATTTCAAAAACA GGTGGACAACGTGTCATCAG
Dappu-HR10 CACAAGCAGTGACGAGCAAT TCCAAGCAAAAGCGAAAAGT
Dappu-E75 GGAGAACGGATCATCTTCCA CGACAAATTCAACGGTTGTG
Dappu-E78 AGCCATTTACGACACGATCC GGTGATGCGTTCCTGGTACT
Dappu-HR3 GAACTGTTGGCCAAGACCAT CAAAAACAGCCGAAACCAAT
Dappu-EcRa CATCAACCGGCTCGTCTATT GTCGACTTTCATCTGCGACA
Dappu-EcRb AACAATGCCGGTTGAAAAAG TTTACCAAAGCGGAAAATGG
Dappu-HR96 CTTCGAACAAAGCGACAACA CCTTGCAACCACCTACCACT
Dappu-HR97a CTCGGTCCAAAACGACAACT GTCTCCGGGTCAAATACGAG
Dappu-HR97b TCTCAAGCTGGACAACATCG GGAGCGTAGAAGGATTGCTG
Dappu-HR97 g CAAGATCTGTGGGGTGTGTG GTGTTGATTCGCCATTCCTT
Dappu-HNF4 GGATCCGCTACCAGATTCAA TCCAGCAAGATCAACACAGC
Dappu-RXR CGTTCAAGAGGAGAGGCAAC GTTCGTCGGCGTAATTTGTT
Dappu-HR78 ACGTCTCGTTCCAGCTGACT AATCCATGCGGAGGATGTAG
Dappu-TLL GAGGAGAGCTGGAGGGAACT GAAGTTGCTCCTCCTTGACG
Dappu-PNR AGTATCCCAACGGAGTGACG TGAGATGGAAGGAAGGGATG
Dappu-DSF CTATCTGGCCCAGTGGTCAT GCCGGAATCTTCTCTCTGTG
Dappu-SVP CCAGGAGCAAGTGGAGAAAC TGAAACTGGAACCGGATAGG
Dappu-ERR TCCAACAACGTCAATCCTCA GACTCGGACGTCACAGTTGA
Dappu-HR38 TCCGGTAGTCCACAACAACA GGCGAAAAACTGGTGAACAT
Dappu-FTZ-F1 CTCCTACACCCCAACAGCAT CGACAGCGACAAAAGATCAA
Dappu-HR39 AGCTGCAAGGGATTCTTCAA CTGTTCCAGGGTGATGGACT
Dappu-HR4 TCCTCCTCCTTTGATGATGG CGGCGGACTTTTATTGTTGT
Dappu-Actin CCAGCCTTCATTCTTGGGTA GGACCGGACTCATCGTACTC
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suggests that this group emerged in arthropod evolution
prior to the divergence of insects and crustaceans. The
function of the NR5B gene product in arthropods is
unknown. Sequence similarities between FTZ-F1 and
HR39 suggest that NR5B in arthropods is the result of a
duplication and subsequent divergence of the NR5A
receptor [70].

NR6 subfamily
The D. pulex genome contains a nuclear receptor gene
bearing significant homology to the NR6A members
DHR4 in D. melanogaster, GCNF in H. sapiens, and NHR91
in C. elegans. This is the first report of an NR6A group
member in a crustacean. Expression patterns of DHR4 in
D. melanogaster, suggest that this receptor is regulated by
ecdysteroids and may play a role in the molting process
[27,30]. DHR4 can act as a repressor or an inducer while
coordinating growth and maturation in D. melanogaster
[71]. In vertebrates GCNF contributes to the regulation of
embryonic development, reproduction, and neurogenesis
[72].

Conclusion
Thus far, 25 nuclear receptor genes have been identified in
D. pulex. Eighteen receptors are present as a single copy
gene in the D. pulex genome. One receptor (Dappu-HR97)
contains three paralogs based upon phylogenetic analysis,
of which two are in tandem repeat. Two receptor genes are
present with two paralogs (Dappu-KNR-R1/R2, Dappu-
EcRa/b). All of the nuclear receptor groups that are present
in D. melanogaster are also represented in D. pulex. This
observation indicates that these receptor groups emerged
prior to the divergence of the Insecta and Crustacea.
(Insects and crustaceans diverged over 500 myr ago [73]).
This conclusion is substantiated by the presence of these
receptor groups in either of the non-arthropod species H.
sapiens or C. elegans (Table 1). At least two novel receptor
groups were discovered in the D. pulex genome designated
NR1L (receptors Dappu-HR97a, Dappu-HR97b, and
Dappu-HR97g), NR1M (Dappu-HR10), and potentially
NR1N (Dappu-HR11), which may be have orthologs in
the sea urchin and also shows significant similarity to
NR1A/B group members using some distance methods.

The NR1L and NR1M groups were not represented in any
of the other genomes used in the phylogenetic compari-
sons and may represent receptor groups that emerged
among the crustaceans subsequent to divergence from the
insects.

While D. pulex possesses two members of the NR0A
group, KNR-R1 and KNR-R2, D. melanogaster contains
three distinct members, KNRL, KNI and EGON. The
absence of KNI in D. pulex might indicate that this NR0A
group member is a product of gene duplication that
occurred in insects after the divergence of insects and crus-
taceans or was lost in D. pulex and potentially other crus-
taceans.

Nuclear receptors are ancient proteins that have ubiqui-
tous important functions in regulating many aspects of
metazoan physiology. Biological functions have been
established and ligands identified for some of the recep-
tors. However, the function of many of these family mem-
bers remains elusive. Daphnids have a long history of use
as a model organism in studies of ecology, toxicology, and
evolutionary biology. The elucidation of the D. pulex
genome creates an invaluable resource to study the func-
tional role of specific genes in the well-characterized phys-
iology of this organism. The identification of the nuclear
receptor genes in D. pulex was the first step to gain more
insight into the evolutionary and structural aspects of
these important transcription factors. The foundation is
now established to link specific nuclear receptors with
physiological function.

Methods
Identification of nuclear receptors in D. pulex
Analysis with the Basic Local Alignment Search Tool
(BLAST) [74] was performed using the highly conserved
DNA-binding domain sequence of Daphnia magna RXR
[40] against assembled D. pulex transcripts from the JGI
Genome Portal http://www.jgi.doe.gov/Daphnia. All
sequences containing a DNA-binding domain were
aligned in Vector NTI (Invitrogen), assembled into larger
contigs, and analyzed for redundancy. Open reading
frames were determined by translating all DNA sequences
into protein sequences as described below. A BLAST
search was conducted with the fully assembled transcripts
against the NCBI database for further identification and
against the newly constructed wFleaBase database http://
wFleaBase.org to identify each putative nuclear receptor
(Table 1). In addition all H. sapiens and D. melanogaster
receptors were used in a BLAST search against the FleaBase
database in an effort to identify any nuclear receptors in
D. pulex that escaped detection in the initial search (Addi-
tional File 1). All nuclear receptor protein sequences were
run through the NCBI program Simple Modular Architec-
ture Research Tool (SMART) for the identification of the
DBD and LBD [75].

Table 3: Amino acid sequence of the FTZ-F1 box of various 
NR5A group members.

Gene FTZ-F1 box

Dappu-FTZ-F1 AVRADRMRGGRNKFGPMYKRDRARKLQVMR
DmFTZ-F1 AVRADRMRGGRNKFGPMYKRDRARKLQVMR
HsSF1 AVRADRMRGGRNKFGFMYKRDRALKQQKKA
HsLRH1 AVRADRMRGGRNKFGFMYKRDRALKQQKKA
CeNHR25 AVRADRMRGGRNKFGSFYKKDRAHRMQRNA

Bolded amino acids indicate differences from Dappu-FTZ-F1. Amino 
acid sequences were derived from [82].
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The nuclear receptors were manually curated to identify
open reading frames and protein sequences (Additional
File 2) with the help of filtered gene models developed by
The Joint Genome Institute (JGI) http://www.jgi.doe.gov/
Daphnia/ and wFleaBase http://wfleabase.org. Manual
curations were based on the v1.1 gene builds, compari-
sons to other genomes such as human, mouse, Drosophila,
zebrafish (Danio rerio), Xenopus, and bovine (Bos taurus)
available on the Daphnia genome portal, knowledge of
intron-exon borders in related genes, BLAST searches, and
DNA sequences of PCR products [76,77].

Nomenclature for the nuclear receptors of D. pulex was
based on the sequence similarity and phylogenetic analy-
sis of the full length sequence to that of nuclear receptors
present in H. sapiens and D. melanogaster. The name of the
closest ortholog either from vertebrate or insect was cho-
sen for D. pulex, except for Dappu-HR10 and Dappu-
HR11, which were named based on their location within
the NR1 family. Based on phylogenetic analysis, Dappu-
HR97a, Dappu-HR97b, and Dappu-HR97g were found to
comprise a distinct group designated NR1L. The letters a,
b, or g after each HR97 receptor name refers to the Greek
letters alpha, beta, and gamma.

Sequence alignments and phylogenetic analysis
The DNA and ligand binding domains of each receptor
were isolated using the conserved domain database
(CDD) that is part of BLASTP [52]. The DBDs and LBDs of
each receptor were combined and then aligned. Receptors
from D. pulex were compared to nuclear receptors from
human (H. sapiens), fruit fly (D. melanogaster), and nema-
tode (C. elegans) using publicly available sequences from
GenBank. The amino acid sequences of each D. pulex
receptor used in the phylogenetic analysis is available in
Additional File 2, and the NCBI accession numbers of
each nuclear receptor used in our analyses are available in
Additional File 1. To construct phylogenetic trees, all of
the D. pulex, H. sapiens, D. melanogaster, and C. elegans
amino acid sequences were aligned using default parame-
ters in ClustalX [78]. Trees were constructed using Baye-
sian Inference, a probabilistic model-based method of
phylogeny reconstruction that is similar to maximum
likelihood but which has substantially reduced computa-
tion time. Bayesian trees were constructed with the soft-
ware MrBayes version 3.1.2 [79] on the freely available
computing cluster Bioportal http://www.bioportal.uio.no
run by the University of Oslo. Phylogenetic trees were
constructed using the "mixed-model" approach in which
the Markov chain Monte Carlo sampler explores nine dif-
ferent fixed-rate amino acid substitution models imple-
mented in MrBayes. We used 4 chains with runs of 5
million generations with chains sampled every 100 gener-
ations and with a burnin of 5000 trees; the WAG [80]

model was selected as the best fitting substitution model
by MrBayes. Phylogenies were midpoint rooted in which
the root is placed halfway between the two most divergent
sequences due to the difficulty in choosing an outgroup
for such a diverse and ancient gene family and we have
successfully used this approach previously [76].

Maximum parsimony and neighbor-joining (NJ) distance
parameters were used to provide additional phylogenetic
support for classification, naming, and the phylogenetic
relationships observed between D. pulex and the other
specie's nuclear receptors. Unrooted parsimony was con-
structed using PAUP version 4.0b10 [81] with heuristic
searches, tree-bisection-reconnection, topological con-
straints not enfoced, and multiple tree option in effect
with an initial maximum tree setting at 10,000. Branch
support was measured by bootstrapping with 500 repli-
cates. Distance parameters were also measured using
PAUP 4.0b10 by NJ with default characteristics (mean
character difference and among site rate variation).
Branch support was measured by bootstrap analysis with
1000 replicates.

PCR amplification of D. pulex nuclear receptors
Total RNA was extracted from 40 adult female D. pulex
using the SV Total RNA Isolation System (Promega). The
isolated total RNA was converted to cDNA with the
Promega ImProm-II Reverse Transcription System using
oligo (dT) primers. One μl of undiluted cDNA was used as
template for PCR amplification using the GoTAQ system
(Promega) under the following conditions: 94°C-two
minutes, thirty cycles at 94°C-30 seconds, 55°C- one
minute, 72°C- one minute, final extension at 72°C for ten
minutes. All primers were designed with Primer3 software
and were based on the predicted cDNA sequences from
FleaBase. The sequences of all primers used in this study
are described in Table 2. Amplification products were iso-
lated by electrophoresis using a 2% agarose gel, visualized
with ethidium bromide, excised from the gels, and recov-
ered using the WizardTM purification system (Promega).
Nucleotide sequences of the amplification products were
determined (SeqWright Inc., Houston, TX) (Additional
File 5).
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