
BioMed CentralBMC Genomics

ss
Open AcceResearch article
Comparative analysis of catfish BAC end sequences with the 
zebrafish genome
Hong Liu†1,2, Yanliang Jiang†1,3, Shaolin Wang1, Parichart Ninwichian1, 
Benjaporn Somridhivej1, Peng Xu1, Jason Abernathy1, Huseyin Kucuktas1 and 
Zhanjiang Liu*1

Address: 1The Fish Molecular Genetics and Biotechnology Laboratory, Department of Fisheries and Allied Aquacultures and Program of Cell and 
Molecular Biosciences, Aquatic Genomics Unit, Auburn University, Auburn, AL 36849, USA, 2College of Fisheries, Huazhong Agricultural 
University, Wuhan, 430070, China and 3Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, 
College of Life Sciences, Hunan Normal University, Changsha, 410081, China

Email: Hong Liu - lzh0003@auburn.edu; Yanliang Jiang - yzj0001@auburn.edu; Shaolin Wang - wangsha@auburn.edu; 
Parichart Ninwichian - ninwipa@auburn.edu; Benjaporn Somridhivej - arraor@yahoo.com; Peng Xu - xupeng77@gmail.com; 
Jason Abernathy - abernjw@auburn.edu; Huseyin Kucuktas - kucukhu@auburn.edu; Zhanjiang Liu* - zliu@acesag.auburn.edu

* Corresponding author    †Equal contributors

Abstract
Background: Comparative mapping is a powerful tool to transfer genomic information from
sequenced genomes to closely related species for which whole genome sequence data are not yet
available. However, such an approach is still very limited in catfish, the most important aquaculture
species in the United States. This project was initiated to generate additional BAC end sequences
and demonstrate their applications in comparative mapping in catfish.

Results: We reported the generation of 43,000 BAC end sequences and their applications for
comparative genome analysis in catfish. Using these and the additional 20,000 existing BAC end
sequences as a resource along with linkage mapping and existing physical map, conserved syntenic
regions were identified between the catfish and zebrafish genomes. A total of 10,943 catfish BAC
end sequences (17.3%) had significant BLAST hits to the zebrafish genome (cutoff value ≤ e-5), of
which 3,221 were unique gene hits, providing a platform for comparative mapping based on
locations of these genes in catfish and zebrafish. Genetic linkage mapping of microsatellites
associated with contigs allowed identification of large conserved genomic segments and
construction of super scaffolds.

Conclusion: BAC end sequences and their associated polymorphic markers are great resources
for comparative genome analysis in catfish. Highly conserved chromosomal regions were identified
to exist between catfish and zebrafish. However, it appears that the level of conservation at local
genomic regions are high while a high level of chromosomal shuffling and rearrangements exist
between catfish and zebrafish genomes. Orthologous regions established through comparative
analysis should facilitate both structural and functional genome analysis in catfish.
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Background
Comparative mapping is a powerful tool to transfer
genomic information from sequenced genomes to closely
related species for which whole genome sequence data are
not yet available. Such an approach was initially demon-
strated by Fujiyama et al. [1] for the construction of the
human-chimpanzee comparative map. In these closely
related primate species, approximately 98% of chimpan-
zee BAC end sequences (BES) had significant BLAST hits
to the human genome sequence allowing putative ortho-
logues to be identified [1]. A similar approach was used
for the construction of the human-mouse comparative
map [2]. Subsequently, this approach was extensively
used in mammals including construction of the human-
cattle, the human-horse, and the human-porcine compar-
ative maps [3-5]. Most recently, this approach was utilized
one step further for the construction of the comparative
genome contig (CGC)-based physical map of the sheep
genome [6], where CGC is established based on anchor-
age of the sheep BES onto the genome sequences of dog,
cow, and human. These successes depended on high per-
centage of BLAST hits and/or high levels of genome col-
linearity.

Five teleost fish genomes have been fully sequenced http:/
/www.ensembl.org/index.html including zebrafish
(Danio rerio, from the order of Cypriniformes), Japanese
pufferfish (Fugu rubripes, from the order of Tetraodon-
tiformes), green spotted pufferfish (Tetraodon nigroviridis,
from the order of Tetraodontiformes), medaka (Oryzias
latipes, from the order of Beloniformes), and three-spined
stickleback (Gasterosteus aculeatus, from the order of Gas-
terosteiformes), while whole genome sequencing is also
underway for tilapia http://www.cichidgenome.org; http/
www.broad.mit.edu/science/projects/mammals-mod els/
vertebrates-invertebrates/tilapia/tilapia-genome-sequenc-
ing-project. The availability of these whole genome
sequences lends great opportunities for comparative
genome analysis. Recently, major genomic resources have
been developed from a number of fish species such as
Atlantic salmon (Salmo salar) [7-9], rainbow trout (Onco-
rhynchus mykiss) [10,11], tilapia [12,13], gilthead sea
bream (Sparus auratus) [14-17], European sea bass (Dicen-
trarchus labrax) [18,19], and channel catfish (Ictalurus
punctatus) (for a review, see [20,21]).

Catfish is the major aquaculture species in the United
States. It is one of the six species included in the U.S.
National Animal Genome Project NRSP-8. A number of
genome resources have been developed in catfish includ-
ing a large number of molecular markers [22-25], genetic
linkage maps [26-28], several hundred thousands of ESTs
([29-33]; Z. Liu, unpublished data), microarray platforms
[34-38], BAC libraries [39,40], and BAC-based physical
maps [41,42]. To enable BAC end sequence-based com-

parative genome analysis, we previously reported genera-
tion of 20,366 BES in catfish [25]. In spite of the great
value of those BES for the characterization of genome
repeat structures [43] and for the identification of micros-
atellite markers, our previous comparative genome analy-
sis using BES revealed very limited conservation between
the catfish and zebrafish genomes. Of the 141 mate-
paired BES with genes on both ends of the BAC inserts,
only 34 (24.1%) were found in nearby genomic locations
in the zebrafish genome, suggesting high levels of chro-
mosomal rearrangements [40]. Such findings were in
strong contrast to the situations found between medaka-
sea bream, Tetraodon-sea bream, medaka-stickleback,
Tetraodon-medaka, stickleback-sea bream, Tetraodon-stick-
leback genome comparisons where almost complete
genome collinearities were found [44]. We speculated that
our earlier inability to discover large extent of genome col-
linearity between catfish and zebrafish could be a result of
the low numbers of BES and the lack of a physical map.
Therefore, in this study, we extended our efforts in BAC
end sequencing and generated additional 43,021 BES,
bringing the total to 63,387 (25,676 mate-paired). Using
these catfish BES and its BAC contig-based physical map
[42], genetic linkage mapping of BAC end-anchored mic-
rosatellites, and the genome sequence of zebrafish, here
we conducted extensive comparative genome analysis. We
report the identification of conserved syntenies and dem-
onstrate the construction of super scaffolds of contigs by
genetic linkage mapping of BAC end-associated microsat-
ellites.

Results and Discussion
BAC end sequencing
As shown in Table 1, a total of 42,240 BAC inserts (6.13×
clone-coverage of the channel catfish genome) were
sequenced from both ends, resulting in 63,387 BES ≥ 200
bp in length (75% overall success rate), including 20,366
BES we previously reported [25]. Mate-paired BES were
produced from 25,676 BAC clones, while only a single
BES was obtained from 12,035 clones. The BES were of
high quality as the Q20 length ranged from 200 to 810 bp,
with an average Q20 read length of 596 bp. All these BES
have been deposited into the GenBank GSS database with
consecutive accession numbers of [GenBank:FI857756-

Table 1: A summary of BAC end sequences

Category Numbers

BAC sequence reactions 84,480
Total clean sequences 63,387 (75% success)
T7 sequences 32,074
SP6 sequences 31,313
Pair BAC end sequences 25,676
Total length sequenced 37,784,877 bp
Average length 596 bp

http://www.ensembl.org/index.html
http://www.ensembl.org/index.html
http://www.cichidgenome.org
http://www.broad.mit.edu/science/projects/mammals-models/vertebrates-invertebrates/tilapia/tilapia-genome-sequencing-project
http://www.broad.mit.edu/science/projects/mammals-models/vertebrates-invertebrates/tilapia/tilapia-genome-sequencing-project
http://www.broad.mit.edu/science/projects/mammals-models/vertebrates-invertebrates/tilapia/tilapia-genome-sequencing-project
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=FI857756
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FI900776]. A total of 37,784,877 bp of genomic
sequences was generated from this study, representing
approximately 4% of the catfish genome. Analysis using
the 37,784,877 bp BES resulted in 11.91% of base pairs
masked using the Danio repeat database, with the most
abundant type of repeat being the DNA transposons. We
previously reported the assessment of repetitive elements
in the catfish genome and the additional 43,021 BES gen-
erated in this study confirmed our previous findings in
general [25]. These BES [GenBank:DX083364-
DX103729] were also used for comparative genome anal-
ysis in this study.

In silico analysis of the BAC-associated catfish genes on 
the zebrafish genome
TBLASTX searches using the 63,387 catfish BES against the
ENSEMBL zebrafish cDNA database with chromosome
information resulted in 5,066 significant hits (Table 2).
Of the 5,066 significant hits, 2,197 unique zebrafish genes
were hit by a single BES while 1,024 unique zebrafish
genes were hit by two or more catfish BES, making a total
of 3,221 unique zebrafish genes with significant hits from

the catfish BES. The 3,221 genes cover all 25 zebrafish
chromosomes, with the largest number of gene hits being
located on chromosome 5 (224 significant hits), followed
by chromosome 7 (191 significant hits), chromosome 20
(171 significant hits), chromosome 6 (151 significant
hits) and chromosome 19 (134 significant hits); and the
smallest number of gene hits on chromosome 24 with 78
hits (Table 2). The number of gene hits on various chro-
mosomes was approximately proportional to the sizes of
the zebrafish chromosomes with some exceptions. When
the size of chromosomes was taken into consideration,
chromosome 25 had the largest number of gene hits with
3.5 hits per Mb or one hit per 286 kb on average, followed
by chromosome 5, 4, 20, 19, and 22 with 3.2, 3.1, 3.0, 2.9,
and 2.9 hits per Mb, respectively (Table 2).

One particular finding of these BLAST searches is the
observation of many highly repetitive genes. Out of 3,221
unique genes, 1,024 genes had hits from two or more BES.
A single gene identity had hits from as many as 31 BES. A
total of 14 genes had hits from at least 10 BES each (Table
3); an additional 139 genes had hits from 4-9 BES each;

Table 2: Distribution of comparatively anchored BAC clones using protein encoding gene sequences only.

Zebrafish 
chromosome

Chromosome 
size (Mb)

No. of 
protein 

encoding 
genes*

No. of 
tBLASTx 

hits

Hits to 
unique 
genes

Unique 
gene hits 
per Mb

No. of 
contigs with 
single gene 

hits

No. of 
contigs with 

multiple 
gene hits

No. 
putative 
micro-

syntenies

1 56.2 818 205 123 1.83 75 17 13
2 54.4 875 194 133 2.13 85 15 13
3 62.9 975 196 127 1.75 72 18 13
4 42.6 743 221 130 2.77 78 16 9
5 70.4 1,173 340 224 2.74 103 35 21
6 59.2 818 232 151 2.31 85 22 18
7 70.3 990 283 191 2.33 80 34 25
8 56.5 864 196 128 1.93 65 22 14
9 51.5 700 212 133 2.17 61 21 16
10 42.4 670 150 87 1.72 51 12 9
11 44.6 627 161 121 2.26 67 16 10
12 47.5 636 177 114 2.21 72 14 7
13 53.5 744 200 113 1.96 67 21 14
14 56.5 701 197 113 1.77 84 11 7
15 46.6 688 177 125 2.25 68 14 8
16 53.1 773 181 124 2.02 77 14 10
17 52.3 715 180 115 1.99 62 19 13
18 49.3 749 193 121 2.23 47 22 21
19 46.2 780 233 134 2.58 86 21 16
20 56.5 1,053 277 171 2.48 76 30 19
21 46.1 721 163 117 2.28 63 14 10
22 39.0 959 178 113 2.59 50 19 16
23 46.4 669 204 121 2.24 68 18 13
24 40.3 513 117 78 1.71 47 8 7
25 32.9 597 199 114 3.04 65 19 14

Total/
Average

1,277.2 19,551 5,066 3,221 2.21 1,754 472 336

*: Annotated genes only from ENSEMBL.
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230 genes had hits from 3 BES each, and 641 genes had
hits from 2 BES each (Table 3). Some of the genes with
hits from multiple BES may represent a whole array of
related genes with similar functional domains. For
instance, 18 BES hit NOD3-like gene of channel catfish,
which was just recently characterized; NOD3 gene existed
as a single copy gene in the catfish genome [45], and
apparently the multiple BES contained many related
genes harboring domains present within the NOD3 gene.
Theoretically, a fraction of genes should have hits by more
than one BES, simply because of the genome coverage of
the BAC clones. We believe that overlapping (including
identical) BAC clones does account for some of the
observed hits of genes by more than one BES (data not

shown), especially for those with 2-3 BES hits. However,
the mathematical chances do not support multiple BES
hits of a single gene unless the gene itself is repetitive in
the catfish genome. Additional research is warranted to
fully understand the nature of these genes/sequences in
the catfish genome, but clearly many of these represent
classes of repetitive gene families such as DNA polymerase
gene that had hits from 31 BES.

Establishing microsyntenies
Among the teleost genomes with high sequence coverage,
zebrafish is the most closely related species to catfish [46].
Our initial BLAST searches of the catfish BES against the
genome of the T. nigroviridis generated many fewer signif-

Table 3: Distribution of genes with hits from multiple BAC end sequences, with details provided for genes with 10 or more hits from 
BAC end sequences

No. of Genes Putative Identities No of BES hits Presence in Zebrafish genome Potential explanation

1 Novel protein similar to DNA 
polymerases

31 28 Repetitive elements related to 
retroelements

1 Methionine aminopeptidase 1 22 2 Repetitive elements or multigene 
family

1 NOD3 protein-like 18 63 Common domains shared by many 
related proteins

1 Similar to tudor domain containing 
7, hypothetical protein LOC393661

17 89 Repetitive elements or repetitive 
genes

1 Similar to porf2 16 81 Repetitive elements or multigene 
family

1 Similar to general transcription 
factor II-I repeat domain-containing 
protein 2A

16 82 Repetitive elements or multigene 
family

1 Similar to novel G protein-coupled 
receptor

13 92 Repetitive elements or multigene 
family

1 Similar to serine/threonine-protein 
kinase pim-3;

11 85 Repetitive elements or multigene 
family

1 Similar to novel protein from Danio 
rerio;

11 85 Repetitive elements or multigene 
family

1 Similar to Dynein heavy chain 6 11 20 Repetitive elements or multigene 
family

1 ORF2 [Mus musculus domesticus] 10 91 Repetitive elements or multigene 
family

1 PREDICTED: tubulin, alpha, 
ubiquitous isoform 8 [Macaca 
mulatta]

10 16 Repetitive elements or multigene 
family

1 PREDICTED: similar to vacuolar 
protein sorting 52 [Danio rerio]

10 69 Repetitive elements or multigene 
family

1 GF20795 [Drosophila ananassae] 10 4 Repetitive elements or multigene 
family

14 Subtotal 
68 5-9 Repetitive elements or multigene 

family
71 4 Repetitive elements or multigene 

family
139 Subtotal
230 3 Potentially duplicated gene 

candidates
641 2 Potentially duplicated gene 

candidates
1024 Total
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icant hits compared to those against the zebrafish
genome. Therefore, we concentrated our comparative
analysis efforts with the zebrafish genome in this study.

Conserved syntenies are most often established by com-
paring genome sequences of related species. However, the
whole genome sequence is not yet available from catfish.
In the absence of the whole genome sequence, we
attempted to establish microsyntenies based on physical
linkage of gene sequences. With the genome resources
available in catfish, we have taken three approaches. First,
if the genes were identified from both ends of a single BAC
clone, they are physically linked with a distance of the
BAC clone insert size. If the same two genes are found
linked in the zebrafish genome in the same genome
neighborhood, a microsynteny can then be established.
These genes from mate-paired BES are physically linked
with the average distances between them being the aver-
age insert size of the catfish BAC library, i.e., 161 kb. From
the 63,387 BES, a total of 25,676 mate-paired BES were
identified. Of these, 760 mate-paired BES had significant
BLASTN hits against the zebrafish genome sequence.
However, only 194 of the 760 significant hit pairs were on
the same zebrafish chromosome, allowing syntenic com-
parison. Further tBLASTX searches against the ENSEMBL
zebrafish cDNA database allowed identification of 95
mate-paired BES with genes on both sides. The genomic
locations of these 95 mate-paired genes were determined
from the zebrafish genome sequence. Fifty pairs were
found to be present in neighboring genomic locations
within one million base pairs, while the other 45 were
present in more distant locations (> 1 Mb) on the same
chromosomes. The vast majority of the 50 mate-paired
genes were found to be within 500 kb on the zebrafish
genome sequence; only 2 of the 50 pairs had a distance of
500-920 kb (Table 4), suggesting conserved syntenies of
the involved genes.

We previously reported the relatively high levels of local
region conservation. For instance, many genes within the
bordering mate-paired genes were well conserved among
catfish, zebrafish, and Tetraodon, as determined by direct
sequencing of the catfish BAC DNA using primers pre-
dicted from known genes in zebrafish or Tetraodon [40].
We did not extend this part of the study, but all known
genomic information suggested high levels of local
genome conservation.

In addition to the 50 microsyntenies, we attempted to
determine if significant gene hits in the same catfish BAC
contigs also fall on the same chromosome locations com-
parable to the contig sizes. As shown in Table 2, of the
contigs with gene hits, 1,754 contigs had only one gene
hit, while 472 contigs had two or more gene hits within
each contig. Because the genes in the same contig are

physically linked, their linkage in a comparable distance
in the zebrafish genome would indicate a conserved syn-
teny. As shown in Figure 1, 2, 3, 4 &5, the vast majority of
gene hits within the same contigs were found to be located
on the same zebrafish chromosomes with comparable
distances as estimated from the catfish BAC contigs. Using
such an approach, a total of 336 conserved microsynte-
nies was identified (Table 2). Presence of multiple gene
hits within large BAC contigs would allow identification
of extended large conserved syntenic regions. Many of the
microsyntenies were conserved with extended genomic
distance to span over several million base pairs (Figure 1,
2, 3, 4 &5, for additional details, see Additional file 1). For
instance, large conserved syntenies were identified from
chromosomes 12, 13, 14, 22, 23, 24, and 25 (Figure 1, 2,
3, 4 &5). In spite of the identification of some relatively
large conserved syntenic regions, the vast majority of the
identified syntenies were microsyntenies. Such highly seg-
mented microsyntenies are not very useful for genome-
wide comparative analysis. However, if scaffolds can be
established by determining the relationships among the
microsyntenies, large-scale genome comparison should
be possible. We, therefore, used two zebrafish chromo-
somes as the query to demonstrate if super scaffolds can
be established. Chromosome 7, one of the chromosomes
with the highest number of significant gene hits, and
chromosome 13, one of the chromosomes with a large
number of contigs having two or more hits (indicative of
high level of syntenic conservation), were chosen for fur-
ther analysis using genetic linkage mapping.

Genetic mapping of BAC end-anchored microsatellites
In order to extend the scope of conserved microsyntenies,
microsyntenies identified on zebrafish chromosomes 7
and 13 were genetically mapped to determine their chro-
mosomal locations in the catfish genome. There were 373
significant BLASTN hits to zebrafish chromosome 13
involving 178 unique catfish BAC contigs; and 505 signif-
icant hits to zebrafish chromosome 7 involving 314
unique catfish BAC contigs. We, therefore, first identified
microsatellites from these involved catfish BAC contigs,
and then mapped them to the linkage groups when the
microsatellites were polymorphic in the resource family. A
total of 548 pairs of microsatellite primers were tested, of
which 296 from 188 contigs (the details of the polymor-
phic markers are shown in the Additional file 2) were pol-
ymorphic in the resource family. Further analysis using
JoinMap 4.0 allowed mapping of 290 microsatellite mark-
ers, of which 161 microsatellites were from BES with sig-
nificant similarity to zebrafish chromosome 7, and 129
microsatellites were from BES with significant similarity
to zebrafish chromosome 13.

Mapping of microsatellites from contigs with hits to
zebrafish chromosome 13 allowed identification of a
Page 5 of 17
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highly conserved chromosome between catfish and
zebrafish. As shown in Figure 6, of the 129 microsatellites
from BES with high similarities to the zebrafish chromo-
some 13, 57 microsatellites from 43 contigs were mapped

into a single linkage group, spanning approximately 90
centi-Morgans, suggesting the conservation of a large seg-
ment of this chromosome. However, the entire chromo-
some is not conserved. The 129 microsatellites were

Table 4: Summary of 50 conserved syntenies identified by comparison of 95 mate-paired genes of channel catfish with genomic 
locations of those on the zebrafish draft genome sequence.

Catfish
BAC ID

SP6 hits T7 hits zebrafish Chr Chr location (Mb) Distance
(bp)

035I16 [GenBank:NP_001038735] [GenBank:XP_689146] 2 38.61 18,048
063L16 [GenBank:NP_001012377] [GenBank:NP_001092217] 2 19.25 48,679
026B05 [GenBank:XP_001921249] [GenBank:CAI20867] 3 31.82 4,418
098D05 [GenBank:CAI11873] [GenBank:NP_001038462] 4 1.82 301,470
007M06 [GenBank:XP_001333162] [GenBank:NP_571105] 5 5.46 379,579
028M04 [GenBank:XP_687685] [GenBank:NP_958867] 5 22.23 133,063
074L07 [GenBank:XP_001334912] [GenBank:XP_687570] 5 15.69 290,598
035N11 [GenBank:NP_001032187] [GenBank:NP_958882] 6 18.25 231,524
040J24 [GenBank:XP_686613] [GenBank:NP_991309] 6 7.37 443,524
077F04 [GenBank:NP_001034906] [GenBank:NP_001038813] 6 11.42 484,877
032F20 [GenBank:XP_691291] [GenBank:NP_001075159] 7 28.40 244,425
062B16 [GenBank:NP_001008651] [GenBank:NP_001017550] 7 15.05 222,416
075K10 [GenBank:NP_956505] [GenBank:NP_001070187] 7 13.34 268,455
103I21 [GenBank:NP_998033] [GenBank:NP_001159825] 7 22.34 293,845
047N13 [GenBank:XP_699919] [GenBank:XP_699627] 8 23.84 203,260
057N22 [GenBank:XP_001923800] [GenBank:NP_997066] 9 36.69 163,677
076H22 [GenBank:NP_001004563] [GenBank:XP_001921910] 9 13.84 313,352
105N24 [GenBank:NP_001122018] [GenBank:NP_997992.2] 9 27.37 268,271
056A23 [GenBank:NP_998295] [GenBank:NP_001103164] 10 7.50 486,745
068C21 [GenBank:NP_001019272] [GenBank:XP_001920077] 10 17.72 104,067
093K02 [GenBank:XP_001344325] [GenBank:XP_001919728] 10 41.67 152,479
096A14 [GenBank:NP_001120805] [GenBank:NP_997775] 11 10.02 980,276
010B15 [GenBank:NP_956715] [GenBank:NP_956756] 12 25.17 111,625
041B24 [GenBank:NP_001002607] [GenBank:XP_693784] 12 13.59 398,886
109K22 [GenBank:XP_001920588] [GenBank:XP_001920550] 12 25.55 449,096
018H11 [GenBank:NP_956915] [GenBank:NP_997743] 13 23.23 293,181
026C08 [GenBank:NP_001119869] [GenBank:NP_956611] 13 23.50 201,663
027E09 [GenBank:XP_001922173] [GenBank:XP_001921791] 14 0.22 574,761
103F19 [GenBank:NP_571477] [GenBank:XP_001919973] 14 22.90 256,143
022D09 [GenBank:NP_001096112] [GenBank:XP_684421] 15 29.14 418,219
059B20 [GenBank:XP_682817] [GenBank:XP_691794] 15 27.80 94,396
077H08 [GenBank:XP_001920240] [GenBank:NP_001070609] 15 6.05 339,215
004O03 [GenBank:NP_001020707] [GenBank:NP_001020642] 16 10.40 149,618
075M09 [GenBank:NP_001107266] [GenBank:NP_001082899] 16 8.30 120,355
104I08 [GenBank:NP_571871] [GenBank:NP_694503] 16 27.17 214,517
013P16 [GenBank:NP_001076304] [GenBank:NP_001038173] 18 18.65 366,849
042J20 [GenBank:NP_001037796] [GenBank:NP_001038370] 18 32.85 223,781
021L13 [GenBank:NP_001038343] [GenBank:XP_688911] 19 17.40 286,019
052N18 [GenBank:XP_001921158] [GenBank:NP_956134] 19 7.59 345,553
056A09 [GenBank:NP_001018463] [GenBank:NP_001038416] 19 13.46 122,217
065M02 [GenBank:XP_001922809] [GenBank:NP_001038686] 19 15.37 430,325
080O21 [GenBank:NP_956277] [GenBank:NP_571262] 19 17.06 389,643
086C16 [GenBank:XP_001340912] [GenBank:NP_001038562] 19 6.00 364,590
010H22 [GenBank:NP_998602] [GenBank:XP_001920851] 21 2.24 240,019
034I14 [GenBank:NP_001038838] [GenBank:NP_956334] 21 20.16 306,102
081J10 [GenBank:NP_001002411] [GenBank:NP_001073439] 21 22.12 277,818
099H22 [GenBank:NP_001076277] [GenBank:XP_699221] 22 7.03 115,754
053P11 [GenBank:NP_001002173] [GenBank:NP_001035137] 23 30.73 197,703
068O10 [GenBank:XP_001339131] [GenBank:XP_689922] 23 18.01 332,973
105H10 [GenBank:NP_001103636] [GenBank:NP_001098596] 23 33.36 274,318
Average 278,648
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Identification of microsyntenies through comparative sequence analysis (chr 1 through chr 5)Figure 1
Identification of microsyntenies through comparative sequence analysis (chr 1 through chr 5). tBLASTX searches 
were conducted using BAC contig-associated BAC end sequences as queries against the zebrafish genome sequence. The puta-
tive conserved microsyntenies are presented along the 25 zebrafish chromosomes (chr 1 through chr 25). The position of the 
zebrafish sequence is shown on the left of each chromosome bars in million base pairs. The conserved microsyntenies are indi-
cated on the right side of the chromosome bars, with the numbers representing the contig numbers of the BAC assembly of 
the catfish physical map [41]. Circles represent short syntenic regions and short vertical lines represent relatively longer con-
served syntenic regions proportional to the length of the bar with a number in parenthesis representing the number of con-
served sequences within the microsyntenies. The microsyntenies designated with asterisks (*) are those with duplicated 
conservation of the microsyntenies that are color-coded to facilitate the visualization of the duplicated syntenic regions along 
the chromosome. Duplicated syntenic regions refer to a conserved genomic segment between the catfish genome and the 
zebrafish genome that is duplicated in the zebrafish genome such that identical or nearly identical significant hits are generated 
from two chromosomal regions of the zebrafish genome using a single catfish genome segment (say it is a contig or a scaffold) 
as the query. In just few cases, this term is used in an extended fashion to include those that are tripled in the zebrafish 
genome.
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Identification of microsyntenies through comparative sequence analysis (chr 6 through chr 10)Figure 2
Identification of microsyntenies through comparative sequence analysis (chr 6 through chr 10). tBLASTX 
searches were conducted using BAC contig-associated BAC end sequences as queries against the zebrafish genome sequence. 
The putative conserved microsyntenies are presented along the 25 zebrafish chromosomes (chr 1 through chr 25). The posi-
tion of the zebrafish sequence is shown on the left of each chromosome bars in million base pairs. The conserved microsynte-
nies are indicated on the right side of the chromosome bars, with the numbers representing the contig numbers of the BAC 
assembly of the catfish physical map [41]. Circles represent short syntenic regions and short vertical lines represent relatively 
longer conserved syntenic regions proportional to the length of the bar with a number in parenthesis representing the number 
of conserved sequences within the microsyntenies. The microsyntenies designated with asterisks (*) are those with duplicated 
conservation of the microsyntenies that are color-coded to facilitate the visualization of the duplicated syntenic regions along 
the chromosome. Duplicated syntenic regions refer to a conserved genomic segment between the catfish genome and the 
zebrafish genome that is duplicated in the zebrafish genome such that identical or nearly identical significant hits are generated 
from two chromosomal regions of the zebrafish genome using a single catfish genome segment (say it is a contig or a scaffold) 
as the query. In just few cases, this term is used in an extended fashion to include those that are tripled in the zebrafish 
genome.
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mapped to a total of 24 linkage groups, with seven of the
24 linkage groups containing 4-12 markers (see Addi-
tional file 2).

Similarly but to a much lesser extent, microsatellites from
BES with similarities to the zebrafish chromosome 7 were
mapped to three major linkage groups (Figure 7). Once
again, many smaller syntenic regions were mapped to var-
ious linkage groups, suggesting high levels of local conser-
vation and low levels of chromosomal conservation.
Nonetheless, the significant aspect of this is that scaffolds
can be established by linking various contigs together
through linkage mapping. This will allow integration of
genetic linkage and physical maps once microsatellites are
identified from most contigs of the physical map. Such
scaffolds should guide genome sequence assembly in the
future, and should also provide molecular length meas-
urements of various polymorphic markers along the
genome of catfish, providing guidance for the develop-
ment of the SNP chip technology in catfish. Apparently,
SNP chips constructed from evenly distributed SNPs pro-
vide the best coverage of the catfish genome when con-
ducting the whole genome association studies.

Genetic linkage mapping of BAC end-anchored microsat-
ellites provided a level of validation of the physical map.
Discrepancies were found between the BAC assemblage
and the linkage map. Of the 75 contigs with at least 2
markers, 54 contigs were mapped properly into the same
linkage groups. However, 18 contigs were mapped into
different linkage groups (see Additional file 2). Of these
18 contigs, 12 are large contigs with at least 40 BACs.
Apparently, such discrepancy is indicative of mistakes in
the BAC assemblage. Mapping additional BAC end-
anchored microsatellites is under way to integrate the
genetic linkage and physical maps, and to correct any
additional mistakes in the assembly of the physical map
[42].

Conclusion
Some highly conserved chromosomes or chromosomal
regions exist between catfish and zebrafish. High levels of
local conservation were found, but a high level of chro-
mosomal shuffling and rearrangements exists between
catfish and zebrafish genomes. Comparative genome
analysis using zebrafish genome sequence is highly useful
for regional comparisons, but not so useful at the chromo-
somal levels. The significance of comparative genome
analysis in catfish is that it will allow more cost-effective
structural genomic analysis, but more importantly, ortho-
logues established through comparative genome analysis
should facilitate functional assignment of genes. Given
that functional genomics is more difficult with non-
model fish species, inference from orthologues should be
one of the most efficient and reliable approaches for func-
tional analysis of the catfish genome.

Overall, the evolutionary syntenic conservation appeared
to be relatively low between the catfish genome and the
genomes of the zebrafish. This indicates many chromo-
some breakage and rearrangements among the fish
genomes occurred during evolution. These findings are
consistent with our previous findings that high levels of
conservation were found within small genomic regions,
whereas high levels of large-scale genome reshuffling were
evident when comparing the genomes of catfish and
zebrafish [26,40]. These conclusions, however, are based
on the assumption that the zebrafish genome assembly is
correct. Apparently, due to the assembly mistakes in the
zebrafish genome, some of the syntenic breaks may be
due to the still poor assembly of the zebrafish genome. We
also acknowledge that comparative genome analysis
using a partial bank of sequences in catfish and a more
complete databank in zebrafish could potentially lead to
a bias. Caution should be exercised when establishing
concrete syntenic relations. Such limitations themselves
justify the need for whole genome sequencing in catfish.

Methods
BAC culture and BAC-end sequencing
The CHORI-212 Channel Catfish BAC library [47] was
used for BAC-end sequencing. BAC culture and sequenc-
ing reactions were conducted using standard protocols,
and as previously described [25,40]. Briefly, BAC clones
were transferred from 384-well plates to 96-well culture
blocks containing 1.5 ml of 2× YT medium with 12.5 μg/
ml chloramphenicol and grown at 37°C overnight with
shaking at 300 rpm. The blocks were centrifuged at 2000
× g for 10 min in an Eppendorf 5804R bench top centri-
fuge to collect bacteria. The culture supernatant was
decanted and the blocks were inverted and tapped gently
on paper towels to remove remaining liquid. BAC DNA
was isolated using the Perfectprep™ BAC 96 kit (Eppen-
dorf, Westbury, NY) according to the manufacturer's spec-
ifications. BAC DNA was collected in 96-well plates and
stored at -20°C until usage.

Sequencing of channel catfish BAC ends was conducted
using the BigDye® Terminator v3.1 Cycle Sequencing Kit
(Applied Biosystems, Foster City, CA), with modifica-
tions. Each sequencing reaction mix contained 2 μl of 5×
sequencing buffer, 2 μl of primer (3 pmol/μl), 1.5 μl
BigDye v3.1 dye terminator, and 4.5 μl of BAC DNA. BAC
clones were sequenced from both ends using the primers
T7 (5'-TAATACGACTCACTATAGGG-3') and SP6 (5'-ATT-
TAGGTGACACTATAG-3'). Cycle sequencing was carried
out in 96-well plate format using PTC-200 thermal cyclers
(MJ Research/Bio-Rad, Hercules, CA) under the following
thermal profile: an initial denaturing at 95°C for 5 min,
followed by 100 cycles of 95°C for 30 s, 53°C for 10 s,
and 60°C for 4 min. Products were purified using etha-
nol/EDTA precipitation according to the BigDye protocol
(Applied Biosystems), with the following modifications.
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Identification of microsyntenies through comparative sequence analysis (chr 11 through chr 15)Figure 3
Identification of microsyntenies through comparative sequence analysis (chr 11 through chr 15). tBLASTX 
searches were conducted using BAC contig-associated BAC end sequences as queries against the zebrafish genome sequence. 
The putative conserved microsyntenies are presented along the 25 zebrafish chromosomes (chr 1 through chr 25). The posi-
tion of the zebrafish sequence is shown on the left of each chromosome bars in million base pairs. The conserved microsynte-
nies are indicated on the right side of the chromosome bars, with the numbers representing the contig numbers of the BAC 
assembly of the catfish physical map [41]. Circles represent short syntenic regions and short vertical lines represent relatively 
longer conserved syntenic regions proportional to the length of the bar with a number in parenthesis representing the number 
of conserved sequences within the microsyntenies. The microsyntenies designated with asterisks (*) are those with duplicated 
conservation of the microsyntenies that are color-coded to facilitate the visualization of the duplicated syntenic regions along 
the chromosome. Duplicated syntenic regions refer to a conserved genomic segment between the catfish genome and the 
zebrafish genome that is duplicated in the zebrafish genome such that identical or nearly identical significant hits are generated 
from two chromosomal regions of the zebrafish genome using a single catfish genome segment (say it is a contig or a scaffold) 
as the query. In just few cases, this term is used in an extended fashion to include those that are tripled in the zebrafish 
genome.
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Identification of microsyntenies through comparative sequence analysis (chr 16 through chr 20)Figure 4
Identification of microsyntenies through comparative sequence analysis (chr 16 through chr 20). tBLASTX 
searches were conducted using BAC contig-associated BAC end sequences as queries against the zebrafish genome sequence. 
The putative conserved microsyntenies are presented along the 25 zebrafish chromosomes (chr 1 through chr 25). The posi-
tion of the zebrafish sequence is shown on the left of each chromosome bars in million base pairs. The conserved microsynte-
nies are indicated on the right side of the chromosome bars, with the numbers representing the contig numbers of the BAC 
assembly of the catfish physical map [41]. Circles represent short syntenic regions and short vertical lines represent relatively 
longer conserved syntenic regions proportional to the length of the bar with a number in parenthesis representing the number 
of conserved sequences within the microsyntenies. The microsyntenies designated with asterisks (*) are those with duplicated 
conservation of the microsyntenies that are color-coded to facilitate the visualization of the duplicated syntenic regions along 
the chromosome. Duplicated syntenic regions refer to a conserved genomic segment between the catfish genome and the 
zebrafish genome that is duplicated in the zebrafish genome such that identical or nearly identical significant hits are generated 
from two chromosomal regions of the zebrafish genome using a single catfish genome segment (say it is a contig or a scaffold) 
as the query. In just few cases, this term is used in an extended fashion to include those that are tripled in the zebrafish 
genome.
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Identification of microsyntenies through comparative sequence analysis (chr 21 through chr 25)Figure 5
Identification of microsyntenies through comparative sequence analysis (chr 21 through chr 25). tBLASTX 
searches were conducted using BAC contig-associated BAC end sequences as queries against the zebrafish genome sequence. 
The putative conserved microsyntenies are presented along the 25 zebrafish chromosomes (chr 1 through chr 25). The posi-
tion of the zebrafish sequence is shown on the left of each chromosome bars in million base pairs. The conserved microsynte-
nies are indicated on the right side of the chromosome bars, with the numbers representing the contig numbers of the BAC 
assembly of the catfish physical map [41]. Circles represent short syntenic regions and short vertical lines represent relatively 
longer conserved syntenic regions proportional to the length of the bar with a number in parenthesis representing the number 
of conserved sequences within the microsyntenies. The microsyntenies designated with asterisks (*) are those with duplicated 
conservation of the microsyntenies that are color-coded to facilitate the visualization of the duplicated syntenic regions along 
the chromosome. Duplicated syntenic regions refer to a conserved genomic segment between the catfish genome and the 
zebrafish genome that is duplicated in the zebrafish genome such that identical or nearly identical significant hits are generated 
from two chromosomal regions of the zebrafish genome using a single catfish genome segment (say it is a contig or a scaffold) 
as the query. In just few cases, this term is used in an extended fashion to include those that are tripled in the zebrafish 
genome.
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Scaffolds of conserved syntenic regions between the catfish and zebrafish genomesFigure 6
Scaffolds of conserved syntenic regions between the catfish and zebrafish genomes. Scaffolds of conserved syntenic 
regions were established by genetic linkage mapping of BAC contig-associated microsatellites. The zebrafish chromosome 13 
(chr 13) is presented with its base positions on the far left in million base pairs; The second column of the numbers are catfish 
BAC contig numbers [41], with the identified syntenic regions shown immediately right of the chromosome bar. The numbers 
in the parenthesis are the number of conserved sequences; the circles and bars represent relatively short and long conserved 
syntenic regions; the asterisks represent duplicated syntenic regions with color coding to facilitate the visualization of dupli-
cated regions, the same way as described under Figure 1 legend, except that the open circles represent conserved sequences 
coming from non-gene sequences while the solid circles represent conserved gene sequences. Microsatellites from the BAC 
contigs were genetically mapped to linkage groups as shown on the right, with the names of microsatellites being labeled on the 
second most right, e.g., AUBES1884. The positional relationship of the conserved syntenies on the zebrafish genome sequence 
and within the catfish linkage group is indicated by thin lines linking the zebrafish chromosome and the catfish linkage group 
positions. The positions of markers within the linkage group are shown on the furthest right in centi-Morgans.
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Scaffolds of conserved syntenic regions between the catfish linkage groups and zebrafish chromosome 7Figure 7
Scaffolds of conserved syntenic regions between the catfish linkage groups and zebrafish chromosome 7. 
Details of the methods used for the identification and presentation of the syntenic regions are the same as described under Fig-
ure 6.
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After thermal cycling, 1 μl of 125 mM EDTA and 30 μl
chilled (-80°C) 100% ethanol were added to each reac-
tion. Plates were gently mixed and incubated at room tem-
perature for 15 min. Plates were then centrifuged at 2,250
× g at 4°C for 30 min, followed by washing in 30 μl of
70% ethanol at 2,000 × g for 15 min. Ethanol was
decanted and 8 μl Hi-Di™ formamide (Applied Biosys-
tems) was added to each well to re-suspend DNA. Prod-
ucts were denatured at 95°C for 5 min and sequenced on
a 3130xl genetic analyzer (Applied Biosystems).

Sequence processing and analysis
The raw BES base calling were conducted by using Phred
[48,49] with Q20 as a cut-off. Lucy program [50] was used
to remove the vector sequences and short sequence less
than 200 bp. Repeats were masked using REPEATMASKER
[51] before BLAST analysis. In order to anchor the catfish
BES to the zebrafish genome, TBLASTX searches of the
repeat-masked BES were conducted against the ENSEM-
BLE zebrafish cDNA database (Assembly 7).

Identification of conserved syntenies between catfish and 
zebrafish
In the absence of the whole genome sequence, we
attempted to establish microsyntenies based on physical
linkage of gene sequences. First, if the genes were identi-
fied from both sides of a single BAC clone (mate-paired
BES), then they are physically linked with a distance of the
BAC clone insert size. If the same two genes were found to
be linked on the zebrafish genome in the same genome
neighborhood, a microsynteny was established.

Initially, BES were analyzed by BLASTN (E-value ≤ -5) for
the identification of mate-pairs with significant hits on
both sides of the BAC insert. Mate-paired BES were ana-
lyzed by tBLASTX (E-value ≤ -5) for the identification of
genes on both sides of the BAC insert. After identification,
the two mate-paired genes in each BAC were used as que-
ries to search for their chromosomal locations on the
zebrafish genome. Conserved microsyntenies were
declared when the mate-paired genes existed within a dis-
tance of 1.0 Mb within the zebrafish genome.

Syntenies were also established using genes within contig-
uous sequences (contigs) based on the catfish physical
map [42]. Genes identified from BES were located along
the catfish physical map. Genes identified within the same
contig and located on the same zebrafish chromosome
with comparable distances as estimated from the catfish
BAC contig, an extended synteny was established.

Construction of the catfish syntenic groups using 
linkagemaps
In order to assess the scope of microsyntenies, two
zebrafish chromosomes, chromosome 7 and 13, were

chosen for analysis. Chromosome 7 had the largest
number of significant hits and chromosome 13 had a
large number of contigs having two or more hits (sugges-
tive of high level of syntenic conservation). Syntenies were
established using microsatellite-based linkage mapping. A
total of 548 microsatellite loci in the contigs which had
significant BLASTN hits to the zebrafish chromosome 7
and 13 were tested using a hybrid catfish resource family,
F1-2 (female blue-channel catfish hybrid) × Ch-6 (male
channel catfish) with 64 progeny.

Microsatellites were identified and analyzed using Msat-
finder [52] and Vector NTI 10.0 (Invitrogen, Carlsbad,
CA) as we previously described [24]. Polymerase chain
reaction (PCR) primers were designed using Msatfinder
[52]. Mononucleotide repeats were manually excluded.
PCR amplification was conducted as previously described
[24]. Briefly, each microsatellite PCR reaction contained
1× PCR buffer, 2 mM MgCl2, 0.2 mM of each dNTP, 4 ng
upper primer, 6 ng lower primer, 1 pmol labeled primer,
and 0.25 U of JumpStart Taq polymerase (Sigma, St.
Louis, MO), and 20 ng genomic DNA. PCR amplification
was carried out using a touchdown program with the fol-
lowing thermal profile: an initial denaturation at 94°C for
3.5 min, followed by 94°C for 30 s, 57°C for 30 s, and
72°C for 30 s for 20 cycles as the first step, and at 94°C
for 30 s, 53°C for 30 s, and 72°C for 30 s for 15 cycles as
the second step. A final extension was performed at 72°C
for 10 minutes. The PCR products were analyzed on 7%
sequencing gels using the 4300 DNA Analyzer (LI-COR®

Biosciences, Lincoln, NE). After gel electrophoresis, loci
were manually genotyped to determine allele segregation
patterns and polymorphisms in the resource family.

The catfish linkage map was constructed using JoinMap
version 4.0 software as we previously described [26] using
the cross-pollinating (CP) coding scheme, which handles
the data containing various genotype configurations with
unknown linkage phases [53]. Linkage between markers
was examined by estimating LOD scores for recombina-
tion rate, and map distances were calculated using the
Kosambi mapping function. Significance of marker link-
age was determined at a final LOD threshold of 3.0.

Accession numbers
The BES generated from this study have been deposited in
GenBank and were assigned accession numbers from
[GenBank:FI857756] to [GenBank:FI900776] and the
existing BES from [GenBank:DX083364] to [Gen-
Bank:DX103729] were also used for comparative genome
analysis in this study.
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ues are coded in this Table. For instance, 0.29 means e-29, 0.06 means e-
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position (Chr SS) and ending position (Chr SE) provided. The potential 
gene identities are detailed under Description.
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Primers used to map the BAC end associated microsatellites. Ctg_ID 
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