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Abstract
Background: Macrophages are immune cells involved in various biological processes including
host defence, homeostasis, differentiation, and organogenesis. Disruption of macrophage biology
has been linked to increased pathogen infection, inflammation and malignant diseases. Differential
gene expression observed in monocytic differentiation is primarily regulated by interacting
transcription factors (TFs). Current research suggests that microRNAs (miRNAs) degrade and
repress translation of mRNA, but also may target genes involved in differentiation. We focus on
getting insights into the transcriptional circuitry regulating miRNA genes expressed during
monocytic differentiation.

Results: We computationally analysed the transcriptional circuitry of miRNA genes during
monocytic differentiation using in vitro time-course expression data for TFs and miRNAs. A set of
TF→miRNA associations was derived from predicted TF binding sites in promoter regions of
miRNA genes. Time-lagged expression correlation analysis was utilised to evaluate the
TF→miRNA associations. Our analysis identified 12 TFs that potentially play a central role in
regulating miRNAs throughout the differentiation process. Six of these 12 TFs (ATF2, E2F3,
HOXA4, NFE2L1, SP3, and YY1) have not previously been described to be important for
monocytic differentiation. The remaining six TFs are CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and
USF2. For several miRNAs (miR-21, miR-155, miR-424, and miR-17-92), we show how their
inferred transcriptional regulation impacts monocytic differentiation.

Conclusions: The study demonstrates that miRNAs and their transcriptional regulatory control
are integral molecular mechanisms during differentiation. Furthermore, it is the first study to
decipher on a large-scale, how miRNAs are controlled by TFs during human monocytic
differentiation. Subsequently, we have identified 12 candidate key controllers of miRNAs during this
differentiation process.
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Background
The mononuclear phagocyte system is defined as a family
of cells comprising of bone marrow progenitors and is
derived from hematopoietic stem cells. Hematopoietic
stem cells sequentially differentiate into monoblasts,
promonocytes, monocytes and terminal macrophage cells
[1]. The human monocytic leukemic cell line, THP-1 [2],
is an accepted model system utilised to explore molecular
events surrounding monocytic differentiation. Phorbol
12-myristate 13-acetate (PMA) induces the differentiation
of monocytic THP-1 cells into macrophages/mature THP-
1 cells [3]. Before inducing differentiation, PMA first
inhibits cell growth and blocks THP-1 cells in G1-phase of
the cell cycle by up-regulating the expression of p21WAF1/

CIP1, enhancing binding of the SP1 factor to the p21WAF1/

CIP1 promoter. PMA inhibition of cell growth is mediated
by several signalling pathways such as MAPK and ROS-
dependent Raf/MEK/ERK pathway [4]. Human monocytic
maturation incorporates lipid and protein metabolic
processes together with several G-protein coupled recep-
tors (GPCRs) [5].

Differential gene expression that results in human mono-
cytic differentiation is regulated by numerous interacting
transcription factors (TFs) [4-6]. Current research suggests
that microRNAs (miRNAs) target several genes that are
differentially expressed in the differentiation process [7].
miRNAs are ~22 nucleotides (nt) long non-coding RNAs,
which play a key role in the repression of translation and
degradation of coding mRNA [8-12]. Several computa-
tional tools are available for prediction of miRNA targets
[9,13-16].

Canonical miRNA biogenesis begins with the transcrip-
tion of the pri-miRNA by RNA polymerase II [17-19].
These pri-miRNAs are cleaved into 60~70 nt pre-miRNAs
by the microprocessor complex Drosha (RNase II endonu-
clease) and DGCR8 (a double-stranded RNA binding pro-
tein) [20,21]. Pre-miRNAs are then exported to the
cytoplasm with the help of Exportin-5 and its co-factor
RanGTP [22]. Dicer, a RNase III endonuclease, cleaves 22-
nucleotide from the Drosha cleavage site to yield the
mature miRNA [8,23]. The generation of pri-miRNA by
RNA polymerase II suggests that miRNA genes are control-
led through the same regulatory machinery as the protein
coding genes.

A straightforward analysis of the transcriptional regula-
tion of miRNA genes is difficult. Even though most miR-
NAs have their own transcriptional units [8], it is known
that several miRNAs are transcribed together as a single
pri-miRNA [24-26]. These clustered miRNAs are thus co-
regulated. On the other hand, miRNAs can also be tran-
scribed together with a protein-coding host gene [8]. In
addition, a mature miRNA can be produced from several

locations in the genome [8,27]. Furthermore, it is not
clear how to define the regulatory regions for miRNA
genes. Current research suggests that at transcription start
sites (TSSs) of genes, histones are generally trimethylated
at lysine 4 residues [28,29]. This has led to a potential def-
inition of promoter regions for miRNAs [30] in human
embryonic stem cells using such determined TSSs as the
reference points.

As the transcriptional regulation of miRNAs is not well
understood, we focus our study on the analysis of transcrip-
tional regulation of miRNAs during monocytic differentia-
tion. Gene expression of miRNAs and TFs was measured
prior to PMA stimulation and over a 96 hour time-course
post-PMA stimulation. We first utilised a general method to
identify miRNAs whose expression levels differed due to
PMA stimulation in THP-1 cells. We extracted promoter
regions for these miRNAs and computationally mapped TF
binding sites (TFBSs) to the promoter sequences. We made
use of a time-lagged expression correlation analysis [31,32]
to evaluate the predicted TF→miRNA associations by com-
bining our in silico TFBS analysis with the measured in vitro
expression data. This kind of a time-lagged expression cor-
relation analysis has been utilised before to either predict or
score TF→gene or gene→gene associations [33-35]. From
these TF→miRNA associations we identified 12 TFs likely
to play a central role in regulating miRNAs throughout the
considered differentiation process. Six of these 12 TFs
(ATF2, E2F3, HOXA4, NFE2L1, SP3, and YY1) have not
been previously described as important for monocytic dif-
ferentiation. The remaining TFs, CEBPB, CREB1, ELK1,
NFE2L2, RUNX1, and USF2, although known to be
involved in monocytic differentiation, were not known to
play role in transcription regulation of miRNAs in this
process. We concluded the analysis by highlighting several
inferred regulatory networks that suggest interplay of TFs,
miRNAs, and miRNA targets and that are likely to have an
impact on the differentiation process.

To the best of our knowledge this research is the first large-
scale study that attempts to decipher the transcriptional
circuitry that regulates the expression of miRNAs during
human monocytic differentiation and identifies potential
new avenues for further research.

Results and Discussion
In what follows we present and discuss the main results of
the study. Figure 1 gives an overview of the analysis steps.
First, we analysed the miRNA expression data to identify
miRNAs that are mostly affected by the PMA stimulation.
We extracted promoter regions for the identified miRNAs
and predicted TFBSs in these regions. Subsequently, we
scored each predicted TF→miRNA association using a
time-lagged expression correlation analysis to get a meas-
ure of reliability for the predicted associations. After-
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wards, we statistically identified TFs that are likely to play
a central role in regulating miRNAs during the monocytic
differentiation process. Finally, for several miRNAs we
investigated the predicted transcription regulations and
their potential influence on the differentiation process.

Identification of miRNAs most influenced by PMA 
stimulation
We are interested in the transcriptional regulation of those
miRNAs whose expression is most influenced by the PMA
stimulation. Three biological replicates of miRNA expres-
sion data provided measured expression levels at nine
time-points after PMA stimuli and a zero hour control
prior to PMA stimulation (see Methods). We required that
two criteria were met for the inclusion of a miRNA expres-
sion time-series ('expression series' in further text) in the
analysis:

i/ Expression of the miRNA should be denoted as
"present" in at least one time point, otherwise we assume
that the expression series for the miRNA is invalid. In this
manner, we identified 155, 238, and 191 miRNAs and
associated expression series for the first, second, and third
replicate, respectively.

ii/ For a miRNA, i/ must hold true in at least two of the
three biological replicates.

The expression values of different biological replicates for
a miRNA that satisfy the criteria have been averaged at
each time point to generate one expression series per
miRNA. This resulted in expression series for 187 miRNAs
(see Methods).

In order to find the set of 'most relevant' miRNAs, we cal-
culated for each of the 187 identified miRNAs the log2 fc
(fc standing for fold-change relative to time zero) at each
of the measured time points (see Methods). A miRNA we
considered to be influenced by PMA stimulation if its log2
fc > 1 or log2 fc < -1 at any measured time point post-PMA
stimulation (see Figure 2). Figure 2 shows that the major-
ity of the miRNA expression does not change significantly
over time and is confined within the selected threshold
values. We found a total of 81 miRNAs that satisfied this
criterion. To determine those miRNAs that deviate from
the baseline expression we proceeded as follows. For each
time point t where log2 fc > 1 or log2 fc < -1 was satisfied
for a miRNA, we calculated the difference dt of the expres-
sion et at time point t and its expression e0 at the zero time
point. We sub-selected those miRNAs for which abs(dt) >
0.1 for at least one time point. This resulted in a set of 53
miRNAs for which we are more confident that their
expression is affected by the PMA stimulation.

The fc does not take the level of expression into account.
It is important to note that miRNAs that have very high
expression level and change only little over time might
have a strong biological impact, even though this is not
reflected by variation in the expression level. Our
approach, based on fc excludes such cases. On the other
hand, miRNAs with very low expression levels might have
high fc values that may suggest a strong biological impact,
even though this may be arguable since the changes in
expression levels could be very small. Hence, we intro-
duced a second threshold for the difference in expression
values of 0.1, even though no guideline exits for choosing
this threshold.

TFBS analysis of miRNA promoter regions
Promoter regions of miRNAs are regions of DNA where
TFs bind to regulate the transcription of miRNA genes into
pri-miRNAs. A pri-miRNA can be associated to several
promoter regions derived from different TSSs. The tran-
scriptional control of TFs is towards the pri-miRNA that
can be cleaved into several pre-miRNAs [36]. Thus, we
consider the miRNAs that form such clusters to be gener-
ally regulated in the same manner.

Marson et al. [30] defined promoter regions of miRNAs
using TSSs determined based on trimethylated histones.
We chose to analyze these promoter regions. For 34 of the
53 earlier identified mature miRNAs we were able to

Overview of the analysisFigure 1
Overview of the analysis. The figure illustrates the analy-
sis steps (blue/green boxes). In addition, the figure shows the 
data (red boxes) that has been utilised within individual analy-
sis steps.
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extract 38 promoter regions for 37 associated miRNAs
(see Methods and Additional Files 1).

To map TFBSs to the 38 promoters we utilised TRANSFAC
Professional database (version 11.4) [37,38]. TRANS-
FAC's 522 mammalian minimum false positive matrix
profiles of binding sites were mapped to the promoter
regions (see Methods). These matrices, which correspond
to the predicted TFBSs, are associated with TFs that possi-
bly bind these TFBSs (see Methods). By mapping the
matrices to their corresponding TFs, we obtained 5,788
unique TF→miRNA associations for 673 TFs and 37 miR-
NAs.

Evaluation of predicted TF→miRNA associations
Each predicted TF→miRNA association has been evalu-
ated to get the most accurate picture of miRNA gene regu-
lation during human monocytic differentiation. The
result of this evaluation relates to our confidence that we
are dealing with a genuine TF→miRNA association. The
evaluation was based on time-lagged expression correla-
tion between the gene expression series of the TF and that
of the mature miRNA (see Methods). Expressions for miR-
NAs and TFs have been measured in human THP-1 cells
prior PMA stimulus at one time point and post-PMA stim-
ulus at non-equidistant time points up to 96 hours.

We interpolated the expression series for each of the 34
mature miRNAs using half an hour steps (see Additional
Files 2). In concordance with the miRNA expression data,
we averaged the TF qRT-PCR expression series over the
two biological replicates at the same time points and
interpolated each expression series using half an hour
steps (see Methods). In this manner, we derived expres-
sion series for 2,197 TFs (see Methods).

The TF→miRNA associations were inferred from TFBS
analysis of promoter regions of miRNA genes. From the
predicted 5,788 TF→miRNA associations, we discarded
all associations for which we do not have expression data
for the TF in the above mentioned averaged expression set.
After calculating Pearson's correlation coefficient (PCC)
for each TF→miRNA associations using a time-lagged
expression correlation analysis and the interpolated
expression data for TFs and mature miRNAs, we finally
derived a set of 1,989 TF→miRNA associations (see Addi-
tional Files 3) for 37 miRNAs and 258 TFs (see Additional
Files 4), each associated with a PCC value (see Methods).
In Figure 3A we show the number of TF→miRNA associa-
tions that have PCCs equal to or greater than selected
thresholds. As expected, the number of associations stead-
ily decreases with increasingly stringent PCC thresholds.

Previous research demonstrated that the regulatory effects
of a TF on its target genes is not instantaneous but with a

time-lag [39-41]. Unfortunately, the correct time-shifts are
undetermined. In our analyses, we incorporated time-
shifts in a range from 0.5 hours to six hours to allow for a
sufficient time-delay for the regulation by the TF to exert
an effect on the transcription of its target miRNA genes.
We calculated for each of the 1,989 TF→miRNA associa-
tions the most favourable time-shift and with this, the
time-lagged PCC of expression as the score for the associ-
ation (see Methods). The higher the absolute value of the
PCC for an association, the more confidence we have that
the association is genuine and could play an important
role in the differentiation process. For each miRNA/
miRNA-cluster and its regulating TFs, the maximum PCCs
were calculated individually (see Methods). Other
approaches considered all TFs that regulate a gene to
extract a common time-shift for all TFs and the gene [33]
or compute the best time-shift depending on known
examples of regulation [31]. Up to now, too few experi-
mentally verified examples of TFs that regulate miRNAs
are known, thus a model to introduce the "correct" time-
shift could not be inferred. Furthermore, certain miRNAs
were predicted to be clustered and share common pro-
moter regions. Hence, a time-shift common to all miRNAs
in a cluster was calculated for each of the associated TFs.
As a criterion, common time-shifts were only taken into
account if all PCCs between the TF and all miRNAs that
form the cluster had the same sign (e.g. all positive or all
negative) to avoid contradicting effects of the same TF on
different miRNAs of the cluster. TF→miRNA associations
where all considered time-shifts were discarded (because
of sign disagreement) were excluded from further analy-
sis.

Identification of TFs central to regulation of miRNA genes
In order to find the TFs that have the most influence on
miRNAs during the differentiation process, we analysed
TFs corresponding to TF→miRNA associations having the
highest absolute PCC. We ranked 1,989 TF→miRNA asso-
ciations according to the absolute value of their corre-
sponding PCCs. From the ranked associations we selected
the upper quartile (with the highest absolute PCCs). In
this manner, we obtained 498 associations with an abso-
lute PCC greater than 0.775 (see Figure 3B). The 498 asso-
ciations are formed by 111 unique TFs and 35 unique
miRNAs. TFs that appear significantly more often in the
upper quartile of associations are assumed to more likely
play a central role in regulating miRNAs during the differ-
entiation process. We utilised the one-sided Fisher's exact
test to calculate the Bonferroni-corrected p-value for
enrichment of each TF in the subset of 498 associations,
in contrast to the remaining set of 1,491 associations. The
correction factor is the number of unique TFs (258) in the
complete set of all associations (1,989). In this manner,
we found that 12 TFs are statistically significantly enriched
in the set of 498 associations with a corrected p-value
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smaller than 0.01 (see Table 1). Six of these 12 TFs (ATF2,
E2F3, HOXA4, NFE2L1, SP3, and YY1) have not been pre-
viously described as important for monocytic differentia-
tion. The remaining TFs (namely, CEBPB [42], CREB1
[43], ELK1 [44], NFE2L2 [45], RUNX1 [42], and USF2
[46]) are known to play role in monocytic differentiation,
but not explicitly as regulators of miRNAs in this process.

Our approach attempts to identify the most dominant TFs
that putatively regulate miRNAs from the selected subset
of TF→miRNA associations with highest PCCs. The com-
plete set of 1,989 TF→miRNA associations consists of
many associations with a low PCC (see Figure 3). In order
to be able to focus on associations that are most likely
genuine, we sub-selected the associations with the highest
PCCs. At the same time we did not want to restrict the
analysis to too few associations, so as to be able to deduce
the general participants in the transcriptional regulation
process of miRNAs. Consequently, we selected the upper
quartile of TF→miRNA associations ranked based on
decreasing absolute values of PCC as a reasonable com-
promise between sensitivity and specificity.

Transcriptional circuitry of miRNAs during monocytic 
differentiation
To shed light on a portion of the molecular underpin-
nings of monocytic differentiation we will discuss the
TF→miRNA associations for miRNAs that have been
described earlier to be affected by PMA stimulation. In
this manner, we can confer whether or not our findings
correspond to the published scientific findings and fur-
ther introduce novel TF→miRNA associations. An over-
view of the regulatory effects of the TF subset (defined
above) on the miRNAs is presented in Figure 4. The figure
shows each association, from within the subset of the
upper quartile of associations, in form of a coloured dot
in a heat-map style of format using the TIGR Multiexperi-
ment Viewer (version 4.3) (TMEV, [47]). We can observe
certain clusters of miRNAs that are regulated by the same
set of TFs. In the following discussion, we mainly focused
on the upper quartile of TF→miRNA associations and on
the TFs illustrated in Figure 4 that we have identified to be
central to monocytic differentiation. For the sake of com-
pleteness, we also discuss several TFs that are known to be
regulators of certain miRNAs, even though they might not
appear in our set of "best" TF→miRNA associations. Sub-
sets of miRNAs that have support through literature estab-
lishing their expression during PMA-induced
differentiation are discussed. All network graphics in the
following figures have been produced with the help of
Cytoscape [48] and all pathway analyses were based on
KEGG [49] using DAVID [50].

miR-21
Fugita et al. demonstrated that mir-21 is expressed during
PMA-induced differentiation in the human promyelocytic
leukaemia cell line, HL-60 [51]. Our expression data dem-
onstrate that miR-21 is up-regulated during the differenti-
ation process (see Figure 5C). Our correlation data suggest
that several of the 12 TFs (see above), which we identified
as being central to the considered differentiation process
bind in the promoter region of miR-21 (YY1, NFE2L2,
ATF2 and NFE2L1, see Figure 4). Additionally, the bind-
ing of TFs, AP-1/c-jun, and c-fos to the promoter region of
mir-21 has been demonstrated via chromatin immuno-
precipitation (ChIP) in the human promyelocytic leukae-
mia cell line, HL-60 after 4 h PMA induction [51]. Our
TFBS analysis results suggests the binding of several mem-
bers of the JUN-FOS family (JUN, JUNB, JUND, FOS,
FOSB, FOSL1, and FOSL2) to the promoter region of mir-
21, even though they do not appear in the upper quartile
of TF→miRNA associations. The expression data for the
JUN family members displayed continued up-regulation
for 96 hours, whereas FOS family members, with excep-
tion of FOSL1, were down-regulated after 4 hours (see Fig-
ure 5B). AP-1/c-jun form a complex with the JUN-FOS
family members during transcription, and AP-1/c-jun is

Selecting PMA-induced miRNAsFigure 2
Selecting PMA-induced miRNAs. The figure illustrates 
for all measured time-points after PMA induction the log2 fc 
of the averaged expression set for all 187 selected mature 
miRNAs (black dots). Each dot represents a log2 fc of a single 
miRNA at the considered time point relative to the zero 
time point. The red dashed lines mark the log2 fc of 1 and -1 
that are utilised as a cut-off for miRNAs (see main text). The 
figure shows in addition the mean (blue dot) and the stand-
ard deviation of all log2 fc values from the 187 miRNAs at the 
considered time point (blue error bars). Grey dashed lines 
indicate individual miRNA expression series. The figure 
shows that the majority of the miRNA expression does not 
change significantly over time and is confined within the 
selected threshold values.
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TF→miRNA associations and their inferred Pearson correlation coefficientsFigure 3
TF→miRNA associations and their inferred Pearson correlation coefficients. A/ Depicted is the number of 
TF→miRNA associations that have a score equal or greater then specific PCCs. The blue blocks indicate the number of associ-
ations that have a positive PCC greater or equal to the positive value indicated on the x-axis. The red blocks indicate the 
number of associations with a negative PCC smaller or equal to the negative value indicated on the x-axis. As expected, the 
number of associations steadily decreases with increasing absolute PCC. B/ Depicted is the distribution of the absolute value of 
the calculated PCCs for all 1,989 TF→miRNA associations. The red line indicates the cut-off value that was utilised to select the 
top quartile of the associations. The distribution is not normal distributed, but skewed towards higher PCCs resulting from the 
chosen method of time-shifts, which favours higher PCCs over lower ones.
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known to be activated by PMA induction which is sup-
ported by our findings (data not shown) [52]. Fugita et al.
also demonstrated that AP-1 and SPI1 synergistically
mediate the transcriptional process [51]. Our method pre-
dicted a SPI1 binding site in the promoter region of the
mir-21 gene. The time-lagged expression correlation anal-
ysis demonstrated that SPI1 is highly correlated to miR-21
(PCC = 0.798; see Figures 5B and 5C).

miR-21 has been found to display anti-apoptotic func-
tioning and targets tumour suppressor genes, like the
PTEN gene in human hepatocellular cancer cells [53] and
the tropomyosin 1 (TPM1), PDCD4, and maspin gene in
the human breast cancer cell line, MDA-MB-231 [54]. The
miR-21's predicted targets (see Methods) were found to be
primarily involved in pathways such as TGF-β signalling
pathway, MAPK signalling pathway and the JAK-STAT sig-
nalling pathway (see Figure 5A). The TGF-β signalling
pathway and MAPK signalling pathway is primarily
involved in differentiation, proliferation, apoptosis and
developmental processes, while the JAK-STAT signalling
pathway is involved in immune responses. We found that
several TFs such as ATF2, FOS, JUN and JUND included in
the predicted TF→mir-21 associations are involved in the
MAPK signalling pathway (see Figure 5A).

Time-lagged expression correlation analysis demonstrated
that NFE2L1 and SPI1 are highly correlated to miR-21 as
opposed to YY1, NFE2L2, and ATF2, which have negative
PCCs (see Figure 4). Besides JUN-FOS family members
and SPI1 that are known to regulate the miR-21, our
results suggest a novel NFE2L1→miR-21 association,
which seems to play an important role in monocytic dif-
ferentiation (see Figure 5A).

miR-424
Rosa et al. reported that mir-424 is expressed during PMA-
induced differentiation and that mir-424 is transcribed by
SPI1 in the CD34+ human cord blood cells and CEBPA
(C/EBPα) blocks SPI1 induced dendritic cell development
from CD34+ human cord blood cells by displacing the co-
activator c-Jun [55,56]. The up-regulation of miR-424 (see
Figure 6C) leads to the repression of NFIA which allows
for the activation of differentiation specific genes such as
M-CSFr (CSF1R) [55]. Furthermore, the pre-mir-424 is
transcribed together with pre-mir-503 and pre-mir-542 as
one transcript. These pre-miRNAs form the mature miR-
NAs miR-424, miR-503, miR-542-5p, and miR-542-3p.
Our data suggest that several of the 12 TFs (see above),
which we identified as being central to the considered dif-
ferentiation process bind in the promoter region of miR-
424 (RUNX1, E2F3, SP3, YY1, NFE2L2, CREB1, ATF2,
USF2, ELK1, CEBPB and HOXA4; see Figure 4). Figure 4
shows that mir-424 and mir-542 are regulated by the
same TFs and are thus as well clustered in the heat-map.
However, mir-503, part of the same cluster and thus sub-
ject to the same regulations, is not displayed in Figure 4.
This is a consequence of the expression data obtained for
miR-503 causing the PCCs for the TF→miRNA associa-
tions to decrease and thus not being part of the top quar-
tile of associations (see above). We further predicted a
SPI1 and CEBPA binding site in the promoter region of
these clustered miRNAs, which corresponds to findings
reported by Rosa et al. [55]. SPI1 is positively correlated to
miR-424 and CEBPA negatively. Furthermore, both asso-
ciations are not within the top quartile of associations
with highest PCCs. Nevertheless, these observations indi-
cate that SPI1 enhances the expression of the mir-424
cluster and might work in conjunction with the other
identified TFs to influence the miRNA's transcription.

Table 1: TFs that are predicted to have a central role in regulating miRNAs

Gene Symbol Gene ID Hits in subset Number of 
associations in 

subset

Total number of 
hits

Total number of 
associations

p-Value p-Value 
(Bonferroni 
corrected)

CREB1 1385 18 20 1.33E-09 3.43E-07
ATF2 1386 15 17 6.56E-08 1.69E-05
SP3 6670 13 14 1.46E-07 3.76E-05

NFE2L2 4780 12 13 5.52E-07 1.42E-04
NFE2L1 4779 10 10 9.04E-07 2.33E-04

YY1 7528 10 498 11 1,989 7.72E-06 1.99E-03
CEBPB 1051 10 11 7.72E-06 1.99E-03
RUNX1 861 11 13 1.04E-05 2.69E-03

USF2 7392 9 10 2.85E-05 7.35E-03
E2F3 1871 13 18 3.18E-05 8.21E-03
ELK1 2002 10 12 3.59E-05 9.27E-03

HOXA4 3201 11 14 3.77E-05 9.74E-03

Table 1 shows the TFs that have been identified through statistical analysis to be statistically enriched (corrected p-value < 0.01) within the upper 
quartile of predicted TF→miRNA associations (see text). The correction factor utilised for the Bonferroni-correction is the number of unique TFs 
in the complete set of predicted TF→miRNA associations (258).
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The predicted targets of miR-424 were found to be
involved in the same pathways as the targets of miR-21;
the TGF-β signalling pathway, MAPK signalling pathway
and JAK-STAT signalling pathway with additional path-
ways such as acute myeloid leukaemia and antigen
processing and presentation, the p53 signalling pathway
and SNARE interactions in vesicular transport. We found
that several TFs included in the predicted TF→mir-424
associations, are involved in the MAPK signalling pathway
(ELK1, ATF2), acute myeloid leukaemia (E2F3, RUNX1)
and antigen processing and presentation (CREB1) (see
Figure 6A).

The time-lagged expression correlation analysis demon-
strated that of the 12 TFs (see above) only ELK1, USF2,

CEBPB and HOXA4 were positively correlated to the
expression of miR-424 (see Figure 4 and Figures 6B and
6C). Besides the earlier mentioned involvement of SPI1 in
regulating mir-424 [55], our analysis suggests that ELK1,
USF2, CEBPB and HOXA4 may be the TFs most likely
responsible for the expression of mir-424 in monocytic
differentiation (see Figure 6A).

miR-155
Chen et al. reported that mir-155 is expressed during
PMA-induced differentiation in the human promyelocytic
leukaemia cell line, HL-60 [57]. Our expression data dem-
onstrate that miR-155 is up-regulated during the differen-
tiation process (see Figure 7C). Our TFBS analysis data
suggest that several of the 12 TFs (see above), which we

Overview of 12 TFs and their regulatory effect on miRNAFigure 4
Overview of 12 TFs and their regulatory effect on miRNA. The figure presents a heat-map, with miRNA on the x-axis 
and TFs on the y-axis. The TF names on the y-axis are composed of the Entrez Gene symbol and Entrez Gene identifier, sepa-
rated by "_". A coloured dot indicates the value of the PCC in expression between a TF and a mature miRNA where the TF has 
been predicted to regulate the corresponding miRNA. The figure only shows associations from the top quartile of associations 
with highest PCC. A white dot in the figure does not necessarily indicate a non-association. A possible association would have a 
PCC that prevented its inclusion in the top associations and is thus not shown. Furthermore, only TFs are shown that have 
been identified to play a central role in regulating miRNAs in the differentiation process. The heat-map has been clustered 
using hierarchical clustering with average linkage and Euclidian distance as the distance measure.
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identified as being central to the considered differentia-
tion process, bind in the promoter region of miR-155
(SP3, NFE2L2, CREB1, NFE2L1 and ELK1; see Figure 4).
Zeller et al. demonstrated binding of MYC to the promoter
region of mir-155 in the human burkitt lymphoma cell
line (P493-6) [58]. Also, Yin et al. demonstrated binding
of FOSB and JUNB to the promoter region of mir-155
using chromatin immunoprecipitation (ChIP) in the
human B-cell line [59]. miR-155 has been linked to
Epstein-Barr virus (EBV) related diseases that are associ-
ated with latency during which only a subset of viral genes
are transcribed with a set of EBV-encoded microRNAs.
One such EBV gene is LMP1 which is a known oncogene
that induces miR-155 in DeFew cells [60]. Gatto et al.
demonstrated the positive expression of miR-155 in
DeFew cells induced with PMA and that the promoter
region has two NF-κB (NFKB1) binding sites [60]. Once

again, our results predict the binding of several members
of the JUN-FOS family to the promoter region of mir-155
but neither MYC nor NF-κB, this may be a consequent of
the extracted regulatory region for mir-155, being incom-
plete. The expression data demonstrated the up-regula-
tion of JUN-FOS (see Figure 5B) family members and NF-
κB but a down-regulation of MYC (data not shown). Our
observations indicate that JUN-FOS family enhances the
expression of the miR-155 even though the predicted
associations are not within the upper quartile of associa-
tions with highest PCCs.

MiR-155s predicted targets were found to be involved in
the same pathways as the targets of miR-21 and miR-424;
the TGF-β signalling pathway, MAPK signalling pathway
and JAK-STAT signalling pathway with additional path-
ways such as acute myeloid leukaemia and Wnt signalling

Involvement of miR-21 in monocytic differentiationFigure 5
Involvement of miR-21 in monocytic differentiation. A/ Depicted are the predicted regulations of miR-21 and its 
involvement in the monocytic differentiation. B/ Depicted is the log2 fc over time of the interpolated expression data of 
selected TFs that are predicted to regulate miR-21. C/ Depicted is the log2 fc over time of the interpolated expression data of 
miR-21.
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pathway (see Figure 7A). We found that several TFs such
as ATF2 and ELK1, included in the predicted TF→mir-155
associations, are involved in the MAPK signalling pathway
and CREB1 was found to be involved in antigen process-
ing and presentation (see Figure 7A).

The time-lagged expression correlation analysis demon-
strated that of the 12 TFs (see above) only NFE2L1 and
ELK1 had TFBSs predicted within the promoter of miR-
155 and were positively correlated to miR-155 (see Figure
4 and Figure 7B) and thus our findings propose that the
NFE2L1→mir-155 and the ELK1→mir-155 associations
are likely to be important to the monocytic differentiation
process.

miR-17-92
Members of the miRNA cluster mir-17-92 are known to be
down regulated in the HL-60 cell line after PMA stimula-

tion [57]. The miRNA cluster on chromosome 13 contains
several miRNAs (hsa-mir-17, hsa-mir-18a, hsa-mir-19a,
hsa-mir-20a, hsa-mir-19b-1, and hsa-mir-92-1 (hsa-mir-
92-1 excluded from analysis, due to ambiguous nomen-
clature)) that are transcribed as a single transcript. Our
data shows that members of miR-17-92 are indeed down
regulated after PMA stimulation and furthermore, that the
lowest PCC between the expression series of the miRNA
cluster members is ~0.86, which supports the cluster
membership. Even though the function of miR-17-92 is
largely unknown, lymphomas that express these miRNAs
at a high level have reduced apoptosis [61,62] and the
miRNAs target multiple cell cycle regulators and promote
G1→S phase transition [63]. Expression of miR-17-92 is
high in proliferating cells and is positively regulated, in
part, by MYC (c-Myc) [64]. E2F1, an activator of MYC, is
itself a target of miR-17 and miR-20a [61] indicating that
both MYC and E2F1 are under the control of a feedback

Involvement of miR-424 in monocytic differentiationFigure 6
Involvement of miR-424 in monocytic differentiation. A/ Depicted are the predicted regulations of miR-424/miR-542/
miR-503 and their involvement in the monocytic differentiation. B/ Depicted is the log2 fc over time of the interpolated expres-
sion data of selected TFs that are predicted to regulate miR-424/miR-542. C/ Depicted is the log2 fc over time of the interpo-
lated expression data of miR-424, miR-542-3p, and miR-542-5p.
Page 10 of 18
(page number not for citation purposes)



BMC Genomics 2009, 10:595 http://www.biomedcentral.com/1471-2164/10/595
loop. It has been experimentally shown that E2F3 acti-
vates the transcription of the miR-17-92 cluster [62,36]. A
model has been proposed that miR-17-92 promotes cell
proliferation by targeting pro-apoptotic E2F1 and thereby
favouring proliferation through E2F3 mediated pathways
[36]. Additionally, E2F3 is shown to be a predominant
isoform that regulates miR-17-92 transcription [36]. We
show that after ranking PCCs of gene expression between
miRNAs and putative TFs, E2F3 is the only TF appearing
significantly associated with miR-17-92 within the upper
quartile of TF→miRNA associations (see Figure 4).

Amongst a small set of eight predicted regulators (E2F1,
E2F3, E2F4, TFAP2A, TFAP2B, TFAP2C, TFDP1, SP1),
TFDP1 is known to form a heterodimer with another
putative TF, E2F1 [65], implicating TFDP1/E2F1 complex
as a regulator of miR-17-92 transcription.

In Figure 8A we show the putative regulation of miR-17-
92 and its known effects in proliferation, differentiation
and apoptotic pathways. Specifically, we predict E2F1 and
E2F3 to regulate the miR-17-92 cluster. Figure 8B shows
that expression of miR-17-92 members are correlated to
E2F3 with a minimum PCC of ~0.9. Conversely, miR-17-
92 members are correlated with E2F1 by a maximum PCC
of ~-0.65. A disproportionately high PCC of E2F3 gene
expression to miR-17-92 as compared to other TFs seems
to support the claims made by Woods et. al. that E2F3 is
indeed the predominant TF in this regulatory context [36].
In addition, Cloonan et al. demonstrated that the pri-
miRNA is cell cycle regulated, which supports the claim
that the cluster is under the control of E2F family mem-
bers, which are master regulators of the cell cycle [63]. On
inspection of the log2 fc of TF gene expression over time
(see Figure 8C) we observed that E2F3 is sharply up-regu-
lated at 6 hours by ~2 fold, whilst its closely related and
pro-apoptotic family member, E2F1, is down-regulated by
a factor of ~5.7. After ~70 hours E2F3 and E2F1 gene
expression levels return near to baseline, this corresponds
to a progression towards a differentiated state before 96
hours post-PMA stimulation. Yet, regardless of the high
PCC between E2F3 gene expression and the miR-17-92
cluster, the miRNA cluster is generally down-regulated
(see Figure 8D). Acknowledging that the miRNA cluster
targets and inhibits a well known RUNX1 (AML1)
induced differentiation and proliferation pathway [66],
these results strongly suggest that PMA stimulation disfa-
vours both E2F1 induced proliferative and E2F1 induced
apoptotic pathways. Whilst, equally, given that both ETS1
and ETS2, components of the above mentioned RUNX1
differentiation and proliferation pathway, are up-regu-
lated (data not shown), these results indicate that PMA-
treated monocytes up-regulate members of differentiation
pathways. In light of the above findings we hypothesize,
that since members of the AP-1 complex are concurrently

up-regulated in the early stages after PMA stimulation,
that monocytic differentiation is mediated by the M-CSF
receptor-ligand RAS signalling pathway and indirectly
controlled by miR-17-92 through the E2F TF family mem-
bers E2F1 and E2F3. Generally, this hypothesis seems to
be plausible, since RUNX1 is also an inhibitor of miR-17-
92 [66] indicating its dual role to both suppress transcrip-
tion of the pro-proliferative miRNA cluster miR-17-92,
and to mediate an M-CSF receptor differentiation path-
way. Additionally, patterns of expression observed for
miR-17-92 during monocytic differentiation resemble a
previous analysis of miR-17-92 expression levels during
lung development [67] supporting the general involve-
ment of miR-17-92 amongst differentiation pathways.

TFAP2A (AP-2) and SP1 are two TFs predicted to regulate
the miR-17-92 cluster and are notably up-regulated along
with the cluster in the first 20 hours post-PMA stimula-
tion. TFAP2A and SP1 are known to activate transcription
of an enzyme involved in the sphingolipid metabolism
consisting of several metabolites known to affect cellular
proliferation [68]. TFAP2A and SP1 transcribe sphingo-
myelin phosphodiesterase 1 (SMPD1) during monocytic
differentiation in THP-1 cells after PMA stimuli [68].
SMPD1 is required for the cleavage of sphingomyelin to
phosphocholine and ceramide. As ceramide is a known
inhibitor of proliferation [69], it seems reasonable that
TFs of SMPD1 are up-regulated during differentiation.
However, ceramide is also a substrate for several other
enzymes whose products have not been implicated in pro-
liferation, apoptosis or differentiation. Interestingly, miR-
19a and miR-19b (part of the miR-17-92 cluster), are pre-
dicted to target sphingosine kinase 2 (SPHK2) mRNA in
four independent databases (see Methods). SPHK2 is an
enzyme that metabolizes downstream ceramide products.
In the sphingolipid metabolism, SPHK2 has two func-
tions. First, it catalyses the production of sphingosine 1-
phosphate from sphingosine, which is produced from
ceramides; and second, it catalyses the production of sph-
inganine 1-phosphate from sphinganine [69]. Sphinga-
nine and sphinganine 1-phosphate have been shown to
inhibit and promote cell growth, respectively [69]. Thus,
we note that the predicted targeting and down-regulation
of SPHK2 by miR-19a and miR-19b in the first 20 hours
post-PMA stimulation could prevent the metabolism of
two anti-proliferative metabolites simultaneously,
thereby inhibiting proliferation. It is known that PMA
stimulation can block proliferation of THP-1 cells up to
24 hrs [4]. Thus, we propose an additional regulatory
effect of TFAP2A and SP1 on the sphingolipid metabolism
via the miRNA cluster miR-17-92. TFAP2A/SP1 mediated
transcription of SMPD1 alone might not be enough to
maintain an anti-proliferative ceramide signal, as cera-
mide is metabolized by other factors. On the other hand,
TFAP2A/SP1 co-transcription of miRNAs targeting SPHK2
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could provide an efficient and succinct means to retaining
the ceramide signal.

Summary
We have computationally analysed the regulatory
machinery that potentially affects transcription of miRNA
genes during monocytic differentiation. Our methodol-
ogy included the extraction of promoter regions for
miRNA genes defined by trimethylated histones, compu-
tational prediction of TFBSs to establish TF→miRNA asso-
ciations, and the use of time-course expression data for
TFs and miRNAs measured during monocytic differentia-
tion to assess reliability of the predicted TF→miRNA asso-
ciations via time-lagged expression correlation analysis.

Several TFs (CEBPB, CREB1, ELK1, NFE2L2, RUNX1, and
USF2), which are known to play a role in monocytic dif-

ferentiation, have been identified. Our analysis suggests
that their role in the differentiation process could be fur-
ther expanded through consideration of the transcrip-
tional regulation of miRNAs they affect. In addition, we
propose several TFs (NFE2L1, E2F3, ATF2, HOXA4, SP3,
and YY1) to have a central role in the regulation of miRNA
transcription during the differentiation process. We have
shown for several miRNAs (miR-21, miR-155, miR-424,
and miR-17-92) how their predicted transcriptional regu-
lation could impact the differentiation process.

The process of identifying a complete list of TF→miRNA
associations is hampered by the correct definition of pro-
moter/regulatory regions being an unresolved issue that
has a great impact on all studies that deal with gene regu-
lation. We utilised a recent set of promoters defined based
on the observation that histones are generally trimethyl-

Involvement of miR-155 in monocytic differentiationFigure 7
Involvement of miR-155 in monocytic differentiation. A/ Depicted are the predicted regulations of miR-155 and its 
involvement in the monocytic differentiation. B/ Depicted is the log2 fc over time of the interpolated expression data of 
selected TFs that are predicted to regulate miR-155. C/ Depicted is the log2 fc over time of the interpolated expression data of 
miR-155.
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ated at lysine 4 residues at TSSs of genes. Due to the
employed definition of promoters by Marson et al. we
find that for several miRNAs we were not able to extract
regulatory regions. Furthermore, we note that the here uti-
lised promoter regions defined by Marson et al. range in
length between 200 and ~4,700 bp with 60 percent of the
utilised promoter regions being of length below 202 bp.
Consequently, the promoter set defined by Marson et al.
allows us to mostly analyze regulatory elements proximal
to the TSS. Nevertheless, it has been well documented
[70,71] that proximal regulatory elements such as the
TATA box play an important role in type II polymerase
gene transcription. However, the utilised promoter set in
this study represents one of the first sets of regulatory
regions for miRNA genes.

It is important to note that the transcriptional circuitry
described in our results is biased towards monocytic dif-
ferentiation expression data, as several of TF→miRNA
associations were discarded due to missing/incomplete
expression data for either TF or miRNA. Furthermore, the
expression based approach is limited in so far, as mature
miRNAs are not the direct product of the TFs-mediated
regulation but can undergo post-transcriptional regula-
tion on pri- and pre-miRNA level [72]. Thus, it is possible
that miRNAs that are transcribed together as one primary
transcript, show different expression profiles on the
mature miRNA level. The three main reasons that con-
strained the set of TF→miRNA associations we deter-
mined in this study are as follows: 1/ An incomplete
promoter set for miRNA genes. 2/ An incomplete/inaccu-

Involvement of miR-17-92 in monocytic differentiationFigure 8
Involvement of miR-17-92 in monocytic differentiation. A/ Depicted are the predicted regulations of miR-17-92 and 
their involvement in the monocytic differentiation. B/ Depicted is a heat-map representation of the TFs that are predicted to 
regulate the miR-17-92 cluster. A coloured dot indicates the value of the PCC in expression between a TF and a miRNA where 
the TF has been predicted to regulate the miRNA. C/ Depicted is the log2 fc over time of the interpolated expression data of 
selected TFs that are predicted to regulate miR-17-92. D/ Depicted is the log2 fc over time of the interpolated expression data 
of miR-17-20a.
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rate motif set for the prediction of TFBSs. 3/ An incom-
plete expression set for TFs and miRNAs. Each of the
reasons impacts on the accuracy of the predicted
TF→miRNA associations.

Nevertheless, our analysis provides the first large-scale
insights into the transcriptional circuitry of miRNA genes
in monocytic differentiation. Taken together, our results
suggest important regulatory functions of several TFs on
the transcriptional regulation of miRNAs. The regulatory
networks discussed here form only the starting point for
an in-depth analysis of the regulatory mechanisms
involved. The predicted TF→miRNA associations and
their corresponding PCCs can provide the basis for a more
detailed experimental analysis of miRNA regulation dur-
ing monocytic differentiation.

Conclusions
We have computationally analysed the regulatory
machinery that potentially controls the transcription of
miRNA genes during monocytic differentiation. We made
use of TFBS predictions in promoter regions of miRNA
genes to associate TFs to miRNAs that they potentially reg-
ulate. With the help of time-course expression data for
miRNAs and TFs during monocytic differentiation we
evaluated each predicted association using a time-lagged
expression correlation analysis. In this manner we derived
a putative picture of the transcriptional circuitry that reg-
ulates miRNAs involved in human monocytic differentia-
tion and determined potential key transcriptional
regulators of miRNAs for this differentiation process.

Methods
miRNA time-course expression data
The miRNA expression profiles were obtained using Agi-
lent's Human miRNA microarrays as described in [73].
Three biological replicates have been measured before
PMA stimulation and post-PMA stimulation at nine time
points ranging from 1-96 hrs (1 hr, 2 hr, 4 hr, 6 hr, 12 hr,
24 hr, 48 hr, 72 hr, 96 hr). We required that two criteria
were met for the inclusion of a miRNA expression time-
series in the analysis:

i/ Expression of each miRNA should be denoted as
"present" in at least one time point. Otherwise we assume
that the expression series for the miRNA is insignificant.

ii/ For a miRNA, i/ must hold true in at least two of the
three biological replicates.

The expression values of different biological replicates for
a miRNA that satisfy the criteria have been averaged at
each time point to generate one expression series per
miRNA. Finally, each expression series was interpolated
using piecewise cubic hermite interpolation [74,75] with

half an hour steps. In this manner, we obtained 193 (0-96
hrs) expression values for each individual miRNA expres-
sion series.

Identification of miRNAs showing differential gene 
expression
We calculate the log2 fc by dividing each expression value
of a miRNA by its expression value at zero hour (control)
and taking the logarithm of base two (log2) of that ratio.
A miRNA is considered to be influenced by the PMA stim-
ulation in the differentiation process, if

i/ In at least one time point t its log2 fc > 1 or log2 fc < -1.

ii/ At any time point t where i/ holds true, the absolute dif-
ference dt in expression et at time point t and the expres-
sion e0 at zero hours must be greater than 0.1.

Transcription factor time-course expression data
The TF expression profiles were obtained using qRT-PCR
as described in [6,76]. Two biological replicates have been
measured prior to PMA stimulation and in nine time
points post-PMA simulation (1 hr, 2 hr, 4 hr, 6 hr, 12 hr,
24 hr, 48 hr, 72 hr, 96 hr). Primer design, RNA prepara-
tion, and cDNA synthesis have been performed analo-
gously to [76]. Normalization of the expression data of
both replicates have been done as described in [6,77]. All
expression series for a TF that had available expression
data within two biological replicates have been averaged
over the respective biological replicates to produce one
series of expression values per TF. Finally, each expression
series was interpolated in half an hour steps using piece-
wise cubic hermite interpolation. Thus, we obtain 193 (0-
96 hrs) expression values for each individual TF expres-
sion series.

Defining the promoter regions for miRNAs
We adopted the definition of miRNA promoters from
[30]. Each of the promoter regions had a score associated
(as defined in [30]) that represents the confidence of deal-
ing with a genuine regulatory region. We extracted all pro-
moter regions with a score greater or equal to zero. The
coordinates of the promoter regions were translated from
the Human genome build 17 (hg17) to the Human
genome build 18 (hg18) [78] using the UCSC liftover pro-
gram [79].

TFBS analysis of miRNA promoter regions
TFBSs were mapped to the promoter region of the miR-
NAs with the MATCH™ program [80] using 522 mamma-
lian matrices of TRANSFAC Professional Database
(version 11.4) with their corresponding minimum false
positive threshold profiles. Since TRANSFAC matrices are
frequently associated with several TFs whose binding sites
were used in building these matrices, we associated to
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each matrix all respective TFs (that have an Entrez Gene
identifier associated). For example, we can associate sev-
eral members of the JUN-FOS family (JUN, JUNB, JUND,
FOS, FOSB, etc.) to matrix M00517. Binding sites of these
TFs have been utilised to create this matrix. Thus, all of the
TFs might be able to bind the TFBS predicted by the
matrix.

Weighting associations using Pearson correlation
For each of the predicted TF→miRNA associations, scores
(PCCs) were calculated as an indicator of how reliable the
predicted association is, and as a measure of the strength
of the association within the context of monocytic differ-
entiation. The expression data for TFs and mature miRNAs
during monocytic differentiation were utilised to calculate
the best time-lagged expression correlation for a
TF→miRNA association. The time-lagged expression cor-
relation analysis calculates PCC between the TF expres-
sion and the time-shifted mature miRNA expression at
different time-delays in order to take the influence of the
TF on the miRNA transcription over time into account. We
find the time-delay that maximizes the absolute value of
PCC between the expression of the TF and that of the
mature miRNA. The associations between pre-miRNA and
the mature miRNA have been extracted using miRBase
sequence database (version 10.1) [81,13,14].

For each predicted TF→miRNA association, where the
miRNA does not share the same promoter with other
miRNAs (i.e. not in a cluster), we calculate the PCC as fol-
lows:

i/ Identify the time-shift st. This is the time-shift where the
absolute value of the PCC between the expression of the
TF and the respective mature miRNA is maximal. We cal-
culate the PCC for time-shifts ranging from 0.5 hour to six
hours in intervals of half an hour.

ii/ The PCC for the association is calculated as PCC of the
expression of TF and mature miRNA at the time-shift
stfound in i/.

If a miRNA appears in a cluster with other miRNAs on the
genome, then the predicted TF in the promoter of that
cluster is associated to each of the respective miRNAs.
Since the cluster is transcribed as one primary transcript
we assume that a TF regulates each miRNA within the clus-
ter with the same time-shift. Thus, we calculate one com-
mon time-shift st for the considered TF and all miRNAs
within the cluster. The time-shift st is calculated as follows:

i/ The PCC of expression between the TF and each miRNA
in the cluster is calculated for each considered time-shift
(0.5 hour to six hours).

ii/ The average of all PCCs derived in i/ was calculated for
each time-shift (0.5 hour to six hours). As a criterion for
inclusion, the calculated PCCs for all associations should
to have the same sign.

iii/ If ii/ could not be calculated at any time-shift (due to
the sign rule), we did not assume that the TF X regulates
any miRNA in that cluster and all X→miRNA associations
of that cluster were discarded.

iv/ If not iii/, then the time-shift st is determined as the
time-shift that maximizes the average calculated in ii/.

PCC of one TF→miRNA association where the miRNA is
part of a cluster forms the PCC of expression of the TF and
the respective mature miRNA at the determined time-shift
st for the TF and the cluster. If a pre-miRNA is associated
to more than one mature miRNA from its 5' and 3' arm,
then the PCC is calculated independently for each mature
miRNA and the maximum PCC is chosen.

Target predictions of miRNAs
The target gene predictions of human miRNAs have been
gathered from four public available databases for miRNA
target predictions (microRNA.org version 4 [15], TargetS-
can version 4.2 [9], miRBase version 5 [13,14], and
EIMMO2 [16] with a cut-off value greater than 0.5). All
target gene identifiers utilised in the respective databases
have been converted to Entrez Gene identifiers using
BioMart [82]. If this was not possible the prediction has
been discarded. We considered only predictions that are
present in at least three out of the four databases.
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Additional file 2
Interpolated expression data for 34 mature miRNA. The file consists of 
195 columns. The first column contains the mature miRNA identifier. 
The second column contains the associated pre-miRNA identifier(s). Col-
umn 3-194 contain the interpolated expression values ranging in half an 
hour steps from 0 to 96 hours.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-595-S2.XLS]

Additional file 3
Predicted TF→miRNA associations and their inferred PCC values. 
The file consists of three columns. The first column contains the TF. An 
identifier consists of the Gene Symbol separated by an underscore with the 
Entrez Gene id. The second column contains the pre-miRNA identifier of 
the miRNA that forms an association with the TF of the first column. The 
third column contains the inferred PCC for the association, which is based 
on the expression data of the TF and the mature miRNA associated to the 
pre-miRNA(s). In total the file contains 1,989 TF→miRNA associations.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-595-S3.XLS]

Additional file 4
Interpolated expression data for 258 TFs. The file consists of interpo-
lated expression data for 258 TFs that are present in the predicted 
TF→miRNA associations. Furthermore, the file consists of 194 columns. 
The first column is the TF identifier (Entrez Gene Id). Column 2-194 
contain the interpolated expression values ranging in half an hour steps 
from 0 to 96 hours.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2164-10-595-S4.XLS]
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