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Abstract

Background: |Intrinsically disordered proteins lack stable structure under physiological
conditions, yet carry out many crucial biological functions, especially functions associated with
regulation, recognition, signaling and control. Recently, human genetic diseases and related genes
were organized into a bipartite graph (Goh K, Cusick ME, Valle D, Childs B, Vidal M, et al. (2007)
The human disease network. Proc Natl Acad Sci U S A 104: 8685-8690). This diseasome network
revealed several significant features such as the common genetic origin of many diseases.

Methods and findings: We analyzed the abundance of intrinsic disorder in these diseasome
network proteins by means of several prediction algorithms, and we analyzed the functional
repertoires of these proteins based on prior studies relating disorder to function. Our analyses
revealed that (i) Intrinsic disorder is common in proteins associated with many human genetic
diseases; (ii) Different disease classes vary in the IDP contents of their associated proteins; (jii)
Molecular recognition features, which are relatively short loosely structured protein regions within
mostly disordered sequences and which gain structure upon binding to partners, are common in
the diseasome, and their abundance correlates with the intrinsic disorder level; (iv) Some disease
classes have a significant fraction of genes affected by alternative splicing, and the alternatively
spliced regions in the corresponding proteins are predicted to be highly disordered; and (v)
Correlations were found among the various diseasome graph-related properties and intrinsic
disorder.

Conclusion: These observations provide the basis for the construction of the human-genetic-
disease-associated unfoldome.
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Author summary

Many proteins with important biological functions lack
stable structure under physiological conditions. These
proteins, being known as intrinsically disordered, are very
common in regulation, recognition, signaling and con-
trol, and play crucial roles in protein-protein interaction
networks. Many of such intrinsically disordered proteins
are associated with various human diseases such as can-
cer, cardiovascular disease, amyloidoses, neurodegenera-
tive diseases, diabetes and others. Recently, human
genetic diseases and related genes were organized into a
specific network, diseasome. Previous analysis of this dis-
easome revealed several significant features including the
common genetic origin of many diseases. However, the
abundance of intrinsically disordered proteins involved in
human genetic diseases and the functional repertoire of
these proteins have never been before. We filled this gap
by performing the thorough bioinformatics analysis of all
the proteins form the diseasome utilizing several disorder
predictors and by performing the intensive text mining.
Here we show that intrinsic disorder is common in disea-
some, and that proteins from different diseases possess
different levels of intrinsic disorder. Many disordered
regions are subjected to alternative splicing and contain
specific molecular recognition features responsible for the
protein-protein interactions. We also show that many hub
proteins are generally more disordered than non-hub pro-
teins. Our study provides the basis for the construction of
the human-genetic-disease-associated unfoldome; i.e., a
part of the diseasome dealing with the intrinsically disor-
dered proteins.

Introduction

Significant experimental and computational data show
that many biologically active proteins lack rigid 3-D struc-
ture, remaining unstructured, or incompletely structured,
under physiological conditions, and, thus, these proteins
exist as dynamic ensembles of interconverting structures.
These proteins are known by different names, including
intrinsically disordered [1], natively denatured [2],
natively unfolded [3], intrinsically unstructured [4], and
natively disordered [5] among others. The terms intrinsic
disorder (ID), intrinsically disordered protein (IDP), and
intrinsically disordered region (IDR) will be used here.

The manifestation of ID is manifold, and functional dis-
ordered segments can be as short as only a few amino acid
residues or can occupy rather long loop regions and/or
protein ends. Proteins, even large ones, can be partially or
even wholly disordered. Some IDPs and IDRs exhibit col-
lapsed disordered conformations with pronounced resid-
ual structure (thus, resembling a molten globule), others
can stay in extended highly disordered states (such as the
random coil), while still others form collapsed random
coils or semi-collapsed premolten globules [1,5-8]. The
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relationships among the different ID forms needs further
study.

There are several crucial differences between amino acid
sequences of IDPs/IDRs and structured globular proteins
and domains. These differences include divergence in
amino acid composition, sequence complexity, hydro-
phobicity, aromaticity, charge, flexibility index value, and
type and rate of amino acid substitutions over evolution-
ary time. For example, IDPs are significantly depleted in
bulky hydrophobic (Ile, Leu, and Val) and aromatic
amino acid residues (Trp, Tyr, and Phe), which form and
stabilize the hydrophobic cores of folded globular pro-
teins. IDPs also possess a low content of Asn and of the
cross-linking Cys residues. The residues that are less abun-
dant in IDPs, and that are more abundant in structured
proteins, have been called order-promoting amino acids.
On the other hand, IDPs/IDRs are substantially enriched
in polar and charged amino acids: Arg, Gln, Ser, Glu, and
Lys and in structure-breaking Gly and Pro residues, collec-
tively called disorder-promoting amino acid residues
[1,9,10]. Thus, in addition to the well-known "protein
folding code" stating that all the information necessary for
a given protein to fold is encoded in its amino acid
sequence [11], we have proposed that there exists a "pro-
tein non-folding code", according to which the propensity
of a protein to stay intrinsically disordered is likewise
encoded in its amino acid sequence [12,13].

Amino acid differences between IDPs and ordered pro-
teins have been utilized to develop numerous disorder
predictors, including PONDR® (Predictor of Naturally
Disordered Regions) [9], charge-hydropathy plots (CH-
plots) [14] and [UPred [15] to name a few. Intrinsic disor-
der predictors fall into two general groups. Per-residue
predictors (such as the PONDR® group of predictors) out-
put a score for each residue in a protein and are especially
useful when applied to proteins having both structured
and disordered regions. The other type of algorithm gives
a single prediction value for the entire protein. This type is
useful when the objective is to identify mostly or wholly
disordered or structured proteins. The charge-hydropho-
bicity (CH)-plot and the cumulative distribution function
(CDF) are the two main predictors of this type [16].

The current state of the art in the field of IDP predictions,
including advantages and drawbacks, has been summa-
rized recently [17]. Links to many of the servers for these
predictors, when available, can be found in the Disor-
dered Protein Database, DisProt http://www.dis

prot.org[18].

Although experimentally characterized IDPs have been
discussed in the literature over at least four decades, these
proteins have not been viewed as a group but rather as a
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collection of unusual protein outliers. Bioinformatics is
playing a major role in transforming this collection of
examples into a sub-field of protein science. For example,
soon after the first disorder predictor was developed [19],
it was shown that 25% of proteins in Swiss-Prot contained
predicted ID regions longer than 40 consecutive residues
and that about 11% of residues in Swiss-Prot were likely
to be disordered [20]. Subsequent analyses confirmed
these trends and revealed that eukaryotic proteomes are
significantly more enriched in IDPs in comparison to bac-
terial and archaeal proteomes [16,21]. This increased uti-
lization of IDPs in higher organisms was attributed to the
greater need for signaling and coordination among the
various organelles in the more complex eukaryotic
domain [1,22].

IDPs carry out numerous biological functions, many of
which obviously rely on high flexibility and lack of stable
structure. These functions are diverse and complement
those of ordered proteins and protein regions. While
structured proteins are mainly involved in molecular rec-
ognition leading to catalysis or transport, disordered pro-
teins and regions are typically involved in signaling,
recognition, regulation, and control by a diversity of
mechanisms [23-25].

IDPs play crucial roles in protein-protein interaction net-
works, which generally involve a few proteins binding to
many partners (called hub proteins or hubs) and many
proteins interacting with just a few partners. Considera-
tion of structure data revealed that several hub proteins
are entirely disordered, from one end to the other, and to
be capable of binding large numbers of partners, other
hubs contain both ordered and disordered regions, and
some hubs are structured throughout [26]. Fully disor-
dered hubs can serve as scaffolds for organizing the com-
ponents of multi-step pathways [27]. For the mixed-
structure hubs, many, but not all, of the interactions map
to the regions of disorder. For the highly structured hubs
(such as 14-3-3 [28] and calmodulin [29]), the binding
regions of their partner proteins are intrinsically disor-
dered [30]. Overall, these observations support two previ-
ously proposed mechanisms by which ID is utilized in
protein-protein interactions: namely, one disordered
region binding to many partners and many disordered
regions binding to one partner [30,31].

The binding diversity of IDPs plays important roles in the
establishment, regulation and control of various signaling
networks. Such disorder-based signaling is further modu-
lated in multicellular eukaryotes by posttranslational
modification and by alternative splicing, both of which
very likely occur much more often in IDRs compared to
structured regions of proteins [25,32]. Locating alterna-
tive splicing in disordered regions avoids the folding
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problems that arise upon removal of segments of from
structured domains. The flexibility of IDRs facilitates the
binding of the enzymes that bring about the disorder-
associated posttranslational modifications. We have sug-
gested that the intersection of binding sites, posttransla-
tional modifications, and alternative splicing variants
within IDRs provide a powerful combination to bring
about signaling diversity in different cell types [25,28,32]

Many IDPs and IDRs fold upon binding with their specific
partners. Said partners include other proteins, nucleic
acids, membranes or small molecules [33]. The concept of
the "molecular recognition feature," abbreviated as MoRF,
was introduced to describe short, intrinsically disordered
regions that "morph" from disorder-to-order upon part-
ner recognition [34-36]. Based on several specific features
in the disorder prediction scores, a predictor of helix-
forming MoRFs was elaborated [34,37]. The application
of this predictor to several proteomes revealed that such
foldable recognition features are especially abundant
among eukaryotic proteins [34,37]. MoRFs that form
sheet or irregular structure also exist [35,36]. Predictors of
these non-helical MoRFs have not yet been developed, so
the predictions of helix-forming MoRFs should be
regarded as providing lower-bound estimates of binding
sites in disordered regions.

Proteins are involved in virtually all cellular and in many
extracellular processes. Protein dysfunction can therefore
cause development of various pathological conditions
and a broad range of human diseases known as protein-
conformation or protein-misfolding diseases. Such dis-
eases arise from the failure of a specific peptide or protein
to adopt its functional conformational state; i.e., from
protein misfolding and malfunctioning.

Misfolding diseases can affect a single organ or be spread
through multiple tissues. Consequences of misfolding
include protein aggregation, loss of normal function, and
gain of toxic function. Misfolding and misfunction can
originate from point mutation(s) or result from an expo-
sure to internal or external toxins, from impaired post-
translational modification (phosphorylation, advanced
glycation, deamidation, racemization, etc.), from an
increased probability of degradation, from impaired traf-
ficking, from lost binding partners or from oxidative dam-
age among other causes. These factors can act
independently or in complex associations with one
another [38]. Furthermore, numerous IDPs are associated
with human diseases such as cancer [22], cardiovascular
disease [39], amyloidoses [40], neurodegenerative dis-
eases [41], diabetes and others [38]. Based on these
intriguing links among intrinsic disorder, cell signaling
and human diseases, suggesting that protein conforma-
tional diseases may result not only from protein misfold-
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ing, but also from misidentification and missignaling
[30], the "disorder in disorders" or D2 concept was
recently introduced [38].

As a result of decades-long efforts, impressive lists of dis-
ease-gene association pairs were generated [42,43]. In par-
allel, analysis of protein-protein interactions in humans
produced detailed maps of the relationships between dif-
ferent genes including those related to disease [44,45]. To
gain a better understanding of the relationship between
the genes implicated in a selected disease, network-based
tools were successfully utilized for a single disease, e.g.,
human inherited ataxias and disorders of Purkinje cell
degeneration [46].

Recently, to estimate whether human genetic diseases and
the corresponding disease genes are related to each other
at a higher level of cellular and organism organization, a
bipartite graph was utilized in a dual way: to represent a
network of genetic diseases, the "human disease net-
work", HDN, where two diseases are directly linked if
there is a gene that is directly related to both of them, and
a network of disease genes, the "disease gene network",
DGN, where two genes are directly linked if there is a dis-
ease to which they are both directly related [47]. This
framework, called the human diseasome, systematically
linked the human disease phenome (which includes all
the human genetic diseases) with the human disease
genome (which contains all the disease-related genes).
This diseaseome opens a new avenue for the analysis and
understanding of human genetic diseases, moving from
single gene-single disease viewpoint to a framework-
based approach [47].

The analysis of the HDN and DGN properties revealed
that these networks are significantly different in many
aspects from randomly generated networks of the same
size. By these analyses the various diseases became classi-
fied into 20 types, some diseases were unclassified, and
several diseases were annotated as belonging to multiple
classes. Similarly, genes were clustered into classes via
their associations with specific diseases [47]. Analysis of
this network of genetic diseases and disease genes linked
by known disease-gene associations revealed the common
genetic origin of many diseases. The vast majority of these
disease genes was non-essential and showed no tendency
to encode hub proteins. Overall, the expression pattern of
these disease-related genes indicated that they are local-
ized in the functional periphery of the network [47].

In the present study, we started from the disease-related
classification of genes from [47] and then performed a
large-scale analysis of the abundance of intrinsic disorder
in transcripts of the various disease-related genes. Since
structural information was available only for a limited
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number of these proteins, we used intrinsic disorder pre-
dictions. We also analyzed the correlation between vari-
ous HDN/DGN graph-related properties of genes and
intrinsic disorder. We compared the occurrence of alterna-
tive splicing in various disease classes and analyzed the
relationship between alternative splicing and intrinsic dis-
order. In essence, the aim of our study was to build an
unfoldome, which we define as the IDP-containing subset
of a given genome, associated with human genetic dis-
eases.

Opverall, our findings indicate that there are significant dif-
ferences in occurrence of intrinsic disorder in the proteins
arising from genes related to diseases as compared to pro-
teins arising from genes unrelated to specific diseases. Fur-
thermore, there are significant differences with respect to
intrinsic disorder among the various disease classes. Our
analysis shows noticeable positive trends that link intrin-
sic disorder to graph-related features of genes, such as the
number of other genes that are directly linked to a given
gene via the diseasome network. Certain disease classes
have a significantly greater fraction of genes involved in
alternative splicing, and these alternative splicing regions
are predicted to be highly disordered. In summary, disor-
der analysis provides interesting new insights regarding
the human diseasome.

Methods

The basis for our experimental dataset is the dual Human
Disease Network/Disease Gene Network (HDN/DGN)
[47]. Tt consists of two types of nodes that represent
human genes (1,777) and diseases (1,284), and links that
connect diseases with related genes. A disease and a gene
were connected by a link if mutation(s) in the correspond-
ing gene were implicated in the given disease [47]. The
network is dual, because it can be observed as both a
Human Disease Network (two diseases are linked if they
are both related to the same gene), or as a Disease Gene
Network (two disease genes are linked if they are both
related to the same disease).

We augmented the set of disease genes from DGN with
human genes with known protein sequences. Protein
sequences for all human genes were collected from NCBI
Gene database; we excluded all model proteins obtained
solely with automated genome annotation processing.
After this exclusion, our dataset consists of 1,751 human
disease related genes and 16,358 other human genes with
known protein sequences. If several protein sequences
were collected for a single gene; i.e., for genes with multi-
ple alternatively spliced isoforms, then any duplicate
sequences were discarded.

The diseases in DGN were grouped into twenty classes. In

addition to these twenty classes we introduced sets of
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unclassified diseases and diseases belonging to multiple
classes as two separate disease classes. We used this
approach to classify genes as well. In our model, a gene
belongs to all classes to which its related diseases also
belong. Furthermore, since a gene can be related to multi-
ple diseases that belong to various classes, we defined an
additional multiple class gene group. Thus, overall, this
approach defined 22 gene classes: the twenty original
classes, as well as classes of unclassified genes (related to
unclassified diseases) and multi-class disease genes (genes
related to diseases that belong to multiple classes). Note
that the 22 gene classes were not necessarily disjoint, and
that all genes from multiple class gene class also belonged
to at least two more classes. Two more sets were used for
comparison: disease genes (this set included all genes from
DGN with known protein sequences; i.e., genes from all
22 previously defined classes), and human genes (this was
the whole dataset that included the disease genes set).
Table 1 contains preliminary statistics for 22 disease/gene
classes and 3 additional classes of genes, namely multiple
class genes, disease genes, and human genes.

http://www.biomedcentral.com/1471-2164/10/S1/S12

Intrinsic disorder prediction

Three predictors of intrinsic disorder were used on the
protein sequences: PONDR® VSL2B, CH and CDF. VSL2B
is a variant of VSL2 predictor described in [48]. For an
amino acid sequence, VSL2B outputs ID prediction in [0,
1] range per residue. These outputs were then compared
to a threshold (we used the default threshold 0.5) and res-
idues with prediction value greater than the threshold
were predicted to be ID. In the case of multiple sequences
for one gene, sequences were aligned using our own mul-
tiple alignment algorithm, which was aimed at rediscover-
ing identical exons in multiple sequences by only
matching identical amino acids and optimizing the align-
ment for long contiguous matched subsequences. A
sequence obtained from such multiple alignments
included all exons from individual sequences, and was
considered to represent the whole gene sequence. For each
position in the alignment sequence, we obtained a single
prediction by averaging predictions for all residues from
protein sequences that are aligned at that position.

CH and CDF give outputs that predict disorder on the
level of whole proteins. The CH (Charge-Hydrophobicity)

Table I: Disease class names and acronyms, number of diseases and number of genes related to disease classes.

Class name Acronym Number of diseases % Number of genes %
(of 1284) (of 1751)

Skeletal SKEL 64 4.98% 56 3.20%
Bone BONE 30 2.34% 44 2.51%
Dermatological DERM 48 3.74% 80 4.57%
Cancer CANC 113 8.80% 207 11.82%
Developmental DEVE 37 2.88% 53 3.03%
Multi-class disease MCD 155 12.07% 209 11.94%
Cardiovascular CARD 41 3.19% 96 5.48%
Muscular MUSC 31 2.41% 68 3.88%
Immunological IMMU 69 5.37% 115 6.57%
Ophthamological OPHT 62 4.83% 120 6.85%
Connective tissue disorder CTD 28 2.18% 51 291%
Endocrine ENDO 56 4.36% 96 5.48%
Neurological NEUR 117 9.11% 254 14.51%
Psychiatric PSYC 17 1.32% 30 1.71%
Ear, Nose, Throat ENT 6 0.47% 44 2.51%
Respiratory RESP 13 1.01% 34 1.94%
Renal RENA 36 2.80% 58 331%
Hematological HEMA 88 6.85% 146 8.34%
Nutritional NUTR 4 0.31% 22 1.26%
Gastrointestinal Gl 23 1.79% 34 1.94%
Unclassified UNCL 31 2.41% 29 1.66%
Metabolic META 215 16.74% 289 16.50%
Multiple class genes MULT 295 16.85%
Disease genes DIS 1751 100.00%
Human genes HUM 18109

The same order of classes is used in graphs in the Results section; the first 22 classes are sorted in descending order with respect to the median of
disorder content (defined in Experimental procedures). The difference between "multi-class diseases" and "multiple class genes" is that "multi-class
diseases" set includes genes that are only related to diseases that are classified as "multiple” in [47], whereas "multiple class genes" includes genes

that are related to several diseases that belong to different classes.
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predictor is based on the finding [14] that two sets of pro-
teins - a set of natively unfolded proteins and a set of
small globular folded proteins - occupy two distinct
regions in the charge-hydrophobicity phase space, and
can be almost perfectly separated with a straight line. The
CH predictor calculates the mean hydrophobicity and the
mean net charge for a protein sequence, identifies the part
of the charge-hydrophobicity plane that the correspond-
ing point belongs to, and calculates its distance from the
separating line. The CDF predictor [16,49] compiles the
predictions of a per-residue predictor to a single binary
predictor per protein, by observing the cumulative distribu-
tion function (CDF) of per-residue predictions, and com-
paring it to a set of 7 boundary CDF points obtained from
a training set [16]. In the case of multiple sequences for
one gene, we used weighted voting to determine a single
prediction for the gene. For the CH predictor, we calculate
the mean of signed distances (distance is multiplied by -1
if prediction is negative, i.e. protein is predicted to be
ordered). The prediction for the gene depends on the sign
of the weighted mean (disorder if the weighted mean is
positive, order otherwise). Similarly to the CH predictor,
CDF predictor has a parameter (CDF count), the mean of
which over all proteins sequences for a gene is compared
to the threshold to determine a single prediction for the
gene.

Since VSL2B provides per-residue predictions, we measure
the disorder content, which is defined as the fraction of res-
idues in a protein sequence (or sequence alignment in
case of alternative splicing) that is predicted to be disor-
dered. This provides a single prediction value for a given
gene. Note that, unlike the CH and CDF predictors, this
prediction can take any value in the range [0, 1].

a-MoRF predictions

The predictor of an a-helix forming Molecular Recogni-
tion Feature (a-MoRF) is based on observations that pre-
dictions of order in otherwise highly disordered proteins
corresponds to protein regions that mediate interaction
with other proteins or DNA. This predictor focuses on
short binding regions within long regions of disorder that
are likely to form helical structure upon binding [34]. It
uses a stacked architecture, where PONDR® VLXT is used
to identify short predictions of order within long predic-
tions of disorder and then a second level predictor deter-
mines whether the order prediction is likely to be a
binding site based on attributes of both the predicted
ordered region and the predicted surrounding disordered
region. An a-MoRF prediction indicates the presence of a
relatively short (~20 residues), loosely structured helical
region within a largely disordered sequence [34]. Such
regions gain functionality upon a disorder-to-helix transi-
tion induced by binding to partner sequences [35,36].
Recently it has been indicated that the a-MoRF predictor
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has a poor sensitivity, i.e., misses many o-MoRF regions
[37], due to the small set of o-MoRF regions used in its
development. In this study, the modified o.-MoRF predic-
tor, a-MoRF-Predll, was used [37]. This algorithm was
improved by including additional a-MoRF examples and
their cross species homologues in the positive training set,
carefully extracting monomer structure chains from PDB
as the negative training set and including attributes from
recently developed disorder predictors, secondary struc-
ture predictions, and amino acid indices as attributes [37].

Alternative splicing analysis

For genes with multiple isoforms, the multiple alignments
provide the information on the alternative splicing
regions. We define the alternative splicing regions (AS
regions) as exons that are expressed in some, but not all
protein sequences for a given gene. Similarly as for a
whole gene, we define disorder content for an AS region
as the fraction of its residues that are predicted to be dis-
ordered.

Statistical analysis of the data

When disorder content measurements - as predicted by
VSL2B predictor - for all genes in a disease class were
observed as a sample, we used statistical tests to compare
the samples arising from different disease classes. Since we
cannot make any assumptions on the distributions for
disorder content in disease classes, we used the nonpara-
metric Mann-Whitney U test (Wilcoxon rank-sum test)
[50,51] to test whether two samples of observations (i.e.
disorder content for two classes) came from the same dis-
tribution. The Mann-Whitney U test was not appropriate
for similar comparison in the case of CH and CDF predic-
tors, as their predictions were binary. For these two predic-
tors, we counted the number of positive (disordered) and
negative (ordered) observation in two samples (classes)
and then used the y2 test to estimate the likelihood of
whether the two samples come from the same distribu-
tion.

We dealt with the possible problems of multiple hypoth-
eses testing by controlling false discovery rate (FDR) with
the Benjamini-Hochberg (for independent tests) [52] or
with the Benjamini-Yekutieli method [53].

Several of our hypotheses dealt with the dependency
between graph-related numeric properties of nodes repre-
senting genes and disorder content. The numeric proper-
ties were defined as:

e number of related diseases: number of diseases the
gene is directly related to (as provided in [47])
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¢ number of related disease classes: number of distinct
disease classes that diseases related to the gene belong
to

¢ degree: number of other genes that are related to the
diseases the gene is related to; or defined in the terms
of DGN graph: the number of other genes that are
directly linked to the gene (through some disease
node).

For such hypotheses we used (first-order) linear regression
to model the relationship, and then we used the corre-
sponding F-statistic to assess the validity of the linear
model.

The HDN/DGN graph was not completely connected.
Using the usual definition of connectivity in graphs, we
identified the connected components. One of the compo-
nents was large and included 516 disease nodes and 903
gene nodes. All of the remaining components contained
15 genes or less; for example, 399 components contain
only one gene each. We split the set of disease genes (DIS)
into the set of 896 disease genes that belong to the large
component (LARGECOMP) and the set of 855 disease
genes that belong to one of the smaller components
(SMALLCOMPS). Note that although the 16 disease genes
with no available protein sequences were not included in
the DIS set, and therefore neither in LARGECOMP nor the
SMALLCOMPS set, these 16 genes were still included in
the HDN/DGN graph for the purpose of identification of
connected components.

Results

Analysis of ID in human diseasome

Prediction of intrinsic disorder using PONDR®VSL2B pre-
dictor on all 30053 initially collected protein sequences
showed significant differences in predicted ID content for
the 7525 (25.04%) model protein sequences obtained
with automated genome annotation processing, and the
22528 (74.96%) protein sequences with additional exper-
imental support. The medians of disorder content for
model protein sequences was much higher (68.6% vs.
37.5%), as well as the first quartile (37.9% vs. 21.4%) and
the third quartile (96.5% vs. 61.7%). Furthermore, 40.6%
of model protein sequences were predicted to have disor-
der content above 80%, compared to only 11.3% for
remaining sequences.

The boxplot in Figure 1 depicts the distributions of disor-
der content for genes in 25 classes. The 22 disease classes
are sorted according to their medians of disorder content.
The distributions for the majority of classes appear to be
positively skewed. The ranges of disorder content between
the first and the third quartile differ greatly between
classes. For example, connective tissue disorder (CTD) class
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Figure |

Comparison of disorder content distributions in dis-
ease classes and human gene class using boxplots. The
22 disease classes are sorted according to their disorder
content medians. The boxes in the boxplot represent the
first quartile (left edge), median (line in the middle), and third
quartile (right edge); the whiskers extend to the lowest/high-
est values within the 1.5 IQR interval from the box (IQR is
the range between the first and the third quartile), while the
+ signs represent the outliers. Medians for two classes can be
compared by looking at the notches at their median lines; if
the notches do not overlap, the medians are different at the
significance level o = 0.05.

is ranked eleventh in disorder content median among the
22 disease classes, but has the highest third quartile.

The distributions of disorder content in disease classes are
further compared in histograms in Figure 2. The various
classes have irregular disorder content distributions that
can hardly be fit by any of the standard distributions. Fur-
thermore, the distributions associated with the different
disease classes are dissimilar both in shape and size. For
these reasons we use a nonparametric test, Wilcoxon rank-
sum test [50,51], to compare the distributions by compar-
ing their medians.

Figure 3 shows an overview of pair-wise comparisons of
disorder content medians. We used Benjamini-Yekutieli
(BY) method of faise discovery rate (FDR) control [53], as
the family-wise error rate multiple comparisons methods,
such as the Tukey-Kramer method [54,55], are much more
conservative. With an FDR rate of 0.05, it is expected that
2.8 of 56 class pairs reported to have significantly different
disorder content medians were false discoveries. The BY
method is still quite conservative as it does not make any
assumption on the independence of the pair-wise com-
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Figure 2

Comparison of disorder content distributions in dis-
ease classes and human gene class using stacked his-
tograms. The histograms are stacked horizontally to save
space. They show what fraction of genes in each class has dis-
order content within various ranges. Each of the five major
ranges, that cover 20% each, is further split into two smaller
10% ranges (they use the same color, but are divided with a
line). Distributions can be visually compared by observing the
balance between darker and lighter shades of gray; the class
with a darker histogram has on average more disorder con-
tent.

parisons. Therefore we included Table 2 which shows the
top 15 p-values and BY adjusted p-values for comparison
of disease classes with disease gene (DIS) set, as well as for
comparison of disease classes with human gene (HUM)
set. Several other classes, besides the one indicated in Fig-
ure 2, can be considered to have disorder content medians
significantly different from the DIS and HUM classes,
depending on how strict the comparisons are to be. For
example, cancer gene class has (borderline) significantly
different disorder content median than the human gene set
with a BY false discovery rate of 0.05. Several other classes
have low p-values in comparison with human gene set, but
the adjustment for the BY method pushes them above the
0.05 limit. Note that adjusted p-values would be ~3.7
times smaller if we used the Benjamini-Hochberg false
discovery method [52], which makes an assumption that
the tests are independent.

We continued with the investigation of the relationship
between disorder content and several HDN/DGN graph-
related properties. We used linear regression to model dis-
order content as a linear function of number of related dis-
eases for a gene (Figure 4), number of related disease classes
for a gene (Figure 5), and gene degree in DGN (Figure 6).

http://www.biomedcentral.com/1471-2164/10/S1/S12

Figure 3

Pairwise comparison of disorder content medians for
disease classes and human gene class. Filled squares
represent pairs for which adjusted Wilcoxon rank sum test
p-values are smaller than o = 0.05 (p-values are adjusted for
false discovery rate control with Benjamini-Yekutieli
method). Squares are filled black if the median for the row
class is greater than the median for the column class, or gray
if the median for the row class is smaller than the median for
the column class.

For all three cases, the F-test gave p-values that were
smaller than 0.05; for the number of related diseases and
gene degree the p-values were smaller than 0.01. Although
it is not likely that the observed linear trends were
obtained by pure chance, they explained only a very small
amount of variation in the disorder content; the respective
R2values were 6.12- 103, 3.51-103, and 6.10-10-3.

The disease genes set DIS is split almost evenly between
LARGECOMP, the 896 (51.17%) disease genes in the
large DGN component, and SMALLCOMPS, the 855
(48.83%) disease genes in the remaining small DGN com-
ponents. This split can be further observed in individual
disease classes. The histogram in Figure 7 shows the split
between LARGECOMP and SMALLCOMPS for all disease
gene classes. Using the y2 test to compare the split in each
class to the overall split in the disease gene set, we identi-
fied classes of disease genes that were significantly over-
represented or underrepresented in LARGECOMP. For
example, 85.99% of genes related to cancer diseases
belonged to the large component, while only 19.03% of
genes related to metabolic diseases belonged to the large
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Table 2: Comparison of disorder content medians of disease
classes with disease gene set (DIS) and with human gene set
(HUM).

Comparison with DIS Comparison with HUM

p-value BY p-value p-value BY p-value

META  9.10-103! 7.81-10-2 META  1.38:10-50 ].25-10-48
CANC 9.76:1007 4.19-1097 DIS 6.16-10-15 2.79-10-13
SKEL 3.92:109%5  0.001123 HEMA  7.13-10-08  2.]5-10-06
MCD 0.000548 0.011771 UNCL 0.000192 0.004349
DERM 0.001852 0.031810 CANC 0.002397 0.043445
HEMA 0.003684 0.052740 NUTR 0.007141 0.107855
UNCL 0.004152 0.05094I SKEL 0.011080 0.143441

DEVE 0.008386 0.090036 Gl 0.015816 0.179167
NEUR  0.033455 0.319267 IMMU  0.016768 0.168843
BONE 0.042742 0.367102 RENA 0.026136 0.236856
NUTR 0.063282 0.494113 RESP 0.093824 0.772967
MULT 0.090375 0.646849 MULT 0.105644 0.797813
MUSC 0.122463  0.809091 DERM  0.178919  1.247247
Gl 0.130811 0.802516 ENT 0.195823  1.267578
ENDO 0.164391 0.941288 DEVE 0.208293 1.258409

Both the p-values and the adjusted p-values (for Benjamini-Yekutieli
FDR control method) are listed in the table.

component. We then compared the medians of disorder
content for genes from LARGECOMP and SMALLCOMPS
for each class individually, as well as for the whole disease
genes set. The median of disorder content for LARGE-
COMP genes was significantly greater than for SMALL-
COMPS genes, with an adjusted p-value of 7.56-107 on
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Figure 4

Linear regression of disorder content with respect to
number of related diseases (for genes). The genes with
number of related diseases up to 4 are represented as a box-
plot, while the remaining genes are represented as points.
Note that the disorder content means (inverted triangles)
for subsets are greater than the respective medians, because
the disorder content distributions in these subsets are posi-
tively skewed.
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the rank sum test. Similarly, the median of disorder con-
tent for LARGECOMP genes related to metabolic diseases
was significantly greater than for the SMALLCOMPS genes
related to metabolic diseases, with an adjusted p-value of
0.0112. These comparisons are illustrated in Figure 8.
Substantial differences between disorder content medians
for genes in LARGECOMP and genes in SMALLCOMPS
can also be observed for several other classes; in the
majority of cases, the median for the LARGECOMP genes
is greater than the median for the SMALLCOMPS genes.
However, none of these differences were statistically sig-
nificant; which was partially due to the small numbers of
genes in subsets compared.

Alternative splicing and ID in human diseasome

We applied similar methodology to analyze alternative
splicing. We divided the set of all genes (HUM) into the
set of genes with multiple isoforms and the set of genes
with a single isoform. The same division can also be
applied to all disease classes, and the disease gene set. The
comparison of fractions of genes with multiple isoforms is
shown in Figure 9.

The disease gene set DIS had significantly higher fraction
of genes with multiple isoforms than the human gene set
HUM. Out of 1751 disease related genes, 410 genes
(23.4%) had multiple isoforms (average of 2.77 for dis-
ease related genes with multiple isoforms), and they
included 991 alternatively spliced regions (2.41 AS
regions per disease-related gene with multiple isoforms).
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Figure 5

Linear regression of disorder content with respect to
number of related disease classes (for genes). The
genes with number of related disease classes between | and
3 are represented as a boxplot, while the remaining genes
are represented as points. Note that the disorder content
means (inverted triangles) for subsets are greater than the
respective medians, because the disorder content distribu-
tions in these subsets are positively skewed.
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Figure 6
Linear regression of disorder content with respect to
gene degree in DGN.

Out of 16358 non-disease genes, 2445 (14.95%) had
multiple isoforms (average of 2.51 for non-disease genes
with multiple isoforms), and they included 4954 AS
regions (2.02 AS regions per non-disease gene with multi-
ple isoforms).

Furthermore, all the disease classes but one (unclassified
diseases) had higher fraction of genes with multiple iso-
forms than the HUM set, and for several classes this differ-
ence in fractions was statistically significant. The highest
fraction of genes with multiple isoforms was 40.10% for
the cancer disease gene class.

The comparisons of distributions of disorder content for
genes with multiple isoforms with genes with single iso-
form showed that for three sets the medians of disorder
content for genes with multiple isoforms were signifi-
cantly greater than for genes with single isoform: human
genes set HUM (BY adjusted p = 1.50-10-7), disease genes
set DIS (BY adjusted p = 5.08-10-7) and multiple class
genes set MULT (adjusted p = 0.0176). Individual tests for
three disease classes also returned low p-values (hemato-
logical, p = 0.0196; renal, p = 0.0283; bone, p = 0.0291),
but the corresponding BY adjusted p-values were above o
=0.05.

Figure 10 shows the distributions of disorder content for
genes with multiple isoforms (disease, non-disease, and
all genes) and for all human genes. Although there are sig-
nificant differences in medians, the distributions have
similar shapes; the peaks are in the 20-40% range, and
the fractions decrease with the increase in the disorder
content. Figure 10 also shows the disorder content distri-
butions for AS regions in disease related and non-disease
genes. These two distributions have different shape than
shape of the disorder content distributions for whole pro-
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Figure 7

Comparison of fractions of disease genes in the large
component and the small components of the DGN.
The classes with the + signs after their acronyms are signifi-
cantly overrepresented in the big component; the classes
with the — signs after their acronyms are significantly under-
represented in the big component. The error bars represent
one standard deviation or 68.2% confidence interval.

teins; the fractions decrease with the increase in the disor-
der content, but then suddenly increase in the 80-100%
range. The rank sum test for medians shows that the dis-
tribution of disorder content in AS regions is significantly
different from distributions of disorder content in whole
proteins for all genes (p ~10-142), as well as for subset of
genes with multiple isoforms (p ~10-48). However, as is
clearly seen in Figure 10, the distributions of disorder con-
tent for AS regions in disease genes and non-disease genes
were not significantly different (p = 0.5278). We com-
pared the disorder content distributions for AS regions for
genes from individual classes to the overall distribution
for AS regions from all human genes. The distributions for
classes with significant statistical results are shown in Fig-
ure 11. For developmental and neurological disease
classes, the fraction of AS regions in 80-100% range is sig-
nificantly increased. Similarly, there is an increase in 0-
20% range for hematological disease class. Metabolic dis-
ease class is an extreme case, as there is both a big increase
in 0-20% range and decrease in 80-100% range; the AS
regions in metabolic disease genes have significantly less
disorder when compared to whole sequences in human
genes.

a-MoRFs in the human diseasome

Figure 12 compiles the a-MoRF prediction data and
shows the fractions of genes with predicted o-MoRFs and
the densities a-MoRFs (number of a-MoRFs per residue)
for all disease classes, as well as for sets of all disease genes
and all human genes. The overall fractions of disordered
residues are included for comparison. The fractions of
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Figure 8

Comparison of distributions of disorder content in
LARGECOMP and SMALLCOMP for genes related
to metabolic diseases, and for the whole disease gene
set. Distribution of disorder content for human gene set is
included for comparison. The error bars represent one
standard deviation or 68.2% confidence interval.

genes with predicted a-MoRFs are highly correlated to
fractions of disordered residues (corr. coefficient ~0.89).

a-MoRFs and alternative splicing in the human diseasome
Figure 13 compares the overall density of predicted a-
MOoRFs versus density of predicted a-MoRFs in AS regions
for the 25 classes. The differences between densities of
MoRFs (overall vs. AS regions) are significant for the
majority of classes (listed by increasing p-values: HUM,
NEUR, META, CANC, DIS, GI, DEVE, IMMU, ENDO,
RESP, BONE, DERM, MUSC, CARD, HEMA, ENT), bor-
derline significant for NUTR and OPHT, and not signifi-
cant for the remaining classes (RENA, MCD, UNCL, SKEL,
MULT). Two classes (PSYC, UNCL) have no a-MoRFs pre-
dicted in AS regions (while genes in both classes have very
small number of residues in AS regions, for PSYC class this
difference in densities is still statistically significant).
Finally, Table 3 lists the quotients of the MoRF density in
AS regions over the overall MoRF density, as well as corre-
sponding p-value for comparison of these densities.

Evaluation of ID by binary classifiers

We compared the fractions of genes predicted to be disor-
dered by per-protein predictors CDF and CH in Figure 14.
Overall, the CDF predictor identified more genes to be
disordered than the CH predictor. The ratio was 2.79 for
human gene set, and 4.64 for the disease genes set. For dis-
ease classes it ranged from 2.63 for hematological disor-
der genes to 15.50 for immunological disorder genes;
additionally, for three disease classes - respiratory, renal
and unclassified - the CH predictor predicted all genes to

http://www.biomedcentral.com/1471-2164/10/S1/S12
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Figure 9
Comparison of fractions of disease genes with multi-
ple isoforms (i.e. with alternative splicing) and with
single isoform. The classes with the + signs after their
acronyms have significantly higher fraction of genes with mul-
tiple isoforms than the human gene set. The error bars rep-
resent one standard deviation or 68.2% confidence interval.

be ordered. The correlation coefficient for two vectors of
fractions was 0.66.

When compared to HUM gene set, the CDF predictor
identified significantly different fractions of disorder for
the classes META, DIS, HEMA, and (borderline signifi-
cance) IMMU, while the CH predictor predicted signifi-
cantly different fractions of disorder for the classes DIS,
META, MULT, IMMU, and RENA (in all these classes, frac-
tions of predicted disordered genes were significantly
smaller than the fraction for HUM set). When compared
to DIS gene set, the CDF predictor identified significantly
different fractions of disorder for classes META, CANC,
HEMA, and SKEL, while the CH predictor predicted signif-
icantly different fractions of disorder for class META.
Classes META and HEMA had smaller fractions of pre-
dicted disordered genes than DIS set, and classes CANC
and SKEL had greater fractions of predicted disordered
genes than DIS set.

The relationship between alternative splicing and intrinsic
disorder, as predicted by CDF and CH predictors, can only
be observed at the level of whole proteins. For the CDF
predictor, classes with significantly different fractions of
predicted disordered genes in genes with single isoform
and in genes with multiple isoforms were: DIS, HUM,
RENA, MULT, and (borderline significance) HEMA; in all
cases, fraction of predicted disordered genes for genes
with multiple isoforms was greater than for genes with a
single isoform. For the CH predictor, significant difference
of fractions of predicted disordered genes in genes with a
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Figure 10

Comparison of disorder content distributions for
whole proteins and for alternative splicing (AS)
regions. Series #1—4 represent disorder content distribu-
tions in |) disease genes with multiple isoforms, 2) non-dis-
ease genes with multiple isoforms, 3) human genes with
multiple isoforms, 4) all human genes. Series #5 and #6 rep-
resent disorder content distributions for AS regions in dis-
ease genes, and AS regions in non-disease genes. The error
bars represent one standard deviation or 68.2% confidence
interval.

single isoform and in genes with multiple isoforms was
only observed in the HUM set.

In general, CDF predicts a much higher fraction of genes
to be disordered than CH. Vectors of fractions of predicted
disordered genes in various classes for CDF and CH pre-
dictors are fairly correlated, though there are several
classes with substantial differences. For example, IMMU,
RESP, RENA, and UNCL have very low (or even zero) frac-
tions of disordered genes for CH predictor. The relative
difference between HUM and DIS sets is much larger for
the CH predictor (approximately two-fold) than for the
CDF predictor. For the CDF predictor, the fractions of pre-
dicted disordered genes for several classes are higher than
(although not strictly significantly higher) or similar to
the same fraction in the HUM set, while this is not the case
for CH predictor.

Overall, the fractions of predicted disordered genes for
both binary predictors are correlated to medians of disor-
der content for VSL2B predictors, but there are some strik-
ing differences. For example, low fractions of disordered
genes in IMMU class for both predictors, or relatively high
fraction of PSYC and RESP classes for CDF predictor.
Looking only at the medians without at least comparing
whole distributions is not a good way to compare preva-
lence of intrinsic disorder in two classes/sets of genes.

http://www.biomedcentral.com/1471-2164/10/S1/S12
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Figure 11

Comparison of disorder content distributions for AS
regions in various classes of human genes. Series #|
and #2 represent disorder content distribution for whole
human gene sequences and AS regions in human genes.
Series #3-6 represent disorder content distributions for AS
regions in: 3) developmental, 4) neurological, 5) hematologi-
cal, and 6) metabolic disease classes. The error bars repre-
sent one standard deviation or 68.2% confidence interval.

The difference between these two methods in the magni-
tude of predicted disorder is generally similar to previ-
ously published data [16,39,56]. This difference was
explaine by the fact that the CH-plot is a linear classifier
that takes into account only two parameters of the partic-
ular sequence - charge and hydropathy, whereas CDF
analysis is dependent upon the output of the PONDR®
VLXT predictor, a nonlinear neural network classifier,
which was trained to distinguish order and disorder based
on a significantly larger feature space that explicitly
includes net charge and hydropathy. According to these
methodological differences, CH-plot analysis is predis-
posed to discriminate proteins with substantial amounts
of extended disorder (random coils and pre-molten glob-
ules) from proteins with globular conformations (molten
globule-like and rigid well-structured proteins). On the
other hand, PONDR-based CDF analysis may discrimi-
nate all disordered conformations including molten glob-
ules from rigid well-folded proteins. Therefore, this
discrepancy in the disorder prediction by CDF and CH-
plot might provide a computational tool to discriminate
proteins with extended disorder from native molten glob-
ules, which might be predicted to be disordered by CDF,
but compact by CH-plot. This model is consistent with the
behavior of several intrinsically disordered proteins (e.g.,
[57]).

Figure 15 compares the results of the CH-plot and CDF

analyses by showing the distributions of proteins in each
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Figure 12

Comparison of fractions of genes with predicted o-
MoRFs and densities of a-MoRFs with fractions of dis-
ordered residues. The plot on the left compares fractions
of genes with predicted a-MoRFs (top/first series) with frac-
tions of disordered residues (bottom/second series). The
plot on the right compares densities of a-MoRFs (top/first
series) with fractions of disordered residues (bottom/second
series). In both plots the series are shown with different
scales, such that the values for HUM set are aligned. The
error bars represent one standard deviation or 68.2% confi-
dence interval.

disease within the CH-CDF phase space. In these plots,
each spot corresponds to a single protein and its coordi-
nates are calculated as a distance of this protein from the
boundary in the corresponding CH-plot (Y-coordinate)
and an averaged distance of the corresponding CDF curve
from the boundary (X-coordinate). Positive and negative
Y values correspond to proteins which, according to CH-
plot analysis, are predicted to be natively unfolded or
compact, respectively. Whereas positive and negative X
values are attributed to proteins that, by the CDF analysis,
are predicted to be ordered or intrinsically disordered,
respectively. Therefore, each plot contains four quadrants:
(-, -) contains proteins predicted to be disordered by CDF,
but compact by CH-plot (i.e., potential native molten
globules); (-, +) includes proteins predicted to be disor-
dered by both methods (i.e., proteins with extended dis-
order); (+, -) contains ordered proteins; (+, +) includes
proteins predicted to be disordered by CH-plot, but
ordered by the CDF analysis. A sharp cut-off at the right
side of each plot is due to the upper limit of a difference
between the CDF curve (which might have a maximum
value of 1.0) and a boundary separating IDPs and ordered
proteins in CDF plots. Figure 15 suggests that the majority
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Figure 13

Comparison of overall density of predicted MoRFs vs
density of predicted MoRFs in AS regions for 25
classes/sets. The error bars represent one standard devia-
tion or 68.2% confidence interval.

of the wholly disordered proteins could possibly be native
molten globules.

Discussion

Intrinsic disorder in predicted and experimentally
identified proteins

The difference in predicted disorder content between sets
of predicted model protein sequences and (partially) con-
firmed protein sequences is greater in both magnitude
and statistical significance than difference between any
two classes in our final data set. The simplest explanation
for this is that automated annotation procedure has a high
error rate that introduces a large number of incorrect
amino acid sequences. Alternatively, this dramatic differ-
ence in the level of predicted ID between the experimen-
tally and automatically identified proteins could be due
the bias of the existing identification techniques toward
the ordered proteins. To some extent this resembles a
problem the Structural Genomics Initiative Centers are
facing, where the use of the traditional target search crite-
ria (mostly based on the sequence identity) and protein
purification and isolation methods generated mostly
ordered targets, whereas alternatively identified and puri-
fied proteins awaiting structure determination were richer
in disorder than an average protein in PDB [58,59]. It has
been pointed out that this bottleneck was determined by
the strategy chosen were in efforts to identify proteins
with novel folds researchers started with proteins having
amino acid sequences unlike those of proteins with
known 3D structures [58,59]. In a similar manner, tradi-
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Table 3: Comparison of densities of predicted a-MoRFs in AS regions and complete genes.

Class acronym Density of MoRFs in AS/Overall density of MoRFs

p-value for comparison of densities of MoRFs

Gl 4.68
META 3.71
RESP 2.65
NEUR 2.45
DEVE 2.37
BONE 2.10
NUTR 2.06
DERM 1.75
ENDO 1.71
IMMU 1.69
CANC 1.68
ENT 1.50
HEMA 1.48
HUM 1.30
DIS 1.27
RENA 1.21
MCD 1.08
SKEL 1.06
MULT 0.99
OPHT 0.78
CARD 0.72
MUSC 0.66
CTD 0.32
PSYC 0

UNCL 0

3.84-10-02!
1.16-10-08!
1.19-10-010
2.54-10-076
4.76-10-017
1.28-10-010
0.017694
5.11-10-010
2.93-10-01
1.92-10-013
1.07-10-03!
0.00079422
4.65-10-007
6.12:10-233
1.10-10-030
0.55174
0.55638
2.8735
3.0621
0.049566
3.30-10-007
8.89-10-009
3.78:10-006
2.07-10-005
0.56375

The quotients of density of predicted a-MoRFs in AS regions over overall density of predicted a-MoRFs and the p-values for comparison of

corresponding densities.

tional experimental approaches developed for protein
identification could be biased toward order (as ordered
well-folded proteins where at the research focus for many
years), whereas predictive tools are mostly dealing with

CDF predictor

CH predictor

0 0.2 0.4 06 0 0.05 01 0.15 0.2
frac. of pred. disordered genes frac. of pred. disordered genes

Figure 14

Fractions of genes predicted to be disordered by
CDF and CH predictors. The error bars represent one
standard deviation or 68.2% confidence interval.

the remaining part of the proteomes and therefore are
inevitably identifying more disordered proteins.

The predicted sequences were unevenly distributed
between disease-related and disease-unrelated proteins.
In fact, the majority of the predicted "model" sequences
were products of the non-disease genes. Therefore, includ-
ing such sequences into the data set would introduce sig-
nificant bias for disorder in the non-disease gene part of
the data set. Based on these observations, we decided to
exclude such sequences from the final datasets.

An important assumption that we made was that ID pre-
dictors have no bias towards any class of genes. Although
errors are unavoidable in prediction of disorder, we
assumed that both false positive and false negative errors
occur equally likely in all gene classes. Under this assump-
tion we can expect that any observed variations in pre-
dicted disorder content between disease classes are due to
real variations in disorder content and not due to bias
introduced by prediction. Although we have not found
any obvious reason for questioning these assumptions,
more structural data are needed to test such biases.
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Figure 15

Comparison of CDF and CH predictions in various disease gene classes and gene sets. Each spot represents a gene
whose coordinates were calculated as the distance of the corresponding point in the CH-plot from the boundary (x-coordi-
nate) and the averaged distance of the corresponding CDF-curve from the CDF boundary (y-coordinate). Four quadrants in
each plot correspond to the following predictions: (-,-) proteins predicted to be disordered by CDF, but compact by CH, (-,+)
proteins predicted to be disordered by both methods, (+,-) ordered proteins, (+,+) proteins predicted to be disordered by
CH, but ordered by CDF. This is further illustrated by an explanatory plot at the bottom right corner. Percentages represent

the fractions of genes in the corresponding quadrants.

Intrinsic disorder in human genetic diseases

Contrary to our initial expectations based on known
abundance of ID in such diseases as cancer [22], cardio-
vascular disease [39], amyloidoses [40], neurodegenera-
tive diseases [41], diabetes and others [38], the disease
genes have in general slightly lower disorder content than
the non-disease genes. This can be explained by the fact
that the human disease network (HDN) and disease gene
network (DGN) are based on the genetic diseases and
genes, mutations in which were associated with disease
development, respectively. Based on the expression pat-
tern analyses of the DGN genes it has been concluded that
they are mostly localized in the functional periphery of
the protein-protein interaction network [47]. This periph-
eral localization of most disease genes was explained
assuming that mutations in topologically central, highly
connected, and widely expressed genes were more likely
to result in severe impairment of normal development,
leading to early lethality and therefore to deletion from
the population, whereas mutations compatible with sur-
vival into the reproductive years were more likely to be
maintained in a population [47]. Overall, the vast major-
ity of disease genes in DGN was non-essential and showed

no tendency to encode hub proteins [47]. On the other
hand, the above mentioned studies on various individual
diseases [22,38-41] dealt with all proteins known to be
associated with a given disease and not just those proteins
bearing the disease-promoting mutations. Therefore, the
various datasets of proteins associated with individual dis-
eases contained wider variety of proteins, including hubs.
Itis important to remember that hub proteins were shown
to be highly enriched in intrinsic disorder [26-28,60-64].
In fact, hubs were shown to have multiple interactions,
either being intrinsically disordered and serving as an
anchor, or acting as a stable globular scaffold that interacts
with intrinsically disordered regions of its targets [26-
28,60-64]. Therefore a systematic depletion of hub pro-
teins in HDN and DGN can in part explain their slightly
lower disorder contents.

Functional analysis of the disorder predictions for several
specific diseases

Our data revealed that there was a large variation in disor-
der content in various disease classes. Several disease
classes had median disorder content higher or compara-
ble with the human gene set HUM (SKEL, BONE, DERM,
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Table 4: Disease-related genes with multiple predicted o-MoRFs.

SKEL (44/56 ~78.6%)
BONE (29/44 ~65.9%)
DERM (55/80 ~68.8%)

CANC (152/207 ~73.4%)

FGFRI (2, 901, 38.5%)
GNAS (3, 1323, 74.9%), COL9AI (2, 945, 76.5%), AMELX (2, 205, 66.8%)

EDA

(4, 460, 63.9%), PLEC| (3, 4904, 56.6%), ADAR (2, 1226, 53.6%), SLC39A4 (2, 686, 36.3%), PVRLI (2, 658, 37.2%)
BRCAI (3, 1864, 80.6%), GNAS (3, 1323, 74.9%), FAS (3, 376, 59.3%), MXI| (3, 320, 88.8%), ATM (2, 3056, 21.1%),

DLCI (2, 1591, 62.7%), PML (2, 1225, 63.9%), ABLI (2, 1175, 59.2%), AR (2, 927, 60.0%), CHEK2 (2, 586, 37.2%),
CASP8 (2, 548, 38.5%), PARK2 (2, 465, 37.0%), SMARCBI (2, 385, 37.1%), SSX2 (2, 255, 77.3%)

DEVE (36/53 ~67.9%)
MCD (142/209 ~67.9%)

NSDI (2, 2706, 77.3%), UBE3A (2, 882, 27.8%), PVRLI (2, 658, 37.2%), TGIFI (2, 424, 77.4%)
MITF (5, 598, 75.6%), GNAS (3, 1323, 74.9%), PITX2 (3, 385, 81.0%), NSD| (2, 2706, 77.3%), ATRX (2, 2492, 72.2%),

COLIIAI (2, 1857, 81.3%), COLISAI (2, 1551, 74.4%), LICAM (2, 1257, 27.0%), USHIC (2, 926, 58.4%), FGFRI (2,
901, 38.5%), HPS4 (2, 783, 42.9%), KCNQI (2, 718, 42.3%), PVRLI (2, 658, 37.2%), DTNBPI (2, 383, 81.7%)

CARD (53/96 ~55.2%)
61.7%), TPMI (2, 443, 100.0%)
MUSC (45/68 ~66.2%)
34.1%), TPM3 (2, 378, 97.6%)
IMMU (59/115 ~51.3%)
UNG (2, 348, 44.5%)
OPHT (68/120 ~56.7%)
CTD (32/51 ~62.7%) -
ENDO (54/96 ~56.3%)
NEUR (154/254 ~60.6%)

DMD (7, 3771, 54.4%), DTNA (4, 767, 61.0%), KCNH2 (2, 1283, 46.0%), KCNQI (2, 718, 42.3%), EYA4 (2, 665,
DMD (7, 3771, 54.4%), PLEC| (3, 4904, 56.6%), COL6A3 (2, 3177, 28.6%), AR (2, 927, 60.0%), CHAT (2, 748,

FAS (3, 376, 59.3%), ATM (2, 3056, 21.1%), PTPRC (2, 1307, 42.2%), CASP8 (2, 548, 38.5%), PARK2 (2, 465, 37.0%),
OPALI (3, 1015, 36.1%), PITX2 (3, 385, 81.0%), PIP5K3 (2, 2108, 52.0%), EYAI (2, 600, 60.5%)

GNAS (3, 1323, 74.9%), AR (2, 927, 60.0%), HNF4A (2, 531, 51.6%), GCK (2, 495, 35.6%)
COLQ (3, 622, 76.0%), PTPRC (2, 1307, 42.2%), LICAM (2, 1257, 27.0%), KCNQ2 (2, 892, 55.5%), FOXP2 (2, 740,

78.9%), MTMR2 (2, 643, 31.6%), SPAST (2, 616, 51.1%), EYAI (2, 600, 60.5%), NR4A2 (2, 599, 55.8%), EIF2B4 (2,
555, 47.2%), CACNB4 (2, 538, 60.0%), OPRM I (2, 492, 34.6%), CCM2 (2, 475, 54.1%), PARK2 (2, 465, 37.0%), DCX
(2, 446, 57.8%), DRD2 (2, 443, 39.1%), PNKD (2, 440, 39.5%), ATXN3 (2, 370, 61.6%), FGF14 (2, 316, 46.2%)

PSYC (18/30 ~60.0%) -
ENT (26/44 ~59.1%)
RESP (12/34 ~35.3%) GDNF (2, 230, 51.3%)
RENA (35/58 ~60.3%) -

HEMA (58/146 ~39.7%)

OTOF (2, 2100, 33.9%), USHIC (2, 926, 58.4%), KCNQ4 (2, 695, 41.3%), EYA4 (2, 665, 61.7%)

CD44 (3, 807, 76.0%), ATRX (2, 2492, 72.2%), ANK| (2, 2001, 40.9%), ADAMTS 3 (2, 1497, 48.6%), EPB41 (2, 850,

66.2%), AMPD3 (2, 781, 36.9%), IGLLI (2, 228, 86.4%)

NUTR (6/22 ~27.3%) -
Gl (16/34 ~47.1%) GDNF (2, 230, 51.3%)
UNCL (12129 ~41.4%) -

META (75/289 ~26.0%)

GCK (2, 495, 35.6%), HFE2 (2, 426, 42.0%)

The class identifier is followed by the number of genes with predicted a-MoRFs, the total number of genes, and the fraction of genes with predicted
a-MoRFs in that class. This is followed by the list of genes with multiple (>= 2) predicted a-MoRFs. The numbers following each gene symbol are
the number of predicted a-MoRFs, the number of amino acids and the disorder content (note that in the case of alternative splicing the number of
amino acids includes all exons in a gene and may be larger than the lengths of individual isoforms).

CANC, DEVE, MCD), and/or several classes had a higher
or comparable fraction of highly disordered genes (SKEL,
BONE, CTD, DERM, DEVE, CTD, PSYC, MCD).

Unfortunately, structural information on proteins associ-
ated with various genetic diseases is sparse. Therefore, in
the analyses given below we used an established earlier
correlation between various protein functions and ID [23-
25]. The strongest correlation with ID was observed for
regulatory functions involved in biological processes such
as those described by the following functional keywords:
differentiation, transcription, transcription regulation,
spermatogenesis, DNA condensation, cell cycle, mRNA
processing, mRNA splicing, mitosis, apoptosis, protein
transport, meiosis, cell division, Ubl conjugation path-
way, Wnt signaling pathway, chromosome partition, neu-
rogenesis, ribosome biogenesis, chondrogenesis, growth
regulation [23-25]. The major ID-associated functional
keywords covered a wide spectrum of protein activities
including ribonucleoprotein, ribosomal protein, develop-

mental protein, chromatin regulator, hormone, growth
factor, GTPase activation, cytokine, GAP protein, repres-
sor, cyclin, activator protein phosphatase inhibitor.

Many of these processes and functions are performed by
proteins associated with various human genetic diseases.
Based on this correlation between ID and protein func-
tion, a given protein was assigned either to the ordered
protein family or to the IDR class, assuming that if this
protein possesses ID-associated function then it likely
contains at least one long IDR. A brief overview of ID-
enriched classes of human genetic diseases is presented
below. In addition, several examples of disease-related
genes encoding for important well-characterized IDPs are
discussed. This includes disordered proteins, mutations in
which were associated with particular diseases, a-synu-
clein (one of the major players in the Parkinson's diseases
pathogenesis), p53 (a key tumor-supressor protein),
huntingtin (a protein involved in the Huntington's dis-
ease pathogenesis), BRCA1 (a breast and/or ovarian can-
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cer-associated protein) and EWS-FLI1 fusion protein (a
protein associated with the Ewing's sarcoma family of
tumors).

lllustrative examples of well-studied IDPs encoded by
disease-related genes

a-Synuclein is a typical IDP that links various synuclein-
opathies, a group of neurodegenerative disorders charac-
terized by deposition of aggregated a-synuclein in the
cytoplasm of selective populations of neurons and glia
[65-68]. Clinically, synucleinopathies are characterized by
a chronic and progressive decline in motor, cognitive,
behavioral, and autonomic functions, depending on the
distribution of the lesions. Some of the most common
synucleinopathies include Parkinson's disease, dementia
with Lewy bodies, Alzheimer's disease, Down's syndrome,
multiple system atrophy, and neurodegeneration with
brain iron accumulation type 1. Different diseases are
characterized by the morphologically different a-synu-
clein-containing inclusions. In Parkinson's diseases and
various Lewy body diseases these inclusions are Lewy bod-
ies and Lewy; multiple system atrophy is characterized by
the accumulation of glial cytoplasmic inclusions and neu-
ronal cytoplasmic inclusions; whereas axonal spheroids
are frequently found in neurodegeneration with brain
iron accumulation type 1 [69,70].

Several observations implicate a-synuclein in the patho-
genesis the pathogenesis of Parkinson's disease. For exam-
ple, a direct role for a-synuclein in the neurodegenerative
processes in PD and Lewy body dementia was demon-
strated by genetic evidence. Autosomal dominant early-
onset Parkinson's disease and Lewy body dementia was
shown to be induced in a small number of kindreds as a
result of three different missense mutations in the a-synu-
clein gene, corresponding to A30P, E46K, and A53T sub-
stitutions in a-synuclein [71-73] or as a result of the
hyper-expression of the wild type a-synuclein protein due
to gene triplication [74-77]. Besides this genetic evidence
many other observations correlate a-synuclein and PD
pathogenesis (reviewed in [67-70,78-82]. Some of these
observations are briefly outlined below. The recombinant
a-synuclein easily assembles into amyloid-like fibrils in
vitro and this process is modulated by familial point muta-
tions. Characteristic depositions in various synucleinopa-
thies invariably contain aggregated o-synuclein. o-
Synuclein is abnormally phosphorylated, ubiquitinated,
and nitrated in pathology-related inclusions. Co-expres-
sion of chaperones or B-synuclein with a-synuclein in
transgenic animals was shown to suppress the neurode-
generation. a-Synuclein-positive proteinaceous deposits
were shown to accumulate in several animal models
where Parkinsonism was induced by exposure to different
neurotoxicants. All this indicates that a-synuclein is a key

http://www.biomedcentral.com/1471-2164/10/S1/S12

player in the pathogenesis of several neurodegenerative
disorders

Conformational behavior of a-synuclein under a variety
of environments has been extensively analyzed (for recent
reviews see [69,70,82]). This analysis has revealed that the
structure of a-synuclein is extremely sensitive to the envi-
ronment and can be easily modified. As a result, a-synu-
clein was shown to possess a remarkable conformational
plasticity, being able to adopt structurally unrelated con-
formations including the substantially unfolded state, an
amyloidogenic partially folded conformation, different a.-
helical or B-structural species folded to a different degree,
both monomeric and oligomeric, several morphologically
different types of aggregates, including various oligomers,
amorphous aggregates, and amyloid-like fibrils
[69,70,82]. Based on this astonishing conformational
behavior the concept of a protein-chameleon was pro-
posed, according to which the structure of a-synuclein to
a dramatic degree depends on the environment: the
choice between all the mentioned above conformations is
determined by the peculiarities of protein surroundings
[82]. Functionally, a-synuclein is an example of disor-
dered hub, as in a case-by-case studies, this protein was
shown to interact with at least 50 ligands and other pro-
teins [78], whereas a recent proteomic analysis identified
587 proteins involved in the formation of complexes with
a-synuclein in the dopaminergic cells, with 141 proteins
displaying significant changes in their relative abundance
(increase or decrease) after these cell were treated with
rotenone [83].

Huntingtin is a large protein with an estimated molecular
mass of 350 kDa, which contains a polyglutamine tract
near its N terminus expansion of which causes Hunting-
ton's disease [84]. Huntington's disease is a member of
the family of neurodegenerative diseases associated with
the expansion of a CAG repeat in the gene which is trans-
lated into the extension of the polyglutamine (polyQ)
tract in the corresponding protein. The polyQ repeat var-
ies between 16 and 37 residues in healthy individuals, and
individuals who are afflicted by disease have repeats of
>38 residues. The mechanistic hypothesis linking CAG
repeat expansion to toxicity involves the tendency of
longer polyQ sequences, regardless of protein context, to
form insoluble aggregates [85-93]. The far-UV CD spectra
of polyQ peptides with various repeat lengths were shown
to be nearly identical and were consistent with a high
degree of random coil structure, suggesting that the
length-dependence of disease is not related to a conforma-
tional change in the monomeric states of expanded polyQ
sequences [92]. In contrast, there was a dramatic accelera-
tion in the spontaneous formation of ordered, amyloid-
like aggregates for poly(Gln) peptides with repeat lengths
of greater than 37 residues.
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The N terminus of wild-type huntingtin interacts with
proteins involved in nuclear functions, including HYPA/
FBP-11, which functions in pre-mRNA processing (splice-
some function) [94], nuclear receptor co-repressor protein
(NCoR) [95], which plays a role in the repression of gene
activity, and p53 [96], a tumor suppressor involved in reg-
ulation of the cell cycle. Full-length huntingtin contains
candidate binding sites for other proteins with nuclear
functions. Huntingtin contains a PXDLS motif, a candi-
date-binding site for the transcriptional corepressor C-ter-
minal binding protein (CtBP) [97], suggesting that
huntingtin may play a role in transcriptional repression.

The p53 protein is a transcription factor that targets genes
involved in cell cycle regulation and apoptosis, among
other functions [98]. p53 is at the center of a large signal-
ing network, regulating expression of genes involved in
such cellular processes as cell cycle progression, apoptosis
induction, DNA repair, response to cellular stress, etc.
[99]. When p53 function is lost, either directly through
mutations or indirectly through several other mecha-
nisms, the cell often undergoes cancerous transformation
[100]. In fact, it is believed that all human cancers exhibit
defects in the p53-signaling pathway [101]. p53 is consid-
ered as the most commonly mutated tumour-suppressor
gene in human cancers [102]. In roughly half of all cancer
cases the p53 gene is mutated [100]. Typically these are
missense mutations within the DNA-binding core
domain resulting in the expression of a protein with aber-
rant function. Among missense mutations, there are
hotspot mutations at four codons (175, 248, 249 and
273), which together account for over 25% of all missense
mutations identified in human cancers [103]. Cancers
showing mutations in p53 are found in colon, lung,
esophagus, breast, liver, brain, reticuloendothelial tissues
and hemopoietic tissues [100]. For these reasons, a loss of
p53 function is believed to be a major factor in cancer
development [100] and this protein has attracted signifi-
cant attention of cancer researchers. A database of p53
point mutations was created http://www.iarc.fr/
p53Ulomepage.htm, which currently is the largest single-
locus mutation database, containing more than 10,000
somatic mutations identified by sequencing [103].

There are three structural domains in p53: N-terminal
translational activation domain, central DNA binding
domain, and C-terminal tetramerization and regulatory
domain. The analysis of the intrinsic order-disorder state
in these revealed that the DNA binding domain is intrin-
sically structured, whereas the terminal domains are
intrinsically disordered [104,105]. It has been shown that
p53 induces or inhibits over 150 genes, including p21,
GADD45, MDM?2, IGFBP3, and BAX [106]. At the transac-
tivation region, p53 interacts with TFIID, TFIIH, Mdm?2,
RPA, CBP/p300 and CSN5/Jab1 [99]. At the C-terminal
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domain, it interacts with GSK3p, PARP-1, TAF1, TRRAP,
hGcen5, TAF, 14-3-3, S100B(BB) and many other proteins
[99]. Overall, ~70% of the interactions between p53 and
its binding partners are mediated by IDRs in p53 [28]. A
bias toward intrinsic disorder is even more pronounced in
the sites of posttranslational modifications, with 86%,
90%, and 100% of observed acetylation, phosphoryla-
tion, and protein conjugation sites, respectively, found in
IDRs [28]. This concentration of functional elements
within IRDs comparing to just 29% of the residues being
disordered [26,28] clearly shows that p53 extensively uti-
lizes IDRs to mediate and modulate interactions with
other proteins.

BRCAI

About 5%-10% of breast cancer and ovarian cancer are
hereditary and 30%-50% of these are due to the auto-
somal dominant mutations in the susceptibility genes,
BRCA1 and BRCA2 [107]. In both cases the variants are
distributed uniformly along the entire coding region and
intronic sequences flanking each exon [108]. Women
with the BRCA1 mutations are susceptible to the develop-
ment of a breast cancer before age 35-40 and of an ovar-
ian cancer with a probability rate of, respectively, 45%-
60% and 20%-40%. Women carrying BRCA2 mutations
present a 25%-40% risk of breast cancer development
and a 10%-20% risk of an ovarian cancer development
[108].

BRCA1 participates in many different cellular pathways,
including transcription, apoptosis and DNA repair,
through direct or indirect interaction with a variety of
partners [109]. It has multiple alternatively spliced iso-
forms. One of the most studied BRCA1 isoform has 1863
amino acids and comprises a long highly disordered cen-
tral region flanked by ordered domains at the two termini.
At the N-terminus is a RING finger domain of 103 resi-
dues. This domain is reported to form a heterodimer with
BARD1 (BRCA1 associated RING domain 1) and to bind
to the ubiquitin carboxy-terminal hydrolase BAP1. At the
C-terminus are two tandem copies of the BRCA1 C-termi-
nal domain (BRCT) with 218 total residues for the two
domains. These two domains are reported to bind with
transcriptional activators and repressors like CtlP.

The structural characterization by various spectroscopic
techniques revealed that the 1500 amino acid long central
region of BRCA1 is completely disordered [110]. However
this disordered central region contains molecular recogni-
tion domains for both DNA and several protein binding
partners, including tumor suppressors such as p53, retin-
oblastoma protein (RB) and BRCA2; oncogenes like c-
Myc and JunB; DNA damage repair proteins such as
Rad50 and Rad51; and the Fanconi anemia protein
(FANCA) [110]. Importantly, BRCA1 was shown to have
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at least 24 alternatively spliced isoforms [111]. Alternative
splicing was shown to affect mostly central IDR of BRCA1
modulating its functionality by removing different func-
tional domains [32].

EWS-FLII fusion protein

Ewing's sarcoma family of tumors is a set of highly malig-
nant tumors of bone and soft tissue that occur in children,
adolescents, and young adults. These tumors share a
recurrent and specific t(11;22) (q24;q12) chromosome
translocation [112], which combines the N-terminus of
EWS (residues 1-264) from chromosome 22 with the C-
terminus of FLI1 (232 carboxy-terminal residues) from
chromosome 11 to form EWS-FLI1 fusion protein, a chi-
meric transcription factor. EWS-FLI1 is expressed only in
tumor cells and its function is required for the malignant
phenotype of Ewing's sarcoma family of tumors [113].
EWS-FLI1 retains the Ets DNA binding domain from FLI1
and modulates a diverse group of target genes by binding
to specific promoters including transforming growth fac-
tor-f receptor type-II [114], p21 (WAF1/CIP1) [115],
PTPL1 [116], Id2 [117], andtenascin-C [118], EAT-2
[119], mE2C [120], manic fringe [121], c-myc [122],
platelet-derived growth factor C [123], p57KIP [124], and
PIM-3 [125]. EWS-FLI1 also regulates gene expression by
modulating RNA splicing as shown by alteration of an
E1A splice site and interaction with U1C [126,127].
Despite these numerous activities, the EWS-FLI1 fusion
protein was shown to approach a largely unfolded confor-
mation under native conditions [128].

Hubness and intrinsic disorder in human diseasome

Linear regression of disorder content with respect to
number of related diseases, number of related disease
classes, and gene degree, shows that the correlation
between disorder content and these graph-related gene
features are positive and significant. The very low R2 coef-
ficient tells us that disorder content cannot be predicted
from these features (which was never our intention), but
that the positive correlations should be observed as
trends. Two genes with the highest number of related dis-
eases are PAX6, encoding a developmentally regulated
transcription factor paired box protein 6 (Pax-6), which is
related to 9 ophthalmological and one developmental
disorder, and TP53, a well-studied gene encoding another
transcription factor p53, that is involved in 11 different
forms of cancer. Some peculiarities of the p53 structure
and functions as well as a role of ID in function of this
protein were already discussed (see above), whereas a
brief overview of the Pax-6 protein is presented below.
Pax-6 is a member of a family of developmentally regu-
lated transcription factors that includes at least 8 members
expressed in temporally and spatially restricted patterns
during development and have been implicated in a
number of human congenital disorders, as well as in tum-
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origenesis [129]. These proteins are characterized by the
presence of a specific DNA-binding domain, termed the
paired domain. They are highly conserved across millions
of years of evolution and human PAX-6 gene is identical
to that of axolotol [129]. CD and NMR structural analyses
of the purified Pax-6 reveal that it is largely unstuctured in
solution. However, upon binding to the recognition DNA
sequence, the Pax-6 folds and displays CD spectroscopic
evidence of significant a-helical structure [129].

A number of related disease classes and gene degree are
features related to whether a gene/protein is a hub. The
observed trends in predicted disorder content provide
additional support for the hypothesis that hub proteins
are more likely to be disordered, to accommodate the var-
ious interactions and functions they are involved with
[26]. All three graph-related gene features are related to
the partition of the HDN/DGN graph into one large con-
nected component and a series of small connected com-
ponents. Genes for which any of the three graph-related
features is a high number belong to the large component.
Since such genes are more likely to be disordered, they
contribute to the difference in disorder content between
large component and small components. This difference
is particularly significant for genes related to metabolic
diseases. More than 60% of metabolic disease genes that
belong to the small components have disorder content in
the 0-20% range, and further 30+% have disorder content
in the 20-30% range. On the other hand, 25% metabolic
disease proteins that belong to the large component have
disorder content higher than 40%, which is lower when
compared to other disease proteins, but substantially
higher than the level of ID in metabolic disease proteins
in the small component. Of note, most of metabolic dis-
ease genes in the large component are also related to dis-
ease from other classes.

The difference in disorder content between one large con-
nected component of HDN/DGN and remaining small
connected components has to be observed with caution.
The connectivity of HDN/DGN is influenced heavily by
small components. Only one link between a gene/disease
in the large component and a disease/gene in some small
components that has not yet been established, but is dis-
covered in the future can change the partition completely,
by leading to inclusion of that whole small component
into the large component.

Alternative splicing, intrinsic disorder and human genetic
diseases

Prediction of intrinsic disorder in proteins encoded by
genes with alternative splicing shows that AS regions have
a much higher predicted disorder content than the whole
protein sequences. This is in agreement with previous
observations [32]. No difference was observed in disorder
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content for AS regions in disease and non-disease genes/
proteins; the distributions were almost identical. How-
ever, alternative splicing can be observed as an important
link between diseases and intrinsic disorder, as several dis-
ease classes have significantly higher fraction of genes
with multiple isoforms; i.e., with AS regions. The presence
of AS regions in such genes is associated with increased
disorder content. Distributions of disorder content in AS
regions were fairly similar across various genes, except for
three classes. DEVE and NEUR have a very high fraction of
highly disordered AS regions (disorder content 80-
100%). This fact might be related to the functionality of
proteins involved in these diseases (see above). AS regions
in META genes are much less disordered than AS regions
in other disease classes, just like whole META gene
sequences are much less disordered than other disease
genes.

Abundance of a-MoRFs in proteins associated with human
genetic diseases

IDRs frequently participate in protein-protein interactions
and molecular recognitions [1,5,10,22,30,34,130]. Many
IDPs and IDRs undergo disorder-to-order transitions
upon binding, which is crucial for recognition, regulation,
and signaling [1,4,14,28,34-37,131-133]. A recent con-
founding observation is that not all specific interactions
between intrinsically disordered proteins and their part-
ners are necessarily accompanied by the disorder-to-order
transitions, but may somehow remain unstructured even
after binding [134-138]. Nevertheless, a correlation has
been established between the specific pattern in the
PONDR® VL-XT curve and the ability of a given short dis-
ordered regions to undergo a disorder-to-helix transition
upon binding [139]. Based on these specific features, a
predictor helix-forming MoRFs was recently developed
[34,37]. Not all helix forming MoRF regions share these
same features, and some MoRFs form B- or irregular struc-
ture rather than the a-helix [35,36]. A further complica-
tion is that MoRFs can exhibit partner-dependent
structures, with at least one example morphing into helix,
sheet, or irregular structure, depending on the partner
[28]. Overall, therefore, these predicted MoRFs represent
only fractions of the total numbers of MoRFs for each
organism.

The application of the a-MoRF predictor to various data-
sets reveals that helix forming molecular recognition fea-
tures are highly abundant in proteins associated with all
human genetic diseases as well as in proteins encoded by
disease genes and by all human genes, suggesting the
existence of extensive interaction networks. In the HUM
set, 57.9% of human genes contain a-MoRFs. In the DIS
set, 54.4% of all disease-associated genes contain a-
MOoRFs, with significant variation between various disease
classes, ranging from 26.0% in metabolic diseases and
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27.3% in nutritional disorders to 73.4% in cancer and
78.6% in skeletal diseases. In most disease classes some
long, highly disordered proteins have multiple predicted
o-MOoRF regions (Table 4) that may potentially serve as
binding sites for multiple proteins. For example, DMD
from CARD/MUSC (7 predicted a-MoRFs, 3771 amino
acids, 54.4% disorder content); MITF from MCD (5, 598,
75.6%); DTNA from CARD (4, 767, 61.0%); EDA from
DERM (4, 460, 63.9%); PLEC1 from DERM/MUSC (3,
4904, 56.6%); BRCA1 from CANC (3, 1864, 80.6%);
GNAS from BONE/CANC/MCD/ENDO (3, 1323,
74.9%); OPA1 from OPHT (3, 1015, 36.1%); CD44 from
HEMA (3, 807, 76.0%); COLQ from NEUR (3, 622,
76.0%); PITX2 from MCD/OPHT (3, 385, 81.0%); FAS
from CANC/IMMU (3, 376, 59.3%); MXI1 from CANC
(3, 320, 88.8%).

Interestingly, fractions of proteins with predicted a.-MoRF
regions were highly correlated with the content of pre-
dicted disorder in a given dataset (correlation coefficient
is ~0.89). This suggests that the major function of IDRs in
the proteins from analyzed datasets is protein-protein
interaction. a-MoRFs, being disordered in the unbound
state and gaining a-helical structure upon interaction with
binding partners, suit ideally this function. In fact, it has
been proposed that that the involvement of IDRs in pro-
tein-protein interactions have several advantages [27],
including: (i) Decoupled specificity and strength of bind-
ing (high-specificity-low-affinity  interactions); (ii)
Increased speed of interaction due to greater capture
radius and the ability to spatially search interaction space;
(iii) Efficient regulation via rapid degradation; (iv)
Increased interaction (surface) area per residue; (V)
Strengthened encounter complex (less stringent spatial
orientation requirements); (vi) A single disordered region
may bind to several structurally diverse partners; (vii)
Many (structured) proteins may bind a single disordered
region; (viii) Less sterically restricted to allow elongation
of binding area; (ix) Efficient regulation via posttransla-
tional modification; (x) Ease of regulation/redirection by
alternative splicing; (xi) Overlapping binding sites due to
extended linear conformation; (xii) High evolutionary
rate; (xiii) Flexibility that allows masking (or not) of inter-
action sites or allow interaction between bound partners.
Many of these features are specific properties of o-MoRFs.

Abundance of a-MoRFs in alternative spliced regions of
proteins from human diseasome

Interestingly, our analysis revealed that o-MoRFs are
abundantly present in alternatively spliced regions of pro-
teins from some human genetic diseases. This observation
is very important as it sheds some light on the potential
functional repertoire of alternatively spliced regions. In
several diseases, these regions play a crucial role in pro-
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tein-protein interaction, as they are enriched in molecular
recognition features.

Concluding remarks

Intrinsically disordered proteins are highly abundant in
nature. Although they lack stable tertiary and/or second-
ary structure under physiological conditions in vitro, IDPs
carry out a number of crucial biological functions, being
involved in regulation, recognition, signaling and control.
The functional repertoire of IDPs complements the func-
tions of ordered proteins. Earlier studies revealed that
many IDPs are associated with various human diseases,
including cancer, cardiovascular disease, amyloidoses,
neurodegenerative diseases, diabetes and others, empha-
sizing the existence of intriguing interconnections
between IDPs, cell signaling and human diseases. Based
on these observations, the "disorder in disorders" or D?
concept was introduced.

Here, a large-scale analysis of the abundance of intrinsic
disorder in human genetic diseases joined into the human
diseasome [47] was performed. This analysis uncovered
an unfoldome (an IDP-containing subset of a proteome)
associated with human genetic diseases and revealed sev-
eral interesting peculiarities. Particularly, we are showing
here that proteins associated with various human genetic
diseases are enriched in intrinsic disorder with the IDP
content being markedly different for different genetic dis-
eases. The diseasome possesses a high level of MoRFs,
whose abundance correlates with the intrinsic disorder
level. Alternative splicing is commonly present in several
genetic diseases. Alternatively spliced regions in corre-
sponding proteins are predicted to be highly disordered
and in some diseases contain a significant number of
MoRFs. The various diseasome graph-related properties
are correlated with the levels of intrinsic disorder (hub
proteins are generally more disordered). These data were
used to build the unfoldome for the diseaseome.
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