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Abstract
Background: DNA repair genes provide an important contribution towards the surveillance and repair
of DNA damage. These genes produce a large network of interacting proteins whose mRNA expression is
likely to be regulated by similar regulatory factors. Full characterization of promoters of DNA repair genes
and the similarities among them will more fully elucidate the regulatory networks that activate or inhibit
their expression. To address this goal, the authors introduce a technique to find regulatory genomic
signatures, which represents a specific application of the genomic signature methodology to classify DNA
sequences as putative functional elements within a single organism.

Results: The effectiveness of the regulatory genomic signatures is demonstrated via analysis of promoter
sequences for genes in DNA repair pathways of humans. The promoters are divided into two classes, the
bidirectional promoters and the unidirectional promoters, and distinct genomic signatures are calculated
for each class. The genomic signatures include statistically overrepresented words, word clusters, and co-
occurring words. The robustness of this method is confirmed by the ability to identify sequences that exist
as motifs in TRANSFAC and JASPAR databases, and in overlap with verified binding sites in this set of
promoter regions.

Conclusion: The word-based signatures are shown to be effective by finding occurrences of known
regulatory sites. Moreover, the signatures of the bidirectional and unidirectional promoters of human DNA
repair pathways are clearly distinct, exhibiting virtually no overlap. In addition to providing an effective
characterization method for related DNA sequences, the signatures elucidate putative regulatory aspects
of DNA repair pathways, which are notably under-characterized.
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Background
Genomic signature techniques were originally developed
for identifying organism-specific characterizations [1,2].
Genomic signature methods carry the limitation that they
were not designed for sub-categorization of sequences
from within a single organism. To address this shortcom-
ing, the authors present genomic signature techniques
that can be used to identify regulatory signatures, i.e. to
classify DNA sequences regarding related biological units
within an organism, such as particular functions, pathways
and tissues.

The term genomic signature was introduced by Karlin and
Burge to refer to a function characterizing genomes based
on compositional variation [2]. Karlin and others showed
that a di-nucleotide odds-ratio was an effective genomic
signature. In addition to the odds ratio, oligonucleotide
frequencies (as n-mers) and machine learning methods
have been employed to classify sequences based on their
organism of origin [1,3-20], and to identify unique fea-
tures of genomic data sets. Such approaches were effec-
tively employed in a more refined focus examining tissue-
specific categorization of regulatory sequences in liver or
muscle [21-24].

Here, the authors employ a word-based genomic signa-
ture method. That is, given a group of related sequences, a
set of characteristic subsequences is discovered. Each sub-
sequence is called a genomic word. The set of characteristic
subsequences and their attributes constitute a word-based
genomic signature. It is hypothesized that each functionally
related group of sequences has a detectable word-based
signature, consisting of multiple genomic words. Further-
more, it is hypothesized that the genomic words that con-
stitute a word-based genomic signature are functional
genomic elements. Unlike most existing types of genomic
signatures, a word-based genomic signature provides
insights that are directly applicable to the problem of
identifying functional DNA elements, because the words
identify putative transcription factor binding sites.

The authors have identified two primary components of
word-based genomic signatures that are useful for charac-
terizing a set of related genomic sequences, RGS. The set
of statistically overrepresented words that can be derived
from RGS can be regarded as a word-based signature
(SIG1) since it provides information about the complete
set of potential control elements regulating the set of RGS.
A second signature (SIG2) provides a set of words  related
to the elements of  SIG1. The similarity between the sets
can be measured based on evolutionary distance metrics,
e.g. hamming and edit distance (also called Levenshtein
distance, see Methods). In addition to SIG1 and SIG2 sev-
eral post-processing steps built upon the two word-based
signatures are undertaken to create the final regulatory

genomic signature. These post-processing steps include
sequence clustering, co-occurrence analysis, biological signifi-
cance analysis, and a conservation analysis.

DNA repair genes represent a large network of genes that
respond to DNA damage within a cell. Discrete pathways
for DNA repair responses have been identified in the Reac-
tome database [25]. A discernable feature among genes in
these pathways is the promoter architecture. A large per-
centage of genes with DNA repair functions are regulated
by bidirectional promoters [26,27], whereas the rest are
regulated by unidirectional promoters. Bidirectional pro-
moters fall between the DNA repair gene and a partner
gene that is transcribed in the opposite direction. The
close proximity of the 5' ends of this pair of genes facili-
tates the initiation of transcription of both genes, creating
two transcription forks that advance in opposite direc-
tions. DNA repair genes rarely share bidirectional promot-
ers with other DNA repair genes. Rather, they are paired
with genes of diverse functions [26].

The formal definition of a bidirectional promoter requires
that the initiation sites of the genes are spaced no more
than 1000 bp from one another. Using these criteria the
authors have comprehensively annotated the human and
mouse genomes for the presence of bidirectional promot-
ers, using in silico approaches [26,28]. Bidirectional pro-
moters utilized repeatedly in the genome are known to
regulate genes of a specific function [26] and serve as pro-
totypes for complete promoter sequences for computa-
tional studies- i.e., one can deduce the full intergenic
region because exons flank each side. These promoters
represent a class of regulatory elements with a common
architecture, suggesting a common regulatory mechanism
could be employed among them. Recent molecular stud-
ies confirm that RNA PolII can dock at promoters while
simultaneously facing both directions [29], rather than
being restricted to a single direction.

DNA repair genes are likely to play a universal role in
damage repair, therefore mutations that affect their regu-
lation will become important diagnostic indicators in dis-
ease discovery. The authors have previously shown that
bidirectional promoters regulate genes with characterized
roles in both DNA repair and ovarian cancer [28]. A more
detailed analysis of the regulatory motifs within this sub-
set of promoters will address regulatory mechanisms con-
trolling transcription of this important set of genes. This
paper presents word-based genomic regulatory signatures
based on statistically overrepresented oligonucleotides (6-
8 mers) found in unidirectional and bidirectional pro-
moters of genes in DNA repair pathways. The results dem-
onstrate the effectiveness of using signatures for
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 classifying biologically related DNA sequences. The oligo-
nucleotides that comprise the signatures match known
binding motifs from TRANSFAC [30] or JASPAR [31] data-
bases. Furthermore, some examples overlap and agree
with experimentally validated regulatory functions.

Results
The effectiveness of genomic regulatory signatures that are
based on SIG1 and SIG2 was addressed by analyzing pro-
moter sequences for genes in DNA repair pathways of
humans. The promoters were divided into two classes, the
bidirectional promoters and the unidirectional promot-
ers, and distinct genomic signatures were calculated for
each class. The human DNA repair pathways included 32
bidirectional promoters and 42 unidirectional promoters.
Bidirectional promoters had a GC content ranging
between 47.55% and 77.09% with an average of 59.87%
while unidirectional promoters varied from 38.00% to
68.09%, averaging 50.84%.

Statistically overrepresented words

For each set of promoters, the statistically overrepresented
words were identified. The top 25 overrepresented 8-mer
words for each dataset are presented in Tables 1a and 1b,
respectively (See Additional file 1 and Additional file 2 for
the complete lists of words discovered in the bidirectional
and unidirectional promoter set respectively). Each word
is presented as an observed number or a statistical expec-
tation, respectively, including the number of sequences
the word is contained in (S or ES), the number of overall

occurrences of the word (0 or ES), and a score measuring

overrepresentation for the word . Addi-

tional information such as reverse complement words,
their relative positions in the list of top words, palindro-
mic words, and p-values assessing the statistical relevance
of the appearance of the word are also presented. A com-
parison of Tables 1a and 1b reveals that the characteristic
words for the two sets are distinct, with no overlaps. The
significance of the selected 25 words can be seen by com-
paring their scores and p-values to the scores and p-values
for all words, which are plotted in Figures 1 and 2).

Missing words
The dataset of bidirectional promoters and unidirectional
promoters contained 21,076 and 22,101 unique words of
length 8, respectively, out of 65,536 unique possibilities.
Thus, in each set, more than 43,000 possible words did
not occur (See Additional file 3 and Additional file 4 for
the complete lists of non-occurring words). The missing
words in each set were enumerated, and ranked in

descending order by their ES values. The top 25 missing
words are shown in Tables 2a and 2b.

The scatterplot of the ES values for all missing words is
shown in Figure 3; note the outlier values, which corre-
spond with the words in Tables 2a and 2b. The utility of
using missing words as regulatory signatures, as reported
in the literature [32,33], was consistent with the observa-
tion of no overlapping words between bidirectional and
unidirectional promoter sets.

Word-based clusters
For the top 2 overrepresented words, clusters were created
using two different distance metrics, hamming distance
and edit distance (Tables 3, 4, 5, 6, See Additional File 5,
6, 7, 8 for the complete lists of hamming distance and edit
distance based clusters for bidirectional and unidirec-
tional promoters). Each table contains the set of words
that clustered around a given 'seed' word. A comparison of
the sequence logos for the hamming-distance-based clus-
ters, presented in (Figures 4, 5), shows no overlap
between the two promoter sets. Similarly, no overlap
existed for clusters based on edit-distance (Figures 6, 7).

Sequence-based clusters

Sequences can be clustered and categorized into different
families (and subfamilies). The sequence-based clusters
presented here are restricted to two promoters per cluster.
Sequence clustering is a measure of the co-existence of sta-
tistically overrepresented words shared between pairs of
promoters as shown in Tables 7a,b. Each cluster contains
IDs for the sequences that make up the cluster and the
number of overrepresented words not shared within the
cluster (distance). Sequences in each set were grouped
into clusters based on the set of statistically overrepre-
sented words. The shared words for the top-scoring
sequence cluster of each data set were illustrated using the
GBrowse environment [34] (Figures 8, 9). The visualiza-
tion shows a strong positional correlation between the
sequences of the top sequence cluster for the bidirectional
promoters (Word: GCCCAGCC) and minor correlation
between the sequences for the unidirectional promoters
(Words: AGCAGGGC, GCAGGGCG).

Word co-occurrence

The promoter sets were characterized further by word co-
occurrence analysis, in which word-pairs that appeared
together more frequently than expected were identified.
Interesting pairs of words were selected from the overrep-
resented words of Table 1 (Table 8a,b). Each word pair
was characterized as the number of observed or expected
occurrences for the word combination (S or ES) and a sta-

S ln S
ES

* ( )⎛
⎝⎜

⎞
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Table 1: Top 25 words. The top 25 words for the bidirectional promoter set (a) and the unidirectional promoter set (b) of DNA-repair 
pathways. The words are sorted in descending order according to their statistical overrepresentation.

(a) Bidirectional

Word S ES O EO Sln(S/ES) RevComp Position Palindrome P-Value

TCGCGCCA 4 0.918299 4 0.9375 5.88611 TGGCGCGA 12538 No 0.015391

TCCCGGGA 8 3.97165 8 4.26667 5.60208 TCCCGGGA 2 Yes 0.068606

GGCCCGCC 10 5.85012 11 6.5 5.36123 GGCGGGCC 21073 No 0.066821

TCCCGGCT 6 2.54354 6 2.66667 5.14921 AGCCGGGA NA No 0.054084

CAGGGGCC 4 1.1085 4 1.13514 5.13315 GGCCCCTG 14546 No 0.028413

AGGGCCGT 5 1.80245 5 1.86667 5.10145 ACGGCCCT 613 No 0.04142

TCTGAGGA 5 1.84222 6 1.90909 4.99234 TCCTCAGA 5391 No 0.013499

CGTGGGGG 5 1.86693 5 1.93548 4.92572 CCCCCACG 20402 No 0.047015

TGCTGAGA 4 1.17067 4 1.2 4.91487 TCTCAGCA NA No 0.033766

CGCGGCCG 4 1.17067 4 1.2 4.91487 CGGCCGCG 20259 No 0.033766

TCTGGGAT 2 0.180188 2 0.181818 4.8138 ATCCCAGA 2854 No 0.014655

GGGGCCGG 5 1.92725 5 2 4.76672 CCGGCCCC 20866 No 0.052648

AGGGAGGG 6 2.73111 6 2.87234 4.7223 CCCTCCCT 9852 No 0.07159

AGAAAAGA 3 0.632564 3 0.642857 4.66976 TCTTTTCT NA No 0.027559

CGACTCCG 3 0.632564 3 0.642857 4.66976 CGGAGTCG NA No 0.027559

GGGCCAGG 7 3.61284 7 3.85714 4.6299 CCTGGCCC 19875 No 0.096315

ACTCCAGC 5 2.02051 5 2.1 4.53045 GCTGGAGT NA No 0.062121

CGGGCCGA 5 2.05153 5 2.13333 4.45426 TCGGCCCG 6128 No 0.065478

TGCGGAAT 2 0.220092 2 0.222222 4.41371 ATTCCGCA NA No 0.021321

GCCCCTCC 8 4.63031 9 5.03226 4.37454 GGAGGGGC 7041 No 0.070206

GCCGGCGA 3 0.707627 3 0.72 4.33335 TCGCCGGC 20143 No 0.036618

TGAAGCCA 4 1.38876 4 1.42857 4.23154 TGGCTTCA NA No 0.056996

GGCAGGGA 6 3.01111 6 3.18182 4.1367 TCCCTGCC 10531 No 0.103337

TGCCCGCG 5 2.19845 5 2.29167 4.10844 CGCGGGCA NA No 0.082773

CAGCAGCC 6 3.02748 6 3.2 4.10418 GGCTGCTG 19198 No 0.105399

(b) Unidirectional
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Word S ES O EO Sln(S/ES) RevComp Position Palindrome P-Value

ACCCGCCT 4 0.716577 4 0.727273 6.87826 AGGCGGGT 19440 No 0.006562

CTTCTTTC 5 1.7686 5 1.81818 5.19624 GAAAGAAG 13567 No 0.037733

AGGAAACA 4 1.16659 4 1.19048 4.92885 TGTTTCCT 21667 No 0.032947

GCAGGGCG 6 2.75716 6 2.86957 4.66535 CGCCCTGC 1311 No 0.071337

GGGGCTGC 5 2.036 5 2.1 4.49226 GCAGCCCC 16359 No 0.062122

TCTTCTTC 4 1.30438 4 1.33333 4.48225 GAAGAAGA NA No 0.046491

GGGGAGTA 3 0.682407 3 0.692308 4.44222 TACTCCCC 17991 No 0.033211

ATTAAAAT 4 1.36853 4 1.4 4.29023 ATTTTAAT 16078 No 0.053723

CGGAAACC 3 0.750393 3 0.761905 4.15731 GGTTTCCG NA No 0.042101

TGGGCGGA 4 1.44679 4 1.48148 4.06778 TCCGCCCA NA No 0.063337

CGGCGGCG 3 0.787559 3 0.8 4.01229 CGCCGCCG 22091 No 0.047421

TTTTTTGA 3 0.787559 3 0.8 4.01229 TCAAAAAA NA No 0.047421

TTTCTCCA 4 1.48541 4 1.52174 3.96242 TGGAGAAA 2378 No 0.068398

AGCCGGCT 3 0.805285 3 0.818182 3.94551 AGCCGGCT 14 Yes 0.050071

CCTCTTTA 2 0.282982 2 0.285714 3.91104 TAAAGAGG NA No 0.033814

CGCCCCTT 6 3.12976 6 3.27273 3.90482 AAGGGGCG 21917 No 0.113859

GCGCCGCG 5 2.33164 5 2.41379 3.81433 CGCGGCGC 15062 No 0.097601

ATTCCCAG 3 0.843245 3 0.857143 3.80733 CTGGGAAT 21297 No 0.055985

TCTCCCCT 4 1.56036 4 1.6 3.7655 AGGGGAGA 18183 No 0.07881

TCCGCCGG 3 0.855341 3 0.869565 3.7646 CCGGCGGA NA No 0.057938

CTCCCGCT 3 0.867789 3 0.882353 3.72126 AGCGGGAG NA No 0.059981

TGCGCCGA 2 0.316812 2 0.32 3.68519 TCGGCGCA 3202 No 0.041483

GGGCGCCC 4 1.59514 4 1.63636 3.67732 GGGCGCCC 23 Yes 0.083901

GTGCGTTT 3 0.884961 3 0.9 3.66247 AAACGCAC NA No 0.062855

TTGGTCTC 4 1.60537 4 1.64706 3.65176 GAGACCAA NA No 0.085429

Table 1: Top 25 words. The top 25 words for the bidirectional promoter set (a) and the unidirectional promoter set (b) of DNA-repair 
pathways. The words are sorted in descending order according to their statistical overrepresentation. (Continued)
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tistical overrepresentation score . No over-

lap was found between the bidirectional and the
unidirectional set, nevertheless, the word pairs for the
bidirectional promoter set achieved a higher number of
sequence hits for the pairs.

Comparison of word-based properties
The distances between the scores for different word sets
(Figure 10) provided a basis for discriminating among
bidirectional promoters and unidirectional promoters,
(Table 9 and Figure 11), whereas similarities were identi-
fied from correlated words (Table 10 and Figure 12).
These tables and figures show that word-based genomic

S ln S
ES

* ( )⎛
⎝⎜

⎞
⎠⎟

Score-based scatterplotsFigure 1
Score-based scatterplots. Shown here are the scatterplots for the scores of all words contained in the bidirectional pro-
moter dataset (a) and the unidirectional promoter dataset (b) of the DNA repair pathways.

P-Value-based scatterplotsFigure 2
P-Value-based scatterplots. Scatterplots of the p-values for all words contained in the promoters of the DNA repair path-
ways exhibiting bi-directionality (a) and uni-directionality (b).
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Table 2: Top 25 words not part of promoter sets. The top 25 words that were not discovered as being part of the bidirectional (a) and 
unidirectional (b) promoter set of DNA-repair pathways. The words are sorted in descending order by the expected sequence 
occurrence (ES).

(a) Bidirectional (b) Unidirectional

Word ES Word ES

GCGGCCCG 3.34859 CGCCCCTG 4.12035

GGAGGCGC 2.94738 GGCGGAGG 3.91749

GCCTCTCC 2.84694 AAAGGGGC 3.15484

GCTGAGGA 2.59894 CTGGTCTC 3.14943

GCCGGGGC 2.56699 GCCTGGGC 2.75165

GCGCCTCC 2.56699 GTTTGAAA 2.47933

GCGAGGCG 2.54354 GCGCGAGG 2.25604

AGTGGGGG 2.46473 TTCTTTTC 2.23192

CTGGAGGC 2.45191 ATTCTGGA 2.21123

CGGGGGTG 2.41485 CAGGCAGG 2.17759

GAGGGGAG 2.41485 ATTTTGTT 2.15141

TGCCCGCC 2.39066 CAAAAAAA 2.13045

GCACCCCC 2.23699 AAACCTCA 2.11329

GCCTCTGG 2.23699 TCCCGCCT 2.11329

TGCCTGCG 2.23699 CCCCGCCG 2.05605

GGGCTCGC 2.21328 GAGGAGGC 2.05268

GGCAGGGC 2.18091 AGCACTGG 2.02023

CAGCAAGG 2.1341 TTATCTGC 2.02023

CGAGGCCT 2.12325 CCGCCCCA 1.99873

GAGGGAAG 2.12325 CCCGCCCT 1.94132

GGAGCTGA 2.11348 CTCTTTCT 1.94132

CCTGTCCT 2.10187 GAGAGAGC 1.94132

TCCAGGAC 2.0706 GGCCCAAC 1.94132

CCAGGCCG 2.06039 GTCTGGGC 1.94132

CGCCTGTC 2.06039 TAGGGGGC 1.94132
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regulatory signatures can be used to describe promoter
sets based on their uniqueness.

Regulatory Database Lookup
We developed a method [35] to determine if these signa-
tures matched any known motifs from TRANSFAC or JAS-
PAR (Table 11). The words from bidirectional promoters
matched known motifs in 8/10 cases, with the words from
unidirectional promoters matching known motifs in 8/10
cases as well. Compared to the consensus sequences of the
known motifs, the matches were off by no more than one
letter. Some of the matches corresponded to nucleotide
profiles determined from collections of phylogenetically
conserved, cis-acting regulatory elements [36]. Imperfect
matches resulted from bases that flanked the core motifs
(Table 11a, b) (see also [37]). Such events decreased the
detection score to slightly above the threshold of 85%
similarity. Overall, the findings in Table 11 validate that
the signatures have biological relevance and suggest that
the remaining signatures, which do not match known
motifs could represent novel binding sites.

Conservation analysis
To address selective constraint in the word sets, sequence
conservation was examined for pairs of co-occurring
words. The top ten word-pairs from the unidirectional
and bidirectional datasets were examined in 28-way
sequence alignments using the PhastCons [38] dataset in
the UCSC Human Genome Browser [39]. The results are

 

presented in Table 12. The bidirectional promoters
revealed 9/10 word sets had a record of sequence conser-
vation in one or both words (Table 12a). The analysis of
the unidirectional promoters, presented in Table 12b,
showed partial conservation in only one of the word-
pairs.

Biological implications
The words in the list of bidirectional promoters were
examined for known biological evidence. For instance,
the gene POLH has a known binding motif, TCCCGGGA,
annotated as a PAX-6 binding site in the cis-RED database
http://www.cisred.org/. This is the same sequence as the
second most common word in the bidirectional promot-
ers. Along with sequences that cluster with this word, we
found that 19/32 genes in the bidirectional promoter set
had a match to this word cluster (cluster 2) within 1 kb of
their TSS, while 15/32 bidirectional promoters had a
match to the words of cluster 1. Furthermore, this word
also represents a Stat5A recognition site (Table 11). The
RAD51 gene, which is known to be regulated by STAT5A,
showed two examples from this word cluster (TGCCG-
GGA and TCCCGGGC).

Limitations of the approach
The presented approach does not attempt to automate the
process of finding a small set of regulatory elements for a
limited set of related genomic signatures like MEME [40]
or AlignACE [41]. The different approach presented here
produces more detailed information outside of the lim

Scatterplot of words not detected in the promotersFigure 3
Scatterplot of words not detected in the promoters. Scatterplots for the expected number of sequence occurrences 
for every word not detected in the bidirectional (a) or unidirectional (b) promoters.
Page 8 of 27
(page number not for citation purposes)

http://www.cisred.org/


BMC Genomics 2009, 10(Suppl 1):S18 http://www.biomedcentral.com/1471-2164/10/S1/S18
Table 3: Top 2 clusters for the bidirectional promoter. The word-based clusters for the two most overrepresented words for the 
bidirectional promoters. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGA.

(a) Rank 1

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

TCGCGCCA 4 0.918299 4 0.9375 5.88611 TGGCGCGA 12538 No

TCGCCCCA 3 0.805161 3 0.820513 3.94598 TGGGGCGA 2834 No

TAGCGCCA 1 0.263929 1 0.266667 1.33207 TGGCGCTA 4918 No

TCGAGCCA 1 0.469775 1 0.47619 0.755501 TGGCTCGA NA No

TCGCGACA 1 0.655751 1 0.666667 0.421975 TGTCGCGA NA No

TCGGGCCA 1 0.683955 1 0.695652 0.379863 TGGCCCGA NA No

TTGCGCCA 1 0.693903 2 0.705882 0.365423 TGGCGCAA NA No

TCGCGGCA 1 0.826074 1 0.842105 0.191071 TGCCGCGA NA No

TCGCGTCA 1 0.84063 1 0.857143 0.173604 TGACGCGA 4051 No

TCGCGCCC 1 1.51582 1 1.5625 -0.41596 GGGCGCGA 13089 No

CCGCGCCA 2 2.5054 2 2.625 -0.4506 TGGCGCGG NA No

(b) Rank 2

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

TCCCGGGA 8 3.97165 8 4.26667 5.60208 TCCCGGGA 2 Yes

TCCAGGGA 2 0.941495 2 0.961538 1.50687 TCCCTGGA NA No

TCCCGAGA 2 1.05556 2 1.08 1.27816 TCTCGGGA 13248 No

TGCCGGGA 1 0.514348 1 0.521739 0.664856 TCCCGGCA NA No

TCCCGTGA 1 0.702073 1 0.714286 0.353718 TCACGGGA NA No

TCCCAGGA 4 3.71413 5 3.97222 0.296597 TCCTGGGA 19059 No

TCTCGGGA 2 1.73986 2 1.8 0.278683 TCCCGAGA 3074 No

ACCCGGGA 1 0.785281 1 0.8 0.241714 TCCCGGGT 20941 No

TCCCCGGA 1 0.852649 1 0.869565 0.159407 TCCGGGGA NA No

TCCCGCGA 1 1.01424 1 1.03704 -0.01414 TCGCGGGA NA No

TCCCGGAA 3 3.29619 3 3.5 -0.28247 TTCCGGGA NA No

TCCTGGGA 1 1.32696 1 1.36364 -0.28289 TCCCAGGA 13129 No

TCCCGGGG 3 3.34568 3 3.55556 -0.32717 CCCCGGGA 21071 No
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TCCCGGGT 1 2.38044 1 2.48889 -0.86729 ACCCGGGA 13746 No

CCCCGGGA 1 2.78651 1 2.93333 -1.02479 TCCCGGGG 19211 No

GCCCGGGA 1 3.73853 2 4 -1.31869 TCCCGGGC 21163 No

TCCCGGGC 3 5.1829 4 5.68889 -1.64025 GCCCGGGA 21138 No

Table 3: Top 2 clusters for the bidirectional promoter. The word-based clusters for the two most overrepresented words for the 
bidirectional promoters. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGA. (Continued)
Page 10 of 27
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Table 4: Top 2 clusters for the unidirectional promoter. The word-based clusters for the two most overrepresented words for the 
bidirectional promoters. Rank 1 refers to word ACCCGCCT and Rank 2 to CTTCTTTC.

(a) Rank 1

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

ACCCGCCT 4 0.716577 4 0.727273 6.87826 AGGCGGGT 19440 No

ATCCGCCT 1 0.132296 1 0.133333 2.02271 AGGCGGAT NA No

ACCAGCCT 2 0.738772 2 0.75 1.99183 AGGCTGGT 1303 No

AGCCGCCT 1 0.657331 1 0.666667 0.419567 AGGCGGCT 1056 No

ACCCACCT 1 0.738772 1 0.75 0.302766 AGGTGGGT NA No

ACGCGCCT 1 1.16147 1 1.18519 -0.14969 AGGCGCGT NA No

CCCCGCCT 1 2.45503 2 2.54545 -0.89814 AGGCGGGG 21912 No

(b) Rank 2

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

CTTCTTTC 5 1.7686 5 1.81818 5.19624 GAAAGAAG 13567 No

CTACTTTC 1 0.180301 1 0.181818 1.71313 GAAAGTAG NA No

CTTCTTCC 1 0.304671 1 0.307692 1.18852 GGAAGAAG 5306 No

CTGCTTTC 2 1.15305 2 1.17647 1.10147 GAAAGCAG 9703 No

CGTCTTTC 1 0.371023 1 0.375 0.991491 GAAAGACG 20167 No

CTCCTTTC 3 2.36561 3 2.45 0.712729 GAAAGGAG 11346 No

CTTCTATC 1 0.607134 1 0.615385 0.499005 GATAGAAG NA No

CTTCCTTC 1 0.921427 1 0.9375 0.0818318 GAAGGAAG 10908 No

GTTCTTTC 1 1.07027 1 1.09091 -0.067912 GAAAGAAC 17502 No

CTTTTTTC 1 1.2055 1 1.23077 -0.186894 GAAAAAAG NA No

TTTCTTTC 2 3.4628 2 3.63636 -1.09786 GAAAGAAA NA No
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ited list by showing a larger (complete) set of words that
are ranked based on their statistical significance. Addi-
tionally, word- and sequence-based clusters, word co-
occurrences and functional significance of the words have
been computed as a means of adding more detail to the
retrieval of putative elements allowing a more informed
interpretation of the actual regulatory function of a word.

Conclusion
This paper presents a word-based genomic signature that
characterizes a set of sequences with (1) statistically over-
represented words, (2) missing words, (3) word-based
clusters, (4) sequence-based clusters and (5) co-occurring
words. The word-based signatures of bidirectional and
unidirectional promoters of human DNA repair pathways
showed virtually no overlap, thereby demonstrating the
signature's utility.

In addition to providing an effective characterization
method for related DNA sequences, the signatures eluci-
date putative regulatory aspects of DNA repair pathways.

Genes in DNA repair pathways contribute to diverse func-
tions such as sensing DNA damage and transducing the
signal, participating in DNA repair pathways, cell cycle
signalling, and purine and pyrimidine metabolism. The
synchronization of these functions implies co-regulatory
relationships of the promoters of these genes to ensure the
adequate production of all the necessary components in
the pathway. We present a subtle, yet detectable signature
for bidirectional promoters of DNA repair genes. The con-
sensus patterns, detected as words and related clusters of
words, provide a DNA pattern that is strongly represented
in these promoters. Although the proteins that bind these
sequences must be examined experimentally, the data
show that a protein such as STAT5A could be involved in
regulating many of these promoters. STAT5A has biologi-
cal relevance in DNA repair pathways, playing a known
role in the regulation of the RAD51 gene. We propose that
this initial study of a network of DNA repair genes serve as
a model for studies that examine regulatory networks. As
the relationships among genes involved in DNA repair
pathways are elucidated more thoroughly, the analyses of

Table 5: Edit cluster for bidirectional promoters. The word-based clusters for the two most overrepresented words for the 
bidirectional promoters according to the edit distance metric. Rank 1 refers to word TCGCGCCA and Rank 2 to TCCCGGGA.

(a) Rank 1

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

TCGCGCCA 4 0.918299 4 0.9375 5.88611 TGGCGCGA 12538 No

TCGCCCCA 3 0.805161 3 0.820513 3.94598 TGGGGCGA 2834 No

TAGCTCCA 2 0.352982 2 0.357143 3.46897 TGGAGCTA NA No

TCTCGCGA 2 0.438673 2 0.444444 3.0343 TCGCGAGA 4937 No

TCGCCACA 2 0.455424 2 0.461538 2.95935 TGTGGCGA 4669 No

...

(b) Rank 2

Word S ES O EO Sln(S/ES) RevComp. Position Palindrome

TCCCGGGA 8 3.97165 8 4.26667 5.60208 TCCCGGGA 2 Yes

TCCCGGCT 6 2.54354 6 2.66667 5.14921 AGCCGGGA NA No

ATCCGGGA 2 0.395077 2 0.4 3.24364 TCCCGGAT NA No

TCTCGCGA 2 0.438673 2 0.444444 3.0343 TCGCGAGA 4937 No

TTCCTGGA 2 0.493082 2 0.5 2.80045 TCCAGGAA 9505 No

...
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their regulatory relationships will gain more power to
detect a larger number of DNA words that are shared in
common among the network of genes. The results of this
analysis are supported by evidence of sequence conserva-
tion and overlap between predicted sites and known func-
tional elements.

Methods
Two fundamental elements of word-based genomic signa-
tures are created with the approach presented in [42,43].
SIG1 identifies the set of statistically overrepresented
words, while SIG2 represents a set of words from SIG1
that is in itself similar to the elements of SIG1, based on a
specific distance measure.

The set SIG1 is computed as described in [42,43], which
is summarized as follows:

1. Identify maximally repeated words of length [m, n].

2. Remove low complexity words, redundant words,
and words that are contained in repeat elements.

3. For each word compute a 'score' that characterizes
the statistical overrepresentation of the word.

4. Select the words with the highest scores.

The set SIG2 is found by taking each of the elements of
SIG1 and performing 'word clustering'. For each word w ∈
SIG1, this involves a two-step process:

1. Construct a set (cluster) of words from RGS that
have a 'distance' of no more than h from word w.
Hamming distance and edit distance are used for this
step.

2. Construct a motif that characterizes the set of words
found in step 1.

Word-based signature (SIG1)
As the foundation of the signature generation it is neces-
sary to compute the set of distinct words Wwc in a set of
input sequences S. In order to determine the statistical sig-
nificance of w ∈ Wwc it is necessary to count the total

Table 6: Edit cluster for unidirectional promoters. The word-based clusters for the two most overrepresented words for the 
unidirectional promoters according to the edit distance metric. Rank 1 refers to word ACCCGCCT and Rank 2 to CTTCTTTC.

(a) Rank 1

Word S ES O EO Sln(S/ES) Rev.Comp. Position Palindrome

ACCCGCCT 4 0.716577 4 0.727273 6.87826 AGGCGGGT 19440 No

AGCCGGCT 3 0.805285 3 0.818182 3.94551 AGCCGGCT 14 Yes

AGGCGCCT 3 1.11427 3 1.13636 2.97124 AGGCGCCT 92 Yes

AAGCGCCT 4 2.15617 4 2.22727 2.47184 AGGCGCTT 5872 No

ACCTGCAT 2 0.592063 2 0.6 2.43458 ATGCAGGT NA No

...

(b) Rank 2

Word S ES O EO Sln(S/ES) Rev.Comp. Position Palindrome

CTTCTTTC 5 1.7686 5 1.81818 5.19624 GAAAGAAG 13567 No

TCTTCTTC 4 1.30438 4 1.33333 4.48225 GAAGAAGA NA No

CCTCTTTA 2 0.282982 2 0.285714 3.91104 TAAAGAGG NA No

CTTTTTCA 3 0.917377 3 0.933333 3.55455 TGAAAAAG NA No

GTTCATTC 2 0.359828 2 0.363636 3.43055 GAATGAAC NA No

...
Page 12 of 27
(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S18 http://www.biomedcentral.com/1471-2164/10/S1/S18
number of occurrences of a given word wj, oj, as well as the
number of sequences containing the word, sj. The occur-
rence information is modelled as a set of tuples . Assum-
ing a binomial model for the distribution of words across
the input sequences, it is possible to model the total
occurrence of a word w by introducing the random varia-
ble , where l is the complete sequence length, v the length
of w, and Yi a binary random variable indicating if a word
occurs at position i, or not, leading to the series of yes/no
Bernoulli experiments. An expected value for the specific

number of occurrences for a word w can then be com-
puted as  where pw is the probability of word w. Following
a similar modelling approach, the expected number of
sequences a word occurs in is given by . The actual proba-
bilities are determined by a homogenous Markov chain
model of a specific order m. Based on the expected values
we compute multiple scores for each word:

Sequence logos for bidirectional promotersFigure 4
Sequence logos for bidirectional promoters. Sequence logos corresponding to the word-based clusters of the top 2 
overrepresented words of the bidirectional promoters. Rank 1 (a) is corresponding to the word TCGCGCCA, while Rank 2 
(b) refers to TCCCGGGA.

Sequence logo for unidirectional promotersFigure 5
Sequence logo for unidirectional promoters. Sequence logos corresponding to the word-based clusters of the top 2 
overrepresented words of the unidirectional promoters. Rank 1 (a) is corresponding to the word ACCCGCCT, while Rank 2 
(b) refers to CTTCTTTC.
Page 13 of 27
(page number not for citation purposes)



BMC Genomics 2009, 10(Suppl 1):S18 http://www.biomedcentral.com/1471-2164/10/S1/S18
• : This scoring function, called

SlnSES, enables the inclusion of sequence coverage
into the score. A highly scored word occurs in a large
percentage of sequences in the data set. It does not
necessarily have to be highly significant if the overall
number of occurrences is taken into account, but it is
of particular use for the discovery of shared regulatory
elements across multiple sequences.

• p-Value: The p-value is defined as the probability of
obtaining at least as many words as the actual
observed number of words:

, where |S| represents the number of sequences in S
and lj is the length of sequence j.

Word-based clusters (SIG2)
Two methods are employed for the detection of similari-
ties between the words that make up SIG1: hamming dis-
tance and Levenshtein distance (also called edit distance).

While hamming distance is defined as the number of
positions for which the corresponding characters of two
words of the same length differ, edit distance allows the
comparison of different length words and accounts for
three edit operations (insert, delete and substitute), rather
than the plain mismatch (corresponds to substitute)
employed by the hamming distance.

The biological reasoning for employing distance metrics
in order to group similar words together can be found in
the evolution of sequences. A biological structure is con-
stantly exposed to mutation pressure. These mutations
can occur as insertions, deletions or substitutions, how-
ever insertions and deletions are deleterious in most cases,
leading to the issue that edit distance provides a very
detailed model of the mutations but hamming distance is
a reasonable abstraction and will work well for this case.
The motif logos for the hamming distance clusters were
constructed using the TFBS Perl module by Lenhard and 
Wasserman [44]. ClustalW2 [45] was used to align the
words of the edit distance clusters.

Sequence clustering
The sequence clustering conducted in this research is
focussed on the words shared between element of a set of
sequences. A set of words is taken as the input for the clus-
tering. A binary vector si = (si,1, si,2,..., si, k) for each
sequence si is created, marking an element si, k where k is
the number of words used to distinguish the sequences
with k ≤ |Wwc|. The element si, k of the vector is populated
with a '1' if the word k is found in sequence i, and '0' if it
is not. The similarity between sequences is determined by
the dot product between the binary sequence vectors, and
is deducted from the complete number of words in the
vector space. In order to determine the distance between k
sequences (with k ≥ 2), the dot product is extended to
accommodate multiple sequences.

The cluster with the smallest distance is visualized using
GMOD's GBrowse framework [34]. For each of the
sequences contained in the cluster, the words pertaining
to SIG1 are displayed.

Biological significance (lookup)
Once genomic signatures are identified, the next step is to
discern their biological role. One important aspect of this
role, crucial to understanding gene regulation [46], is the
location of the preferred binding sites for certain proteins
(transcription factor binding sites or TFBSs). To locate
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Edit distance cluster for bidirectional promotersFigure 6
Edit distance cluster for bidirectional promoters. 
Sequence alignments corresponding to the word-based clus-
ters of the top 2 overrepresented words of the bidirectional 
promoters. For each cluster, five words were chosen based 
on their overall overrepresentation in the promoter set. 
Rank 1 (a) is corresponding to the word TCGCGCCA, while 
Rank 2 (b) refers to TCCCGGGA.

Edit distance cluster for unidirectional promotersFigure 7
Edit distance cluster for unidirectional promoters. 
Sequence logos corresponding to the word-based clusters of 
the top 2 overrepresented words of the unidirectional pro-
moters. Rank 1 (a) is corresponding to the word 
ACCCGCCT, while Rank 2 (b) refers to CTTCTTTC.
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Table 7: Sequence clusters (pairs of sequences). Sequence clusters containing pairs of sequences for the bidirectional (a) and 
unidirectional (b) promoter sets. Each sequence occurs in only one cluster. The sequences are clustered based on the number of 
words (within the top 60 overrepresented words) that are shared between them with the distance denoting the number of words not 
shared between them.

(a) Bidirectional (b) Unidirectional

Sequence 1 Sequence 2 Distance Sequence 1 Sequence 2 Distance

chr3:185561446–185562546 chr11:832429–833529 54 chr10:50416978–50418078 chr3:188006884–
188007984

57

chr19:53365272–53366372 chr19:7600339–7601439 55 chr12:52868924–52870024 chr7:73306574–73307674 57

chr11:18299718–18300818 chr15:41589928–41591028 56 chr5:68890824–68891924 chr19:55578407–55579507 58

chr4:57538069–57539168 chr19:48776246–48777346 56 chr6:30982955–30984055 chr9:99499360–99500460 58

chr11:107598052–
107599152

chr12:131773918–
131775018

56 chr10:131154509–
131155609

chr19:50618917–50620017 58

chr13:107668425–
107669525

chr1:11674165–11675265 57 chr5:86744492–86745592 chr17:30330654–30331754 58

chr6:43650922–43652022 chr16:2037768–2038868 57 chr11:118471287–
118472387

chr8:55097461–55098561 58

chr22:36678663–36679763 chr11:61315725–61316825 58 chr16:13920523–13921623 chr8:101231014–
101232114

58

chr5:60276548–60277648 chr22:40346240–40347340 58 chr5:131919528–131920628 chr19:1046236–1047336 58

chr11:93866588–93867688 chr3:130641442–
130642542

58 chr12:108015528–
108016628

chr16:56053079–56054179 59

chr17:7327421–7328521 chr17:1679094–1680194 58 chr1:28113723–28114823 chr2:216681376–
216682476

59

chr20:5055168–5056268 chr15:38773660–38774760 58 chr8:91065972–91067072 chr4:39044247–39045347 59

chr14:19992129–19993229 chr11:66877493–66878593 59 chr14:60270222–60271322 chr11:47192088–47193188 59

chr17:38530557–38531657 chr13:31786616–31787716 59 chr7:7724663–7725763 chr11:62284590–62285690 59

chr12:122683333–
122684433

chr13:33289233–33290333 chr12:116937892–
116938992

59

chr5:82408167–82409267 chr9:109084364–109085464 chr7:101906286–
101907386

59

chr2:127768122–127769222 chr8:42314186–42315286 chr19:50565569–50566669 59

chr12:102882746–
102883846

chr3:9764704–9765804 chr14:49224583–49225683 59

chr13:102295174–
102296274

chr6:30790834–30791934 59

chr12:912403–913503

chr2:128332074–128333174

chr7:44129555–44130655

chr11:73980276–73981376
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GBrowse visualization for primary bidirectional sequence clusterFigure 8
GBrowse visualization for primary bidirectional sequence cluster. The GBrowse visualization of the two sequences 
for the top sequence-based cluster in the bidirectional promoter set. Shown are the words from the set of top 60 words that 
are detected in these two sequences.

GBrowse visualization for primary unidirectional sequence clusterFigure 9
GBrowse visualization for primary unidirectional sequence cluster. The GBrowse visualization of the two sequences 
for the top sequence-based cluster in the unidirectional promoter set. Shown are the words from the set of top 60 words that 
are detected in these two sequences.
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Table 8: Word co-occurrence. The top 25 word pairs for the bidirectional (a) and unidirectional (b) promoter set. The word pairs are 
sorted in descending order by S*ln(S/ES) score.

(a) Bidirectional

(a) Bidirectional (b) Unidirectional

Word 1 Word 2 S ES Sln(S/ES) Word 1 Word 2 S ES Sln(S/ES)

TCTGAGGA TCGCGCCA 3 0.0529 12.1158 GTTCATTC TCCGCCGG 2 0.0073 11.2184

ACTCCAGC TCGCGCCA 3 0.0580 11.8387 CTGTGTGC TGCGCCGA 2 0.0074 11.1966

GCCCAGCC TCCGCCGC 3 0.0722 11.1827 TGACGCGA CTCCCGCT 2 0.0082 10.9997

GCCCAGCC CGGAGCGC 2 0.0087 10.8711 AGCCGGCT GGGGAGTA 2 0.0131 10.0590

TGCCCGCG TCCCGGGA 4 0.2729 10.7404 ATTGCAGG ATTCTCTC 2 0.0169 9.5459

GGCAGGGA GGGCCAGG 4 0.3400 9.8609 GGGGAGTA AGGAAACA 2 0.0190 9.3177

TCCCGGGA TCGCGCCA 3 0.1140 9.8112 CTGGGAGC GTTCATTC 2 0.0218 9.0337

AGCCTGTC TCCCGGGA 3 0.1158 9.7646 CCTTCCGA CTGGGAGC 2 0.0240 8.8439

GGAGGCTG TCGCGCCA 3 0.1173 9.7250 TGGGCGGA ACCCGCCT 2 0.0247 8.7895

TCCGCCGC GCCCCTCC 4 0.3554 9.6830 TTTCTCCA CGGAAACC 2 0.0265 8.6446

AGAAAAGA TCGCGCCA 2 0.0182 9.4042 CCCCCGCG ACCCGCCT 2 0.0280 8.5339

GCCCAGCC GCCCCTCC 3 0.1360 9.2808 TCCGCCGG GGGGCTGC 2 0.0415 7.7522

TGCCAAAA GCCGGCGA 2 0.0195 9.2604 AGCTGGCT CCAGGCTG 2 0.0422 7.7192

CAGCAGCC TGCGGAAT 2 0.0208 9.1297 TTGGTCTC AGGAAACA 2 0.0446 7.6068

AGGGCCGT TCCCGGCT 3 0.1433 9.1249 CTGGGAGC TCCGCCGG 2 0.0519 7.3020

CCTCCAGA TTCCACCC 2 0.0216 9.0521 CTTTTCTC GCGCCGCG 2 0.0545 7.2046

CGAGGAGA TCGCGCCA 2 0.0220 9.0204 ATTGCAGG ATTAAAAT 2 0.0585 7.0639

TCCGCCGC CGGAGCGC 2 0.0228 8.9501 TGGAACCC GCAGGGCG 2 0.0645 6.8693

ACCCTCGT AGGGAGGG 2 0.0253 8.7380 GGGCAGGC AGCTGGCT 2 0.0657 6.8326

GCCCAGCC TCCACTGT 2 0.0254 8.7315 TTGGTCTC CTTCTTTC 2 0.0676 6.7745

CAGCAGCC AGGGCCGT 3 0.1705 8.6024 CTTTTTCA CGCCCCTT 2 0.0684 6.7522

TGCCCGCG TCCCGGCT 3 0.1747 8.5291 GCAGGGCG AGGAAACA 2 0.0766 6.5251

CCCAGGAC AGAGAGCT 2 0.0291 8.4590 GGGCAGGC TTTCTCCA 2 0.0939 6.1181

TCTGGGAT GGCCCGCC 2 0.0329 8.2123 CTGGGAGC TCTCCCCT 2 0.0947 6.0996

AGCCGGGC AGAAAAGA 2 0.0333 8.1930 AGCAGGGC GGCTTTTA 2 0.0956 6.0805
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Table 9: Unique and interesting words for the promoter sets. The words for the unidirectional and bidirectional promoter set which 
exhibit a significant score-based distance to the other data set.

(a) Unidirectional (b) Bidirectional

Word Unidirectional Bidirectional Distance Word Unidirectional Bidirectional Distance

ACCCGCCT 6.87826 -0.0263597 4.882303411 TCCCGGGA -0.0850495 5.60208 -4.021407835

GGGGCTGC 4.49226 -1.0872000 3.945274001 GGCCCGCC 0 5.36123 -3.790962089

CGGCGGCG 4.01229 -1.3139900 3.766248706 CGCGGCCG -0.3641650 4.91487 -3.732841447

AGGAAACA 4.92885 0.1254760 3.396498328 TCCCGGCT 0 5.14921 -3.641041309

CTTCTTTC 5.19624 0.4219750 3.375915157 CAGGGGCC 0 5.13315 -3.629685174

TCCGCCGG 3.76460 -0.8986470 3.297413576 AGGGCCGT 0 5.10145 -3.607269889

TCTTCTTC 4.48225 0 3.169429370 TCTGAGGA 0 4.99234 -3.530117468

ATTAAAAT 4.29023 0 3.033650726 CGTGGGGG 0.0180292 4.92572 -3.470261445

GGGGAGTA 4.44222 0.3737000 2.876878081 TCTGGGAT 0 4.81380 -3.403870623

CGCCCCTT 3.90482 -0.1463740 2.864626749 AGGGAGGG 0 4.72230 -3.339170353

TTTTTTGA 4.01229 0 2.837117467 AGAAAAGA 0 4.66976 -3.302018963

TTTCTCCA 3.96242 0 2.801854052 GGGCCAGG 0 4.62990 -3.273833686

AGCCGGCT 3.94551 0 2.789896876 ACTCCAGC 0 4.53045 -3.203511917

TTGGTCTC 3.65176 -0.2608830 2.766656398 CCCCAGCT -0.9904730 3.48143 -3.162112936

GCGCCGCG 3.81433 0 2.697138609 CGGGCCGA 0 4.45426 -3.149637451

ATTCCCAG 3.80733 0 2.692188861 TCCGCCGC -0.8886350 3.55395 -3.141381979

GCAGGGCG 4.66535 0.8645290 2.687586303 TGCCCGCG -0.3137370 4.10844 -3.126951344

GAGGGGCG 3.03108 -0.7557900 2.677721456 TGCGGAAT 0 4.41371 -3.120964271

CCCCCGCG 3.55664 -0.1908410 2.649869227 GCCGGCGA 0 4.33335 -3.064141170

AGGGGAGC 3.15866 -0.5635770 2.632019024 CAGCAGCC -0.0679120 4.10418 -2.950114545

TGCGCCGA 3.68519 0 2.605822839 CGAGGAGA 0 4.09415 -2.895001228

CCGCGCCC 2.25420 -1.4189300 2.597295131 CGCAGGCG -0.2779570 3.74626 -2.845551130

GTGCGTTT 3.66247 0 2.589757373 TTCCACCC 0 4.02098 -2.843262225

CTGGGAGC 3.36673 -0.2940760 2.588580747 TCGCCCCA 0 3.94598 -2.790229216

TGCCTCCC 3.34992 -0.2629130 2.554658714 GGGGCCGG 0.8548330 4.76672 -2.766121825
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Table 10: Descriptive words for both the unidirectional and bidirectional promoter sets. The top 25 words that are correlated in the 
two promoter sets, according to their overrepresentation scores. The Words had to be overrepresented according to SlnSES with at 
least a score of 1.5. Shown are the words with a distance between -0.11 and 0.11.

Word Unidirectional Bidirectional Distance

CTTTGGCC 2.08857 2.23024 -0.100175818

AGGCAGGA 1.51526 1.64780 -0.093719933

CTCAGGAT 1.58527 1.71375 -0.090849079

GGGGGGAC 1.61803 1.70814 -0.063717392

CTTGCGGA 1.65530 1.73350 -0.055295750

CTGAGCAG 1.99183 2.05890 -0.047425652

GCCTGAGG 1.99183 2.04796 -0.039689904

TGAAGTGG 1.61803 1.66175 -0.030914708

GCCATCCG 1.86393 1.89589 -0.022599133

AGGTTGCA 2.20477 2.23024 -0.018010010

TCTGTGCC 1.84096 1.85915 -0.012862272

TACCACTA 1.86393 1.88037 -0.011624835

CAAAGAAT 1.61803 1.61872 -0.000487904

ACCGCTCA 1.61803 1.61872 -0.000487904

TATCTTAG 1.61803 1.61872 -0.000487904

AGAGTTCC 1.62605 1.61872 0.005183093

GTCGGCTT 1.90512 1.88037 0.017500893

CGCGCGCA 1.94164 1.90263 0.027584236

CAGGCCAG 1.95383 1.86972 0.059474751

ACAGAAAG 2.79686 2.70295 0.066404398

GTCAGGAG 2.40520 2.25776 0.104255824

GGAAGTGA 1.96108 1.81095 0.106157941

TAGAGAGC 1.99183 1.84125 0.106476139

TGCCAGGG 1.75813 1.60511 0.108201480

GCACAAGC 1.95383 1.80053 0.108399470

TTCACTTA 2.15055 1.99725 0.108399470
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Comparison analysis: plot for complete set of wordsFigure 10
Comparison analysis: plot for complete set of words. Comparison of the words detected for the two promoter sets 
based on their computed overrepresentation scores.

Comparison analysis: plot for distinctive wordsFigure 11
Comparison analysis: plot for distinctive words. The words descriptive of the unidirectional promoter set (red) and 
the bidirectional promoter set (green). Words that are not sufficiently descriptive of either data set are eliminated from the 
plot.

Comparison analysis: plot for general wordsFigure 12
Comparison analysis: plot for general words. The words that are significantly correlated in both data sets.
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Table 11: Lookup results for interesting words in the promoters. Information about the regulatory function of the top 10 
overrepresented words for the bidirectional and unidirectional promoter set based on lookups in the TRANSFAC and JASPAR 
databases.

(a) Bidirectional

Sequence Transcription Factor (Matrix Ida) Sequence (bottom) aligned to matrix consensusb Matchesc Avg. Scored Score Rangee

TCGCGCCA PF0112f KTGGCGGGAA
TGGCGCGA

4/6 89.0 86.5–96.8

TCCCGGGA STAT5A TTCYNRGAA
TCCCGGGA

8/16 86.7 86.7–86.7

GGCCCGCC SP1 (V$SP1_01) DRGGCRKGSW
GGCGGGCC

8/13 90.2 86.5–90.8

TCCCGGCT ELK1 (MA0028) NNNMCGGAAR
AGCCGGGA

3/6 86.9 86.5–87.7

CAGGGGCC V$WT1_Q6 SVCHCCBVC
GGCCCCTG

5/6 87.4 85.0–91.1

AGGGCCGT MYB (V$MYB_Q3) NNNBNCMGTTN
AGGGCCGT

2/7 91.2 89.8–92.6

TCTGAGGA TFIIA (V$TFIIA_Q6) TMTDHRAGGRVS
TCTGAGGA

2/8 88.1 85.8–90.5

CGTGGGGG E2F (V$E2F1_Q3) BKTSSCGS
CGTGGGGG

6/6 87.3 87.3–87.3

TGCTGAGA No match.

CGCGGCCG No match.

(b) Unidirectional

Sequence Transcription Factor (Matrix Ida) Sequence (bottom) aligned to matrix consensusb Matchesc Avg. Scored Score Rangee

ACCCGCCT SP1 (V$SP1_01) DRGGCRKGSW
AGGCGGGT

4/7 86.2 85.9–87.3

CTTCTTTC No match.

AGGAAACA NFAT (V$NFAT_Q4_01) NWGGAAANWB
AGGAAACA

5/5 87.3 85.8–88.1
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these sites, the signatures are compared to a set of known
binding sites, which are usually represented as weighted
matrices [47]. However, a simple scoring scheme can mis-
classify results when applied to the typically short
sequences produced by signature finders. In this simple
approach, short signatures are aligned to each matrix by
ignoring the parts of the matrices that are longer than the
signature. This results in erroneous scores since a signa-
ture could match just the very end of large matrix, which
is often of little significance (the core of the matrix gener-
ally represents the sites of strongest binding).

To give a more significant measure of similarity, we devel-
oped a tool that uses a window around the original
sequences (those which the signature is based upon) to
improve the comparison. The naive implementation of
this approach is to use a window of base pairs around
each signature and find the optimal alignment to each
TFBS matrix by scoring every possible sub-sequence con-
taining the signature. For instance, if a signature is located
10 times within the set of sequences, each matrix is
aligned to each of the 10 loci containing the signatures.
Our tool uses a faster approach; it finds all occurrences of

TFBSs meeting the desired threshold in every sequence,
and subsequently uses this information to quickly score
the signatures. As a benefit, the list of TFBS can be reused
to quickly score new signatures or to redo the analysis
with interesting subsets of sequences, such as all
sequences which in liver cells are highly expressed.

Co-occurrence analysis

The co-occurrence analysis aims to determine the
expected number of sequences containing a given pair of
not necessarily distinct words at least once. If n denotes

the word length, m the number of sequences,  the

probability for a word i to occur anywhere in the
sequence, and lk the length of sequence k, the expected

number of sequences containing a given pair of words can
be calculated as:

pwi

E w w p pS i j w

l n
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l n

k

m

i

k

j

k
( , ) *= − −( )⎛
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− −( )⎛
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⎞
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− + − +

=
∑ 1 1 1 1

1 1

1

GCAGGGCG PF0096f YGCANTGCR
GCAGGGCG

10/10 86.8 86.5–87.1

GGGGCTGC LRF (V$LRF_Q2) VDVRMCCCC
GCAGCCCC

5/8 85.4 85.4–85.4

TCTTCTTC No match.

GGGGAGTA FOXC1 (MA0032) NNNVNGTA
GGGGAGTA

4/4 95.5 95.5–95.5

ATTAAAAT OCT1 ($OCT1_06) MWNMWTKWSATRYN
ATTTTAAT

4/9 86.9 86.5–87.5

CGGAAACC AREB6 (V$AREB6_04) VBGTTTSNN
GGTTTCCG

3/3 92.2 88.3–95.8

TGGGCGGA GC (V$GC_01) NNDGGGYGGRGYBD
TGGGCGGA

4/5 90.3 85.1–95.2

a. JASPAR id or TRANSFAC id.
b. The consensus is in IUPAC notation: R = G or A, Y = T or C, M = A or C, H = not G, K = G or T, W = A or T, B = not A, S = G or C, V = not 
T, N = anything.
c. Number of occurrences of the matrix that scored greater than 85% in the dataset.
d. Average score for the occurrences meeting the 85% threshold.
e. Range of scores for the occurrences meeting the 85% threshold.
f. A profile that was extracted from phylogenetically conserved gene upstream elements.

Table 11: Lookup results for interesting words in the promoters. Information about the regulatory function of the top 10 
overrepresented words for the bidirectional and unidirectional promoter set based on lookups in the TRANSFAC and JASPAR 
databases. (Continued)
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Table 12: Conservation analysis. The results for conservation analysis of the top 10 word pairs in the bidirectional (a) and 
unidirectional (b) promoter set. For each word pair, the occurrence location of the pair is given, as well as an identifier for the 
conservation of the sites, and a PhastCons score for the quality of the conservation across 28 organisms. Conservation can be 
categorized as: none (no word was conserved), partial (one word was conserved) and complete (all words were conserved).

(a) Bidirectional

Word 1 Word 2 Location Conservation Hit Score

TCTGAGGA TCGCGCCA chr19:53365272–53366372 None

chr19:48776246–48777346 None

chr19:7600339–7601439 Partial TCGCGCCA 385

ACTCCAGC TCGCGCCA chr4:57538069–57539168 None

chr19:48776246–48777346 None

chr19:7600339–7601439 Partial TCGCGCCA 385

GCCCAGCC TCCGCCGC chr3:185561446–185562546 Partial TCCGCCGC 310

chr14:19992129–19993229 None

chr11:832429–833529 None

GCCCAGCC CGGAGCGC chr3:185561446–185562546 None

chr14:19992129–19993229 None

TGCCCGCG TCCCGGGA chr19:53365272–53366372 Partial TCCCGGGA 390

chr13:107668425–107669525 None

chr20:5055168–5056268 None

chr11:832429–833529 None

GGCAGGGA GGGCCAGG chr19:53365272–53366372 Partial GGGCCAGG 390

chr22:40346240–40347340 Complete GGCAGGGA 325

GGGCCAGG 522

chr5:60276548–60277648 None

chr12:131773918–131775018 None

TCCCGGGA TCGCGCCA chr19:53365272–53366372 Partial TCCCGGGA 390

chr4:57538069–57539168 None

chr19:7600339–7601439 Partial TCGCGCCA 385

AGCCTGTC TCCCGGGA chr17:38530557–38531657 None

chr13:107668425–107669525 Partial AGCCTGTC 244

chr4:57538069–57539168 None
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GGAGGCTG TCGCGCCA chr4:57538069–57539168 None

chr19:48776246–48777346 None

chr19:7600339–7601439 Partial TCGCGCCA 385

TCCGCCGC GCCCCTCC chr3:185561446–185562546 Partial TCCGCCGC 310

chr14:19992129–19993229 None

chr1:11674165–11675265 Partial GCCCCTCC 360

chr11:832429–833529 None

(b) Unidirectional

Word 1 Word 2 Location Conservation Hit Score

GTTCATTC TCCGCCGG chr7:73306574–73307674 None

chr12:52868924–52870024 Partial TCCGCCGG 325

CTGTGTGC TGCGCCGA chr10:131154509–131155609 None

chr19:1046236–1047336 None

TGACGCGA CTCCCGCT chr12:116937892–116938992 None

chr17:30330654–30331754 None

AGCCGGCT GGGGAGTA chr6:30982955–30984055 None

chr16:13920523–13921623 None

ATTGCAGG ATTCTCTC chr5:86744492–86745592 None

chr17:30330654–30331754 None

GGGGAGTA AGGAAACA chr16:13920523–13921623 None

chr8:101231014–101232114 None

CTGGGAGC GTTCATTC chr7:73306574–73307674 None

chr12:52868924–52870024 None

CCTTCCGA CTGGGAGC chr5:68890824–68891924 None

chr7:73306574–73307674 None

TGGGCGGA ACCCGCCT chr6:30982955–30984055 None

chr9:99499360–99500460 None

TTTCTCCA CGGAAACC chr8:55097461–55098561 None

chr11:118471287–118472387 None

Table 12: Conservation analysis. The results for conservation analysis of the top 10 word pairs in the bidirectional (a) and 
unidirectional (b) promoter set. For each word pair, the occurrence location of the pair is given, as well as an identifier for the 
conservation of the sites, and a PhastCons score for the quality of the conservation across 28 organisms. Conservation can be 
categorized as: none (no word was conserved), partial (one word was conserved) and complete (all words were conserved). (Continued)
(page number not for citation purposes)
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The  score is used as the main scoring function

in the co-occurrence analysis.

Conservation analysis
Sequence conservation was mapped using PhastCons
conservation scores [38] calculated on 28 species, which
are based on a two-state (conserved state vs. Non-con-
served region) phylo-HMM. PhastCons scores were
obtained from the UCSC Human Genome Browser [39].
The scores reported by the UCSC Human Genome
Browser contain transformed log-odds scores, ranging
from 0–1000. Conserved regions were required to cover
the majority of the word length.

Comparison

Words can have significantly different scores for each of
the data sets in which they occur. In order to analyze the
words based on their impact on the data sets it is useful to
assign a distance metric that determines which data set is
described best by a given word. 

Based on a graphical analysis, three points of interest can
be determined: the point where the perpendicular of a
given point on the x-axis crosses the main diagonal, the
point where the perpendicular of a given point on the
main diagonal crosses the main diagonal and finally the
point where the perpendicular from a given point on the
y-axis crosses the main diagonal. Based on the conven-
tional techniques of fold-change detection in microarray
analysis, we consider the perpendicular on the main diag-

onal. The resulting distance formula is: ,

with y0 being the score for the word within the unidirec-

tional data set, and x0 being the score of the word in the

bidirectional data set.
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