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Abstract

Background: Next-generation DNA sequencing technologies generate tens of millions of
sequencing reads in one run. These technologies are now widely used in biology research such as in
genome-wide identification of polymorphisms, transcription factor binding sites, methylation states,
and transcript expression profiles. Mapping the sequencing reads to reference genomes efficiently
and effectively is one of the most critical analysis tasks. Although several tools have been developed,
their performance suffers when both multiple substitutions and insertions/deletions (indels) occur
together.

Results: We report a new algorithm, Basic Oligonucleotide Alignment Tool (BOAT) that can
accurately and efficiently map sequencing reads back to the reference genome. BOAT can handle
several substitutions and indels simultaneously, a useful feature for identifying SNPs and other
genomic structural variations in functional genomic studies. For better handling of low-quality
reads, BOAT supports a "3'-end Trimming Mode" to build local optimized alignment for sequencing
reads, further improving sensitivity. BOAT calculates an E-value for each hit as a quality assessment
and provides customizable post-mapping filters for further mapping quality control.

Conclusion: Evaluations on both real and simulation datasets suggest that BOAT is capable of
mapping large volumes of short reads to reference sequences with better sensitivity and lower
memory requirement than other currently existing algorithms. The source code and pre-compiled
binary packages of BOAT are publicly available for download at http://boat.cbi.pku.edu.cn under
GNU Public License (GPL). BOAT can be a useful new tool for functional genomics studies.
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Background
Next generation sequencing technologies have been
widely used in biology research, such as in genome-
wide identification of polymorphisms, transcription
factor binding sites, methylation states, and transcript
expression profiles [1]. With these ultra high-throughput
sequencing technologies, massive amounts of short
sequencing reads can be generated rapidly at low cost.
For example, the Solexa system from Illumina can
generate 30 M reads and 1 G bases (single end) or 2 G
bases (pair-end) in a single run [2]. The large volume of
data poses serious challenges for effective data analysis.

One of the most critical analysis tasks is to map the
sequencing reads to reference sequences accurately and
efficiently. General alignment tools such as BLAST [3]
and BLAT [4] suffer from long running time. New
dedicated algorithms such as ELAND (unpublished),
SOAP [5], MAQ [6], RMAP [7] and SeqMap [8] have
been developed to achieve better mapping efficiency.
Among these algorithms, ELAND, MAQ and SOAP
employ similar seed index and search schema, except
that ELAND and MAQ create index for query reads and
SOAP creates index for reference sequences. ELAND can
handle up to 2 substitutions, while MAQ can handle up
to 3 substitutions. RMAP is mainly developed for
handling mutations in 3' low quality region, but it
lacks the sensitivity for leading sequence mutations.
While these algorithms are effective in handling near-
perfect matches, their mapping sensitivity, speed, and/or
memory requirement suffer when handling simulta-
neous multiple substitutions and indels.

While many attempts have been made to improve
sequencing accuracy, the next-generation sequencing
platforms still suffer from significantly higher error rate
when being compared to classical Sanger sequencing.
Statistics on the number of wrong base calls at each base
position of typical Solexa reads showed that the sequen-
cing error rates range from 0.3% at the beginning of reads
to 3.8% near the end of reads, and may reach up to 11.8%
at the last base [9]. Moreover, recent studies have revealed
that genome variations like SNPs and small-scale indels
are common in populations and play key roles in diseases
as well as individual differences [10,11]. For example, in
one of the extreme known cases, sequencing of Ciona
savignyi in a natural population revealed a SNP hetero-
zygosity of 4.5% and average per-base indel heterozyg-
osity of 16.6% [12]. In human, somatic point mutation
rates were found to be 1000 times higher in 13% of
sporadic colorectal cancers infected by MIN (microsatel-
lite instability) tumors than in normal cells [11].

Thus, there is a need for a new mapping algorithm
that can effectively handle simultaneous multiple

substitutions and indels. Here we present such a new
algorithm, Basic Oligonucleotide Alignment Tool
(BOAT). Evaluations on both real and simulation
datasets revealed that BOAT has better performance
than other existing tools.

Results and discussion
BOAT can handle several substitutions and indels
simultaneously using adaptive indexing and searching
strategies (see Methods and materials). It is optimized
for mapping single-end and paired-end Solexa reads to a
reference genome, but can also map SAGE, MPSS and
454 reads. BOAT does not require that all reads have the
same length. It calculates an E-value for each hit as
mapping quality assessment and provides customizable
post-mapping filters for further mapping quality control.
BOAT can be run on most UNIX-like platforms such as
Linux and Solaris as a standard Unix/Linux command
line program. It supports multiple threads scheduling
and can use CPU resources effectively on both desktop
PCs and large-scale computer farm. Both the source code
and pre-compiled binary packages of BOAT are available
for free download at http://boat.cbi.pku.edu.cn under
GNU Public License (GPL).

To evaluate and compare the performance of BOAT, we
first mapped 8,755,069 Solexa reads generated in RNA-
sequence experiments [13] back to the mouse genome
(mm9 assembly) using BOAT (v1.0) and four other
existing programs, MAQ (v0.6.8), RMAP (v0.41), Seq-
Map (v1.0.8) and SOAP (v1.11). Since all of these four
programs support three mismatches within 33-mer full
read length, we allowed up to three mismatches,
including substitutions and indels, during the mapping.
As shown in Table 1, BOAT achieved the highest
sensitivity at less memory requirement and less or

Table 1: Performance comparison based on a real dataset

Number of
mapped reads

Time(min) Memory(MB)

BOAT 4,713,133 9,621 1,415
SOAP 4,555,705 14,654 1,215
RMAP 4,520,282 34,774 3,448
SeqMap 4,339,235 18,593 20,529
MAQ 3,879,236 1,127 2,897

8,755,069 RNA-seq profiling Solexa reads were mapped to mouse
whole genome with different programs. In this comparison, the
maximum mismatch number threshold was set to 3 (including
substitutions and indels). The comparison was run on a local Linux box
with two Intel quad-core (E7310 @ 1.6 G Hz) CPUs and 64 G RAM
(detailed running parameters for each tool were shown in Supplemen-
tary Table S1 of Additional File 2). To handle the physical memory
limitation of some of the programs BOAT is compared to, reads were
mapped against individual chromosomes sequentially. "Time" shows the
sum of the execution times, and "Memory" shows the maximal memory
usage among those runs.
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comparable time cost. For example BOAT used only 65%
of execution time (9,621 min vs. 14,654 min) and
mapped 3.5% more reads (4,713,133 vs. 4,555,705)
compared to the second most sensitive program SOAP.

Further comparison on simulation data revealed more
advantage of BOAT over other programs. Here we used
the same module proposed by MAQ [6] to generate five
million 33-mer simulated reads with 100,279 mutations
(the substitution rate was about 5% and the indel rate
was about 1.5%) from a two-million-bp region on
mouse chromosome X. The simulated reads were then
mapped back to the X chromosome. As shown in
Table 2, BOAT achieved higher sensitivity (76.56%)
and precision (99.41%) compared to other tools, having
mapped about 30% more reads than the second best
algorithm RMAP, with moderate memory and time cost.
As shown in Supplementary Figure S1 (Additional File 1)
the increase in sensitivity was especially prominent when
the number of mismatches was high.

BOAT provides flexible and friendly features. A compar-
ison of its features against other tools is shown in
Table 3. In addition to the default mode, BOAT supports
a "Quick Mode" dedicated to identify nearly perfect
match, achieving over 10-fold speed-up at the cost of
ignoring hits with more than one mismatch. On the

other hand, to better handle low-quality reads, BOAT
supports a "3'-end Trimming Mode" to construct best
local alignment instead of optimizing for the global
alignment between the reads and the reference
sequences. This is useful in dealing with sequencing
reads with low-quality tail region or small RNA analysis
with adaptor included in the tail region. BOAT also
provides an auxiliary program SNPcall to identify SNP
sites based on mapped reads. To reduce potential false
positives caused by sequencing errors, SNPcall masks
sites with low quality scores before performing SNP
calling. By applying SNPcall with default criteria (at least
four supporting reads per site) to the simulated dataset,
80.89% (81,111 out of 100,279) true SNPs were
recovered, a much higher recovery rate than that from
MAQ's SNP discovery pipeline (54.69%) (Supplemen-
tary Figure S2 in Additional File 1). This could be partly
attributed to the fact that MAQ did not support
identification of SNPs around indels in single-end
reads [6].

Conclusion
Benchmark based on both real and simulation datasets
suggested that BOAT offered better sensitivity with lower
memory requirement and comparable or lower time cost
than other existing tools. Effectively handling multiple

Table 2: Performance comparison based on a simulation dataset

Number of
mapped reads

Recall Precision Time(min) Memory(MB)

BOAT 3,833,479 76.56% 99.41% 18 1,217
RMAP 2,957,658 58.89% 98.90% 840 2,371
SOAP 2,872,535 56.75% 97.19% 9 186**
MAQ 2,878,570 55.93% 93.53% 4 1,959
SeqMap* 2,187,611 43.57% 99.25% 33 12,500

5,000,000 simulated reads were mapped to an original two-million-bp mouse chrX region on a local Linux box with two Intel quad-core (E7310 @
1.6 G Hz) CPUs and 64 G RAM. All programs were tuned to maximize their capability for tolerating no more than five mismatches (detailed running
parameters for each tool were shown in Supplementary Table S2 of Additional File 2).
* We tried to run SeqMap with up to 5 mismatches, but failed with out-of-memory error. So only 3 mismatches with 1 indel were allowed when
running SeqMap.
** As only a small part of the whole genome was used as reference sequence in this benchmark, the memory usage of SOAP is very low. However,
when mapping to the whole human genome, at least 14 GB memory is required to run SOAP [5].

Table 3: Feature comparison of BOAT and other commonly used Solexa read mapping programs

Maximum number of
mismatches allowed

Gapped
alignment

Trimming
alignment

BLAST-style
E-value

Pair-end
reads

SNP
Calling

BOAT No hardcoded limitation YES YES YES YES YES
RMAP No hardcoded limitation NO NO NO NO NO
MAQ 3 NO NO NO YES YES
SOAP 5 NO YES* NO YES NO
SeqMap 5 YES NO NO NO NO

* SOAP provided a similar mode called "iterative alignment" by iteratively trimming base pairs at the 3'-end and redoing the alignment until hits are
detected or the remaining sequence is too short.
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substitutions and indels simultaneously could make full
use of sequencing data. BOAT could be a valuable tool in
functional genomic studies.

Methods
BOAT takes as input a reference genomic sequence and a
set of sequencing reads from Solexa, 454, SAGE or MPSS.
The flow chart of BOAT is shown in Figure 1 and the
algorithm is described below.

Query seed index
To effectively handle the large data volume generated by
the new ultra high-throughput sequencing technologies,
BOAT builds index for query reads instead of the
reference sequence. To handle multiple mixed substitu-
tions and indels, BOAT employs a hybrid indexing
schema, combining hash table, bitmap index and prefix
tree for better performance (Supplementary Figure S3 in
Additional File 1). Since the sequencing quality at the 5'
end is much better than that at the 3' end [9], BOAT
creates an index and initializes an alignment based on

the leading fragment of a sequencing read. It uses two n-
mer discontinuous fragments separated by m-mer gap as
seeds for each read. These seeds are pre-indexed as hash
tables for fast searching and the gap between the seeds is
used as bitmap index. To further speed up alignment
search, BOAT organizes the sequencing reads in a prefix
tree and records the entrance of tree in hash table for
each seed. Up to thirteen bases are compressed into each
prefix tree node to reduce memory requirement. Such a
hybrid schema provides linear time searching (g gaps in
O(gn) and k substitutions in O(kn)) with efficient
memory usage.

Mapping reads against reference sequence
The mapping process involves two steps: (A) alignment
initialization with indexed seeds: the alignment search
will be initialized only when either of the two indexed
seeds contains no more than one mismatch. (B)
Alignment extension with prefix tree: BOAT extends the
initialized alignment by performing depth-first search
within the pre-indexed prefix tree. The search will

Figure 1
Flow chart of the BOAT algorithm. BOAT takes the leading sequence of a read as seed to initialize an alignment and
extends the alignment by traversing through the prefix tree that stores the sequence of the read.
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backtrack to the most recent un-visited node after a)
exceeding the mismatch number tolerance or b) reaching
the leaf nodes.

If only nearly-perfect matches are expected, a "Quick
Mode" search schema can be used which triggers
alignment extension only when perfect match detected
for at least one seed, which further improves perfor-
mance by one order of magnitude. On the other hand,
when large differences are expected between the reads
and reference sequences, it may not be possible to build
a global alignment with the full length of reads covered.
To handle these cases, BOAT provides a "3'-end Trim-
ming Mode" to construct best local alignment instead.
Here, BOAT records the best local alignment location for
each read when applying the depth-first search and
reports them if no global full-length alignment could be
made under the given mismatch tolerances.

Measuring mapping quality
E-value and bit score
To assess alignment quality, BOAT derives a BLAST-style
E-value and the corresponding bit score for each hit
based on Karlin-Altschul statistics[18]. For increased
sensitivity a loose scoring schema (+1, -1 for match and
mismatch and -2, -1 for gap opening and extension
penalty) is used as suggested by literatures [18,19]. To
avoid the potential bias caused by short fragments,
BOAT calculates the E-value based on the whole query
read. This results in a more accurate estimation of the
alignment quality.

Evaluation criteria on the simulation benchmark dataset
Because it is difficult to estimate the Specificity in the
sequence mapping context, partly due to the difficulty in
assessing True Negative (i.e. the number of unmatched
reads that are not derive from the reference sequence)
[6,7], we instead used Recall and Precision to measure
the performance of different tools:

Recall Sensitivity
TP

TP FN
Precision

TP
TP FP

= =
+

=
+

, , 

where TP (True Positive) is the number of reads that are
correctly mapped to its original locus, FP (False Positive)
is the number of reads that are not mapped to their
original locus, and FN (False Negative) is the number of
reads that failed to be mapped to the reference.
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The detailed analysis of benchmark result and the sequencing reads
index schema of BOAT. Supplementary Figure S1 contains the number
of mapped reads classified by the mismatch number for simulation
dataset. Supplementary Figure S2 contains assessment of Sensitivity and
Precision of SNP discovery by BOAT SNPcall function. Supplementary
Figure S3 demonstrates the sequencing reads index schema of BOAT.
Click here for file
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running parameters of all programs in benchmark comparison.
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