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Abstract
Background: Identification of genes involved in adaptation and speciation by targeting specific genes of interest has 
become a plausible strategy also for non-model organisms. We investigated the potential utility of available sequenced 
fish genomes to develop microsatellite (cf. simple sequence repeat, SSR) markers for functionally important genes in 
nine-spined sticklebacks (Pungitius pungitius), as well as cross-species transferability of SSR primers from three-spined 
(Gasterosteus aculeatus) to nine-spined sticklebacks. In addition, we examined the patterns and degree of SSR 
conservation between these species using their aligned sequences.

Results: Cross-species amplification success was lower for SSR markers located in or around functionally important 
genes (27 out of 158) than for those randomly derived from genomic (35 out of 101) and cDNA (35 out of 87) libraries. 
Polymorphism was observed at a large proportion (65%) of the cross-amplified loci independently of SSR type. To 
develop SSR markers for functionally important genes in nine-spined sticklebacks, SSR locations were surveyed in or 
around 67 target genes based on the three-spined stickleback genome and these regions were sequenced with 
primers designed from conserved sequences in sequenced fish genomes. Out of the 81 SSRs identified in the 
sequenced regions (44,084 bp), 57 exhibited the same motifs at the same locations as in the three-spined stickleback. 
Di- and trinucleotide SSRs appeared to be highly conserved whereas mononucleotide SSRs were less so. Species-
specific primers were designed to amplify 58 SSRs using the sequences of nine-spined sticklebacks.

Conclusions: Our results demonstrated that a large proportion of SSRs are conserved in the species that have diverged 
more than 10 million years ago. Therefore, the three-spined stickleback genome can be used to predict SSR locations in 
the nine-spined stickleback genome. While cross-species utility of SSR primers is limited due to low amplification 
success, SSR markers can be developed for target genes and genomic regions using our approach, which should be 
also applicable to other non-model organisms. The SSR markers developed in this study should be useful for 
identification of genes responsible for phenotypic variation and adaptive divergence of nine-spined stickleback 
populations, as well as for constructing comparative gene maps of nine-spined and three-spined sticklebacks.

Background
Recent advances in our understanding of the physiologi-
cal and molecular functions of genes have paved the road
for investigating functional genomic variation associated
with adaptation and speciation in the wild [1,2]. Conse-
quently, targeting specific genes and genomic regions of

interest - rather than random genomic regions - holds a
great promise as a shortcut to identify genes involved in
phenotypic variation and adaptive divergence [3-5].
Despite a steadily increasing number of completed
genome sequences, genomic resources and tools are still
very limited for the vast majority of non-model organ-
isms. Therefore, ability to develop molecular markers in
or around target genes is essential for application of this
approach for non-model organisms. In addition, molecu-
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lar markers associated with functionally important genes
are useful in construction of comparative genetic maps,
in which they can be exploited as comparative anchor
tagged sequence loci [6,7].

Microsatellites or simple sequence repeats (SSRs) are
highly abundant in eukaryotic genomes, accounting for
3-5% of the mammalian genomes [8,9]. Owing to their
wide genomic distribution, codominant inheritance and
hypervariability, they are widely recognized as one of the
most powerful molecular markers in the field of genetics.
As a result of the widespread use of SSRs, substantial
efforts have been made to devise procedures for develop-
ing SSR markers [10,11]. In addition, cross-species trans-
fer of SSR primers is commonly attempted in many taxa
[12]. However, SSR markers developed with conventional
approaches are derived from the genome more or less in a
random manner. Expressed sequence tags (ESTs) are
commonly used as an alternative to genomic libraries as a
source of SSR markers [11]. SSR markers derived from
ESTs have some advantages over those developed from
genomic libraries because EST-derived markers can asso-
ciate with genes of known or putative function, and they
exhibit relatively high transferability between closely
related species [13-17]. However, SSRs are generally
much less abundant in transcribed regions than in non-
transcribed regions [18-21] and found typically only in a
few percentage of ESTs [15,22-26]. Besides, designing
primers requires sufficient flanking sequences, resulting
in a considerable reduction in number of ESTs available
to develop SSR markers [23,24,26,27]. Therefore, even if a
large EST database is available for a target species, ESTs
have limitations as a material for development of SSR
markers for specific genes.

One way to obtain SSR markers for specific genes and
genomic regions in a given species is to use SSR primers
developed for the closest relative with a sequenced
genome. However, an obvious limitation of this approach
is that mutations in SSR flanking sequences will inhibit
cross-species amplification success - a problem that is
likely to attenuate with an increasing divergence time
[28]. In general, success of cross-species transfer is a neg-
ative function of the evolutionary distance separating the
source and focal species [28-31]. Another crucial issue is
related to evolution and persistence of SSRs among dif-
ferent species. Investigations of SSR conservation have
demonstrated that several SSRs are retained not only in
closely related species, but also in species that have
diverged more than 100 million years ago [32-35]. Never-
theless, comprehensive surveys of SSR conservation
using aligned sequences of different species have rarely
been reported [36,37], making it difficult to estimate the
patterns and degree of SSR conservation in different taxa.

For the reasons elaborated above, development of SSR
markers for target genes and genomic regions in non-

model organisms is challenging. Yet, while the closest rel-
ative with a sequenced genome is too distantly related to
the focal species, one can take an advantage of the
increasing number of completed genomes for different
species. For instance, as often used in species for which
no direct species-specific sequence information is avail-
able, conserved sequences in specific genes and genomic
regions of interest can be used to design primer
sequences applicable to a wide variety of organisms [e.g.
[38]].

Teleosts consist of approximately 28,000 species [39],
which correspond to more than half of all living verte-
brates. Despite a number of features of evolutionary
interest and economical importance, genomic resources
and tools are still lacking for most teleost taxa. Currently,
genome sequences are available for five species -
zebrafish (Danio rerio), three-spined stickleback (Gaster-
osteus aculeatus), medaka (Oryzias latipes), spotted
green pufferfish (Tetraodon nigroviridis) and fugu (Tak-
ifugu rubripes) [40]. The development of genome
sequences for three-spined sticklebacks has made great
contribution to an understanding of the genetic architec-
ture of several phenotypic traits [41-44]. Because three-
spined and nine-spined (Pungitius pungitius) sticklebacks
exhibit similar ecological and morphological characteris-
tics [45], these species provide an opportunity to study
whether the same genes or genomic regions are responsi-
ble for phenotypic variation of certain traits and adaptive
divergence in different lineages. This would facilitate a
molecular understanding of the parallel evolution of
these species, which have diverged more than 10 million
years ago - equivalent to 5-10 millions of generations
[46,47]. A potentially effective strategy to this end would
be to develop SSR markers targeting functionally impor-
tant genes.

The main objective of this study was to develop a large
set of SSR markers targeting specific genes and genomic
regions for a non-model organism - the nine-spined
stickleback - in which genome sequences and ESTs are
not yet available. To this end, two strategies were
adopted. First, we tested cross-species utility of 158 SSR
primer sets for functionally important genes originally
developed in three-spined sticklebacks together with 188
SSR markers derived from genomic libraries and ESTs.
Secondly, we investigated the potential utility of available
sequenced fish genomes to develop SSR markers for
functionally important genes in nine-spined sticklebacks.
To address prospects for this approach, the patterns and
degree of SSR conservation were examined in three-
spined and nine-spined sticklebacks using their aligned
sequences.



Shikano et al. BMC Genomics 2010, 11:334
http://www.biomedcentral.com/1471-2164/11/334

Page 3 of 13
Results and discussion
Cross-species utility of three-spined stickleback primers
Out of the 158 SSR markers for functionally important
genes (gene-based SSRs), 27 showed robust and specific
amplification within the expected size range in nine-
spined sticklebacks (Table 1, see also Additional files 1
and 2), resulting in a low level (17.1%) of cross-species
amplification. In contrast, amplification success was
34.7% (35 out of 101) and 40.2% (35 out of 87) in the SSR
markers derived from genomic libraries (genomic SSRs)
and ESTs (EST-derived SSRs), respectively (Table 1). The
tendency for higher amplification success with the EST-
derived SSRs than with the genomic SSRs is in agreement
with the results of previous studies [48-51] - finding
which has been explained by high sequence conservation
in coding regions [13-15].

Factors affecting cross-species amplification success
were assessed using the 388 SSR markers. A hierarchical
generalized linear model (GLM) revealed a significant
influence of SSR type (cf. gene-based, genomic vs. EST-
derived SSRs) on amplification success (F2,331 = 8.28, P =
0.016). In addition, amplification success was significantly
affected by primer site (cf. exonic, intronic, intergenic vs.
other combinations; F3,331 = 16.43, P < 0.001). Across
the three SSR types, amplification success was high for
the SSR markers in which both forward and reverse prim-
ers were located in exonic regions (62.5%, 15 out of 24),
whereas it was lower if primers were located either in
intronic (20.4%, 20 out of 98) or intergenic regions
(26.3%, 42 out of 160; Table 1). This effect was particu-
larly obvious for the gene-based SSRs with intronic prim-

ers, in which case the amplification success was very low
(3.8%, two out of 53; Table 1). As for EST-derived SSRs,
trinucleotide SSRs are the most abundant repeat motif in
ESTs and tend to be found in coding regions, whereas
dinucleotide SSRs are often found in untranslated regions
[48]. The fact that most of the EST-derived SSRs used in
our study are dinucleotide repeats (85 out of 87) suggests
that a number of the EST-derived SSRs might be located
in untranslated regions. While in theory EST-derived
SSRs should be located in exonic regions, 54 (out of 87)
SSRs were located in intergenic regions according to the
Ensembl genebuild. This inconsistency could be due to
artifacts such as prediction errors and contamination of
cDNA libraries with genomic DNA. Nevertheless, the
result that amplification success tended to be higher for
the EST-derived SSRs with exonic primers (50.0%, seven
out of 14) than for those with intergenic primers (36.2%,
17 out of 47) might, at least in part, result from the fact
that sequence homology is less in untranslated regions
and increase toward the start codon of the coding regions
in related species [51].

While the effects of SSR type and primer site were sig-
nificant, amplification success was not significantly asso-
ciated with average primer length (F1,331 = 1.09, P = 0.297)
or average GC content (F1,331 = 3.12, P = 0.077). Similarly,
amplification success was independent of differences in
GC content (F1,331 = 0.00, P = 0.993) and melting temper-
ature (F1,331 = 0.53, P = 0.465) between primers within a
given primer pair. In addition, there was no association
between amplification success and expected PCR prod-

Table 1: Cross-species amplification of three-spined stickleback SSR primers in nine-spined sticklebacks.

SSR type Primer site N Amplified Polymorphic

Gene-based All 158 27 (17.1%) 16 (10.1%)

Exonic pair 9 7 (77.8%) 4 (44.4%)

Intronic pair 53 2 (3.8%) 1 (1.9%)

Intergenic pair 55 9 (16.4%) 7 (12.7%)

Other combinations 41 9 (22.0%) 4 (9.8%)

Genomic All 101 35 (34.7%) 26 (25.7%)

Exonic pair 1 1 (100%) 1 (100%)

Intronic pair 34 14 (41.2%) 10 (29.4%)

Intergenic pair 58 16 (27.6%) 11 (19.0%)

Other combinations 6 3 (50.0%) 3 (50.0%)

Unknown 2 1 (50.0%) 1 (50.0%)

EST-derived All 87 35 (40.2%) 21 (24.1%)

Exonic pair 14 7 (50.0%) 6 (42.9%)

Intronic pair 11 4 (36.4%) 1 (9.1%)

Intergenic pair 47 17 (36.2%) 10 (21.3%)

Other combinations 15 7 (46.7%) 4 (26.7%)
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uct size (F1,331 = 0.393, P = 0.531). While the positive
effect of average melting temperature appeared to be sig-
nificant (F1,331 = 5.82, P = 0.016), no clear difference of
melting temperature was found among the SSR types.
Based on these results, it is unlikely that differential
amplification success among the three sets of SSR mark-
ers stemmed from different primer conditions. In fact, all
of the SSR markers were successfully amplified under the
same PCR and DNA conditions in three-spined stickle-
backs. Multiple gene copies are known to exist in several
functionally important genes [52-55]. Rather than primer
conditions, divergence of functionally important genes
might be the cause of low cross-species amplification
success of the gene-based SSRs.

In the gene-based SSRs, polymorphism was found at 16
out of the 27 amplifying loci (59.3%; Table 1). This rate
was similar to that observed in the genomic SSRs (74.3%,
26 out of 35) and EST-derived SSRs (60.0%, 21 out of 35;
Table 1). In total, 63 out of the 97 amplified loci exhibited
polymorphism in Fennoscandian populations (Additional
file 1). For the amplified loci, incidence of polymorphism
was independent of SSR type (GLM, F2,90 = 3.37, P =
0.185), SSR location (cf. exonic, intronic vs. intergenic
regions; F2,90 = 5.11, P = 0.078) and SSR repeat motif (cf.
di- vs. trinucleotide repeats; F1,90 = 0.02, P = 0.876). The
relatively high proportion of polymorphic loci across the
different SSR types and SSR locations suggests that sev-
eral SSRs are conserved in three-spined and nine-spined
sticklebacks. For the polymorphic loci of gene-based
SSRs, an average of 8.8 alleles per locus (range = 2-38)
were identified in the three populations (Additional file
1). This value was equivalent to that obtained in the
genomic SSRs (9.3) and EST-derived SSRs (8.3; Addi-
tional file 1). Average heterozygosity varied from 0.19 to
0.55 in the gene-based SSRs, from 0.07 to 0.64 in the
genomic SSRs and from 0.14 to 0.63 in the EST-derived
SSRs among the three populations (Additional file 1).
MICRO-CHECKER analyses did not indicate the pres-
ence of null alleles, with the possible exceptions of the
CLCN7, GS1, Gac7080P and Stn18 in the Baltic Sea, the
Stn127 and GAest41 in the Lake 1 and the GAest16 in the
Pyöreälampi. There was no evidence for deviations from
Hardy-Weinberg equilibrium at any locus in any of the
populations.

In general, our results demonstrate that cross-species
utility of SSR primers for functionally important genes is
less efficient as compared to that of genomic and EST-
derived SSR markers. This is attributed to limited ampli-
fication success rather than a low incidence of polymor-
phism. Therefore, the development of species-specific
primers would be necessary for obtaining SSR markers
for functionally important genes.

SSR conservation in sticklebacks and marker development
To investigate the potential utility of available sequenced
fish genomes for SSR marker development in nine-spined
sticklebacks, we surveyed SSRs within and around 67
functionally important genes in the three-spined stickle-
back genome and designed 70 primer sets for amplifica-
tion and sequencing of these SSR regions using the
conserved sequences determined by sequenced fish
genomes (Additional file 3). The PCR product size of
respective genomic regions obtained in nine-spined
sticklebacks was concordant with that estimated from the
three-spined stickleback genome (Additional file 4). All of
the sequences of nine-spined sticklebacks for the 70
regions exhibited the highest BLAST hit scores in the tar-
get regions and high homologies to the sequences of the
three-spined stickleback (Additional file 4). Out of the 70
genomic regions representing 44,084 bp, 49 contained at
least one SSR in nine-spined sticklebacks (Additional file
4). The total number of SSRs observed in these regions
was 81, including 9 mono-, 52 di-, 18 tri- and two tetra-
nucleotide motifs (Figure 1). In the three-spined stickle-
back genome, 96 SSRs were found in the 70 homologous
regions, including 12 mono-, 57 di-, 23 tri- and four tetra-
nucleotide motifs (Figure 1). Out of the 81 SSRs found in
nine-spined sticklebacks, 64 were identified at the same
locations as those of the three-spined stickleback (Addi-
tional file 4). In addition, 57 out of the 64 SSRs exhibited
the same motifs as those of the three-spined stickleback
(Figure 1, see also Additional file 4), indicating that a
large proportion of SSRs are conserved in the genomes of
these species. Our results also demonstrated that SSRs
with di- and trinucleotide repeat motifs are highly con-
served but those with mononucleotide repeat motifs are
less so (Figure 1). Hence, the level of SSR conservation
may differ among SSRs differing in repeat motif type.

Figure 1 Number of SSRs observed in 70 genomic regions in 
three-spined and nine-spined sticklebacks. Open, unique SSRs for 
three-spined stickleback; gray, unique SSRs for nine-spined stickleback; 
black, SSRs of shared motif and location between these species.
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To further address SSR conservation in stickleback spe-
cies, we investigated if SSRs randomly derived from
genomic libraries of Pungitius species are found at the
homologous genomic locations of three-spined stickle-
backs. For this analysis, we used publicly available SSR
and flanking sequences of Pungitius pungitius (i.e. nine-
spined stickleback) [56] and Pungitius sp. [57] - so called
the Omono-type, which has been regarded as an inde-
pendent species from Pungitius pungitius based on the
biological species concept [58]. The 13 Pungitius pungi-
tius sequences (5,310 bp) contained one mono- and 16
dinucleotide motif SSRs. In the three-spined stickleback
genome, 18 SSRs were identified in the homologous
regions, including one mono- and 17 dinucleotide motifs.
Out of the 18 SSRs identified in the three-spined stickle-
back, 15 (83.3%) exhibited the same motifs at the same
locations as in Pungitius pungitius (Figure 2). In the 19
Pungitius sp. sequences (4,117 bp) containing 20 dinucle-
otide motif SSRs, 17 SSRs were identified in the homolo-
gous regions of the three-spined stickleback genome,
including one mono- and 16 dinucleotide motifs (Figure
2). Out of the 17 SSRs identified in the three-spined stick-
leback, 15 (88.2%) exhibited the same motifs at the same
locations as in Pungitius sp. (Figure 2). The comparative
analyses of randomly selected Pungitius SSRs in the
three-spined stickleback genome further indicated a high
degree of SSR conservation in stickleback species.

While several studies have reported conservation of
single SSRs between different taxa [32-35,59], a compre-
hensive survey of SSR conservation is limited to a com-
parison of human (Homo sapiens) and chimpanzee (Pan
troglodytes) [36,37], which have diverged six million years

ago [60]. According to Vowles and Amos [37], 70% of
human SSRs are homologues in chimpanzees. Our results
demonstrated that a similar proportion (70% for ran-
domly selected motifs) of SSRs are retained in three-
spined sticklebacks and Pungitius species despite longer
divergence time (cf. more than 10 million years) [46] and
much shorter generation times (cf. one or two years) [47].

Based on the sequences obtained in nine-spined stick-
lebacks, species-specific primer sets were designed to
amplify 58 SSRs targeting 57 functionally important
genes (Table 2). Among them, polymorphism was identi-
fied at 41 loci (Table 2) in Fennoscandian populations.
On average, 7.7 alleles per locus (range = 2-27) were iden-
tified across the three populations (Table 3). Average
heterozygosity was 0.57 in the Baltic Sea, 0.37 in the Lake
1 and 0.06 in the Pyöreälampi (Table 3). There was no
indication for the presence of null alleles, with the possi-
ble exceptions of the Ppgm40 and Ppgm50 in the Baltic
Sea and the Ppgm52 and Ppgm56 in the Lake 1. Devia-
tions from Hardy-Weinberg equilibrium were not
observed at any locus in any of the populations.

Patterns and degree of SSR variability
The level of SSR variability is known to be associated with
repeat motifs due to their different mutation rates
[61,62]. In addition, cross-species transfer of SSR primers
often results in a lower level of SSR variability in a focal
species relative to a source species because of ascertain-
ment bias [63,64]. We investigated the patterns and
degree of SSR variability using three Fennoscandian pop-
ulations. Across the 104 polymorphic loci identified in
this study, an average number of alleles per locus and
average heterozygosity were 7.4 and 0.60 in the Baltic Sea,
2.6 and 0.32 in the Lake 1, and 1.6 and 0.10 in the
Pyöreälampi, respectively. As expected, the levels of SSR
variability were significantly dependent on population.
The genome-wide survey indicated that genetic variation
of the Pyöreälampi is very low, as also shown in a previ-
ous study with 11 SSR and one insertion/deletion loci
[65]. In our data set, the levels of SSR variability were not
dependent on marker origin, SSR type and SSR repeat
motif (Table 4). However, a significant influence of SSR
location on the levels of allele number and heterozygosity
was apparent (Table 4). Across the three populations,
average allele number and heterozygosity were 4.7 and
0.41 in exonic regions, 3.3 and 0.30 in intronic regions
and 4.2 and 0.36 in intergenic regions, respectively. While
the level of SSR variability is known to differ between
coding and untranslated regions [66,67], EST-derived
SSRs tend to show lower variability than genomic SSRs
[50,68]. These differences are thought to arise due to het-
erogeneous distributions of SSR repeat motifs. However,
the higher variability in exonic SSRs than in other SSRs is
not explainable by an artifact stemming from different

Figure 2 Number of SSRs observed in 32 genomic regions in 
three-spined sticklebacks and Pungitius species. Open, unique 
SSRs for three-spined stickleback; gray, unique SSRs for nine-spined 
stickleback; black, SSRs of shared motif and location between these 
species.
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Table 2: SSR markers for functionally important genes in nine-spined sticklebacks and their polymorphism (P) in three 
populations.

Gene ID SSR marker GenBank 
accession no

Locus Repeat motif Forward primer (5'-3') Reverse primer (5'-3') Ta (°C) P

ACAPRa Ppgm1 (CTC)12 AGCTGCCATTTTAAATCCTCCTC CTCACCATGATGGAAGCCAC 53 No GU553378

ACAPRb Ppgm2 (AACT)5 GGTCTGCCAGGTCATTTCTC AACGGCACTCATCTGGTTAGT 53 Yes GU553379

AE1 Ppgm3 (GA)8GG(GA)5 AACACATGACATCACTGCAGC ACAGGTAAGTCAGTTGTTTCAGG 53 Yes GU553380

AQP9 Ppgm4 (TGT)6 AGAAAATAAGCAGCCGTAGC TGCACGTAAATGGTCTGATT 55 No GU553381

ATP1A1 Ppgm5 (TG)6 CCATAGGACGATCACAAG GAATGAAGTCTTTGTTGTGGGTC 53 No GU553382

Ppgm6 (CA)5 AGCAGAGCAAAGAACAGGACTC GATCTCTTTTGCTCTGGAGTTGG 53 No GU553382

ATP1A2 Ppgm7 (TG)5/(GT)12 TGCATAATGGTCCCCCGTG AGGCCTTGGCATCCCTG 53 Yes GU553383

ATP4A Ppgm8 (TC)5 TCATTGTAATTTCCGCCTTT TTTCATCACCAACAGGTAGC 55 Yes GU553384

ATP6V1Aa Ppgm9 (TG)6/(TG)10 GACCGATTTCATCTCTGGAC TGACTCTTTTCCCTCCACTT 55 Yes GU553385

ATP6V1Ab Ppgm10 (CA)6 GCAGGATACCCGCTGTCT AAGTTCACAAAGGATGCACA 55 Yes GU553386

CFTR Ppgm11 (CA)13 CACTGCTAACACACATCAGC AAGCGATACCCATCTGTCC 55 Yes GU553387

CLCN3 Ppgm12 (CA)11 AGTCGGCATGGGAGTTCAC GCGATGTCAATCAGGCCG 53 Yes GU553388

CLCN4 Ppgm13 (CTC)5 GTTTGAATCCCACAACTTCA ACTACGTCAACAACCCCAAC 55 No GU553389

CLCN7 Ppgm14 (TG)10 CGCTCTGAACAGCTTAAACA ACGAGAGGGAGTGCATGA 55 Yes GU553390

CLCNK Ppgm15 (TA)4(CA)(TA) GGCCACCTAGAATTGATGAC TCAGAGTCCAAACACGAGAA 55 No GU553391

CSP2 Ppgm16 (AAAT)3 CGTCGAACTCTACAACCTCC AGACGTGTTTGTTCATCAGG 55 Yes GU553392

DIO1 Ppgm17 (TC)9 CAATCAGGATGTCCAACCA GCAGCATGGGATGAGAAC 55 Yes GU553393

eEF1A1b Ppgm18 (AC)9 CACTACAGAGTCTAGTCTGAG TCTTCAGTTAAATGAACCGGTTGC 55 Yes GU553394

FERH1 Ppgm19 (ATC)5 TTCTCTCGTTTCTCCAGAGC GAAATTGACACTGCTGGTTG 55 Yes GU553395

FGF6a Ppgm20 C12 CATCCTTCACCCCAATCTTA TCTGTCCCCTCTTTCAATGT 55 Yes GU553396

FGF18 Ppgm21 (AG)12 TGCCTACTCACACCCACTAA ATGAGAAATCAATGGAGGGA 55 Yes GU553397

GH Ppgm22 (GTATA)3 TGCGTGGTGTAGTATAGTGTAGTC AGAGCAACGTCAACTCAACA 55 No GU553398

GHRH Ppgm23 (AT)8 AAGATGAGTTTCCCGCTCTA TTATTGACTTGACCCTTGACC 55 No GU553399

GHR-1 Ppgm24 (AC)7 CCACTACCTCTGCCCTAAAA TTTCCTTTGGCTTCAATCTC 55 Yes GU553400

GHR-2 Ppgm25 (TA)6 TCAACTCTGACCTTCTTGAGG ACCACAGGTTCACCAAAGAT 55 Yes GU553401

GR1 Ppgm26 A8 CTGGTACTGTCCTGATGGAG TTCTCATAACCACAACTGGC 55 Yes GU553402

GR2 Ppgm27 A8 AGAGCACGACAAAACACAGA AGCAGAAATTGAACAGCACA 55 No GU553403

GTF2B Ppgm28 (AC)4 TGTAATCCCAATACGACGC AGTATCTGAACCCGCACATT 55 Yes GU553404

HPX Ppgm29 (AC)26 GTGCTTTTAGAAAGACCACCG TATTACTCTATAGCCGGCAGC 55 Yes GU553405

HSP25 Ppgm30 (AC)13 GCAGCGTACATTCTGTTCAAC GGTTTCTTATGTGGGTGTGAC 53 Yes GU553406

HSP47a Ppgm31 (CA)6 TGCATCATCTGCACTGAAACG GGGGCAATGATCGTCAATG 55 Yes GU553407

HSP70Aa Ppgm32 (AC)15 CAAAGACCTGCACACACATT GGGAGCTGTCGATACGTTTA 55 Yes GU553408

HSP70Ab Ppgm33 (AC)7 ATCTACAGGGATACCACAGTAC TGTTTACTCCGGTCAATGAAACC 53 No GU553409

HSP70Ac Ppgm34 (TG)5 TACTGTTCCACTTGCCCATT TCACAACTCAGGATCTCGAA 55 No GU553410

HSP70B Ppgm35 (TC)14 TGAGGGTAAAAGCTGTAGCA ATTATCCCAGAACACTCCCA 55 Yes GU553411

HSP90Ab Ppgm36 (CA)5 GTCAAACCGGACATTAGGAC CAGACGTGAAACTACGCTTG 55 Yes GU553412

HSP90B Ppgm37 (TCG)4 AGTTATGAAGAAACCGCGTC GTGATGGCTGTAGCTTGTTG 55 Yes GU553413

IGF-I Ppgm38 (CGC)4 AAGGACGAGCTCGGCTAC AGGATGCGGCTGCAGATG 53 No GU553414

IGF-II Ppgm39 (TA)13/(TA)5 GTTAGGCTTTTACTTGGGTTTCC TCATTACGCAAGATACAGCTCAG 53 Yes GU553415

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553378
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553379
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553380
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553381
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553382
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553382
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553383
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553384
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553385
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553386
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553387
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553388
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553389
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553390
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553391
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553392
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553393
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553394
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553395
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553396
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553397
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553398
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553399
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553400
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553401
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553402
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553403
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553404
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553405
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553406
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553407
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553408
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553409
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553410
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553411
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553412
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553413
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553414
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553415
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Kir2.1a Ppgm40 (TA)10 CTGGAATGACACCAGCCAG AGTCAGCTCCAAGCTTGTG 53 Yes GU553416

Kir2.1c Ppgm41 (TG)7 CAAAGTGAGCAACAGTGAGC AAAGGTCGAGGAAGATGATG 55 No GU553417

Kir2.2 Ppgm42 (TC)12 ACAGGTACGAAGCGTTTAGC AGAGCAAAGAAATAGACGGG 55 Yes GU553418

MSTNa Ppgm43 (CA)5 AGTCCGCAATAAGCTCAAAC ACAAAGCCGTCTAGGTGTTC 55 No GU553419

MSTNb Ppgm44 (GGA)8 GCTGGAGCAGTACGACC GGTGATGATGGTCTCCGT 55 No GU553420

MYHa Ppgm45 (TA)3C(TA)3 AAAGCTCCAAGTAACGCTGT ACTTTTGTTTCCAATCTGCC 55 No GU553421

MYHe Ppgm46 (GTAA)4 ATGTTAATTGCTTTGTGCGA TGAAACACAGGAGCTTGAGA 55 Yes GU553422

NKCC1b Ppgm47 (CA)13 ATATGTTCAGCACGCAGCG GTCAAAGGAGTCTTAGTGAGTG 55 Yes GU553423

NPY2Rb Ppgm48 (GT)26 CACTCAGGAGAAGTGAGGC GGAACGATTACAGGTACGGAC 53 Yes GU553424

NPYP Ppgm49 T10 CTGCAGCGGACGGGATTAG AACACAGGACCGACTTTGAGG 53 No GU553425

PKMa Ppgm50 (GA)5 GTGGTACTGCTGGTTGTACT AAGGTCAAACGGCGTCGC 53 Yes GU553426

PVALBb Ppgm51 (CA)6 AGCTGAACTTTGGTGTGTCTC GTTGATGTGCATTTATGGGA 55 Yes GU553427

SHH Ppgm52 G18 AGAAACGTGGTTATTGAGGC CCTGCTCTTTATTGGGTTTT 55 Yes GU553428

SLC14 Ppgm53 (TG)13 CCATCATCTCTACACATAATCAAAC CACTGATTACAGATTGTGTGCTG 53 Yes GU553429

SSR1b Ppgm54 (TG)12 TGTCCTCGCAAAGTTCATAA TGACCGAGCATTTTACTTGA 55 Yes GU553430

T1R3 Ppgm55 T18 ATGCACTGCGTTATCACTCC GCTTTGTTTAACGTCAGTATTTCG 55 Yes GU553431

TAAR Ppgm56 (AC)12 CAAGGACCACGCTAAAGGTA GATTTCTTCTTGATGTCCGC 55 Yes GU553432

TBX4 Ppgm57 (GT)8 GAGTACGAGCAGGTTTGGTT GTAACACACACGGTTTTGGA 55 Yes GU553433

TTP Ppgm58 (AC)3(TC)(AC)

3

GCCACTTATACATGCTCGC GATTCTCCCTGCCTCACA 55 Yes GU553434

Ta, annealing temperature.

Table 2: SSR markers for functionally important genes in nine-spined sticklebacks and their polymorphism (P) in three 
populations. (Continued)

repeat motifs because a majority of the polymorphic SSRs paper. This approach should be applicable also to other

were dimeric repeats independently of their location.
Several lines of evidence suggest that SSR variation may
affect various traits and be subject to natural selection
[21,69,70]. While the potential effect of variable mutation
rates can not be ruled out, the heterogeneous distribution
of SSR variability observed in this study might be ascrib-
able to natural selection.

Conclusions
Our study demonstrated that a large proportion of SSRs
are conserved in the stickleback species which have
diverged from a common ancestor more than 10 million
years ago [46]. Therefore, the three-spined stickleback
genome can be used to predict SSR locations in Pungitius
species. Our results also suggest that the main limitation
of cross-species utility of SSR markers lies in the failure of
amplification success probably due to mutations in SSR
flanking sequences. While it is possible to predict to
some degree the likelihood of amplification success based
on the information of primer binding sites, cross-species
transferability of SSR primers for functionally important
genes is particularly low as compared to that of genomic
and EST-derived SSR primers. Yet, SSR markers can be
developed for functionally important genes and target
genomic regions using the approach outlined in this

non-model organisms. The SSR markers developed for
functionally important genes should be useful to identify
genes responsible for phenotypic variation and adaptive
divergence in nine-spined sticklebacks, as well as for con-
structing comparative gene maps of nine-spined and
three-spined sticklebacks.

Methods
Fish samples
Nine-spined sticklebacks collected from the Baltic Sea
(coastal; 60°12' N, 25°11' E), the 'Lake 1' (lake; 67°54' N,
20°50' E) and the Pyöreälampi (pond; 66°16' N, 29°26' E)
were used in this study. The fish were sampled with seine
nets or minnow traps in 2002 (Lake 1) and 2008 (Baltic
Sea and Pyöreälampi). Total DNA was extracted from fin
clips stored in 70-99% ethanol with a phenol-chloroform
method [71] following proteinase K digestion.

Cross-species transfer of three-spined stickleback SSR 
primers
Cross-species utility of three-spined stickleback SSR
primers was tested for 158 SSR markers for physiologi-
cally important genes (gene-based SSRs) [Y. Shimada, T.
Shikano and J. Merilä, unpublished] coupled with 101
markers derived from genomic libraries (genomic SSRs)

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553416
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553417
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553418
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553419
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553420
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553421
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553422
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553423
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553424
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553425
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553426
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553427
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553428
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553429
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553430
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553431
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553432
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553433
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553434
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and 87 markers derived from ESTs (EST-derived SSRs;
Additional files 1 and 2) [72-76]. The genomic and EST-
derived SSRs were classified according to the source
information deposited in GenBank [77]. The following
factors potentially affecting cross-species amplification
success were scored for each of the makers: SSR marker
type (cf. gene-based, genomic and EST-derived SSRs),
primer binding site (cf. exonic, intronic, intergenic and
other combinations), average primer length, average and
difference of GC content and melting temperature in for-
ward and reverse primer pairs, as well as expected PCR
product size. Primer binding sites were categorized into
exonic, intronic and intergenic regions based on the
Ensembl genebuild in the three-spined stickleback
genome [40]. Since information on untranslated regions
was not available for a number of genes, we did not dis-
tinguish between coding and untranslated regions in the
analyses. The primer parameters were calculated using
BioEdit [78] under the actual PCR conditions (see below).
The expected PCR product sizes were calculated based
on the three-spined stickleback genome. The role of these
factors was evaluated using generalized linear models as
implemented in JMP 5 (SAS Inst. Inc.). In these tests,
amplification success was treated as a binary dependent
variable (successful amplification = 1, failed amplification
= 0), SSR type and primer site as factors, and other
parameters as covariates. Logit link function was used.
For the successfully amplified loci, factors affecting inci-
dence of polymorphism were evaluated using generalized
linear models treating SSR type, SSR location (cf. exonic,
intronic and intergenic regions) and SSR repeat motif (cf.
di- and trinucleotide repeats) as factors. SSR location was
categorized into exonic, intronic and intergenic regions
based on the Ensembl genebuild in the three-spined
stickleback genome. In this test, polymorphic locus was
treated as a binary dependent variable (polymorphic = 1,
monomorphic = 0) using logit link function.

SSR primer development in nine-spined sticklebacks
Based on the literature on gene functions in teleosts, we
selected 67 genes responsible for significant physiological
- such as osmoregulation, thermal response, growth, dis-
ease and taste [Y. Shimada, T. Shikano and J. Merilä,
unpublished] - and developmental functions [e.g. [41]]
(Additional file 3). Genomic locations of these genes were
identified in the three-spined stickleback genome follow-
ing Shimada et al. [Y. Shimada, T. Shikano and J. Merilä,
unpublished]. In brief, we searched the three-spined
stickleback ESTs which correspond to target genes of this
species or other teleosts in the GenBank database [77]
and mapped them in the three-spined stickleback
genome. The genomic range of respective genes was
determined according to the Ensembl transcript and
Genscan predictions (Additional file 3). Since the

genomic region of the PITX1 was not available due to
partially incomplete sequences of the three-spined stick-
leback genome, the sequence of this gene (GenBank:
AY517634.1) was used.

SSRs were searched in the target genes and their flank-
ing regions in the three-spined stickleback genome using
Tandem repeats finder [79]. In order to survey conserved
regions for designing amplification and sequencing prim-
ers in nine-spined sticklebacks, the sequences of these
genomic regions were subject to BLASTN searches
against the currently available genome sequences of other
teleosts, i.e. medaka, fugu, spotted green pufferfish and/
or zebrafish [40]. Conserved regions were determined by
aligning the sequences of three-spined sticklebacks and
those of other fish species detected by the BLASTN
searches. Based on the location of SSRs and conserved
regions, primer sequences for nine-spined sticklebacks
were designed manually in one genomic region for each
target gene, except for the GHRI and IGF-I, for which two
and three regions were used, respectively (Additional file
3).

Two individuals of the Pyöreälampi were used for
amplifying and sequencing the target genomic regions.
One three-spined stickleback individual from the Baltic
Sea (60°12' N, 25°11' E) was used as a positive control.
Using a primer pair for respective target regions (Addi-
tional file 3), PCR amplifications were carried out in a 20
μl reaction volume consisting of 1× PCR buffer (Bioline),
1.5 mM MgCl2, 0.25 mM dNTP (Finnzymes), 0.15 U
BIOTAQ DNA polymerase (Bioline), 5 pmol of each
primer and approx. 40 ng of genomic DNA. The reac-
tions were performed as follows: an initial degeneration
step at 95°C for 3 min, followed by 30 s at 95°C, 30 s at 53-
60°C and 60-120 s at 72°C for 35 cycles with a final exten-
sion at 72°C for 5 min (see Additional file 3 for optimal
PCR conditions in each primer pair). Approximate size of
the PCR amplicons was determined by electrophoresis on
1.5% agarose gel with a DNA ladder (GeneRuler™ DNA
Ladder Mix, Fermentas). PCR products were purified
using exonuclease I (New England Biolabs) and shrimp
alkaline phosphatase (Roche) and directly sequenced in
both forward and reverse directions with the same prim-
ers as those used in the PCRs. The sequencing reactions
were performed using the BigDye Terminator v3.1 Cycle
Sequencing Kit (Applied Biosystems) according to manu-
facture's instructions. Cycle sequencing products were
purified by ethanol precipitation and analyzed on an ABI
3730xl DNA Analyzer (Applied Biosystems).

The sequences in forward and reverse directions of two
individuals were aligned using CLUSTAL W [80] as
implemented in MEGA 4 [81] and edited by hand. For
large PCR amplicons (≥1200 bp), the sequences in for-
ward and reverse directions were separately aligned using
two individuals (Additional file 4). As sequences were

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AY517634.1
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Table 3: Genetic variability of SSR markers for functionally important genes in three populations of nine-spined 
sticklebacks.

Gene ID Locus Total A Baltic Sea Lake 1 Pyöreälampi

Size (bp) A HE FIS Size (bp) A HE FIS Size (bp) A HE FIS

ACAPRb Ppgm2 3 382-414 3 0.573 -0.017 410 1 0.000 na 414 1 0.000 na

AE1 Ppgm3 15 214-260 10 0.779 -0.070 226-308 6 0.560 0.146 228 1 0.000 na

ATP1A2 Ppgm7 9 117-143 9 0.774 -0.077 117-139 3 0.576 -0.085 135 1 0.000 na

ATP4A Ppgm8 2 186-196 2 0.042 0.000 186 1 0.000 na 186 1 0.000 na

ATP6V1Aa Ppgm9 7 187-199 7 0.783 -0.065 189-191 2 0.504 -0.324 191 1 0.000 na

ATP6V1Ab Ppgm10 4 102-110 3 0.265 0.058 98-110 2 0.451 -0.293 110 1 0.000 na

CFTR Ppgm11 10 129-159 9 0.593 0.157 139-143 2 0.359 -0.278 149 1 0.000 na

CLCN3 Ppgm12 25 185-241 20 0.935 -0.023 194-225 6 0.755 0.118 193-195 2 0.437 -0.241

CLCN7 Ppgm14 8 245-266 6 0.626 0.001 254-261 4 0.746 0.107 256 1 0.000 na

CSP2 Ppgm16 3 184-192 3 0.490 -0.360 184 1 0.000 na 184 1 0.000 na

DIO1 Ppgm17 4 162-166 4 0.545 0.123 162-166 2 0.254 -0.150 166 1 0.000 na

eEF1A1b Ppgm18 5 217-229 5 0.715 0.125 227-229 2 0.223 -0.122 225 1 0.000 na

FERH1 Ppgm19 4 217-235 4 0.352 0.054 232-235 2 0.496 -0.007 235 1 0.000 na

FGF6a Ppgm20 14 332-346 12 0.859 -0.063 335-340 4 0.624 0.132 337 1 0.000 na

FGF18 Ppgm21 6 331-347 6 0.723 -0.038 335-343 2 0.511 0.021 335 1 0.000 na

GHR-1 Ppgm24 5 193-205 3 0.121 -0.030 192-193 2 0.223 -0.122 193-195 2 0.156 -0.070

GHR-2 Ppgm25 3 327-333 3 0.492 -0.186 331-333 2 0.082 -0.022 327 1 0.000 na

GR1 Ppgm26 3 295-297 3 0.532 0.060 297 1 0.000 na 297 1 0.000 na

GTF2B Ppgm28 2 290 1 0.000 na 288-290 2 0.418 -0.394 290 1 0.000 na

HPX Ppgm29 13 126-169 10 0.746 0.163 137-157 3 0.586 0.289 155-158 2 0.504 0.090

HSP25 Ppgm30 4 159-177 4 0.605 0.243 159-175 2 0.478 -0.045 173 1 0.000 na

HSP47a Ppgm31 2 107-109 2 0.042 0.000 107 1 0.000 na 107 1 0.000 na

HSP70Aa Ppgm32 27 283-529 26 0.959 0.094 305-329 4 0.662 0.146 317-319 2 0.466 -0.163

HSP70B Ppgm35 6 324-348 6 0.416 -0.102 324-342 2 0.462 -0.533 324-342 2 0.283 -0.179

HSP90Ab Ppgm36 7 198-232 7 0.629 0.205 204-206 2 0.156 -0.070 204 1 0.000 na

HSP90B Ppgm37 7 244-271 6 0.728 0.085 232-259 3 0.429 -0.068 247 1 0.000 na

IGF-II Ppgm39 8 387-401 8 0.700 0.107 389-397 3 0.160 0.480 393-397 3 0.159 -0.051

Kir2.1a Ppgm40 8 293-327 8 0.713 -0.169 301-321 2 0.511 0.103 297-301 2 0.156 -0.070

Kir2.2 Ppgm42 6 289-299 6 0.578 -0.082 291-293 2 0.223 -0.122 289 1 0.000 na

MYHe Ppgm46 6 154-161 5 0.639 0.021 154-159 3 0.508 -0.148 159 1 0.000 na

NKCC1b Ppgm47 10 117-159 10 0.744 -0.065 119-159 3 0.629 0.171 123-125 2 0.042 0.000

NPY2Rb Ppgm48 25 406-471 19 0.918 0.001 423-475 6 0.793 0.002 469 1 0.000 na

PKMa Ppgm50 5 327-334 3 0.518 0.660 327-334 3 0.392 -0.062 327-329 3 0.159 -0.045

PVALBb Ppgm51 5 168-176 5 0.747 0.243 169-176 2 0.042 0.000 169 1 0.000 na

SHH Ppgm52 13 344-356 11 0.856 0.054 353-358 2 0.315 0.603 351-353 2 0.198 -0.100

SLC14 Ppgm53 3 230-240 3 0.121 -0.030 236 1 0.000 na 236 1 0.000 na

SSR1b Ppgm54 8 129-145 8 0.544 0.005 135-145 4 0.727 0.083 139 1 0.000 na

T1R3 Ppgm55 6 278-285 5 0.558 -0.195 281-286 2 0.082 -0.022 281 1 0.000 na

TAAR Ppgm56 9 123-141 8 0.614 0.050 123-139 4 0.659 0.305 127 1 0.000 na

TBX4 Ppgm57 3 278-292 3 0.318 -0.048 278-290 2 0.380 -0.314 290 1 0.000 na

TTP Ppgm58 3 317-321 3 0.291 0.140 317-321 2 0.283 -0.179 317 1 0.000 na

A, number of observed alleles; HE, expected heterozygosity; na, not applied.
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available only in one direction for four genomic regions
even after retrials, sequences for these regions were
aligned using two individuals (Additional file 4). The
sequences were subject to BLASTN searches against the
three-spined stickleback genome to ensure that they are
mapped back to the correct locations in the genome. The
homologous sequences in three-spined and nine-spined
sticklebacks were aligned to compare SSR locations and
motifs between them. This comparison was performed
using SSRs with minimum repeat numbers of ten, five
and four for one (mono-), two (di-) and three or longer
(tri-, tetra-, penta- and hexanucleotide) repeat motifs,
respectively. To further address SSR conservation in
stickleback species, we also investigated if SSRs randomly
derived from genomic libraries of Pungitius species are
found at the homologous locations in the three-spined
stickleback genome using publicly available SSR and
flanking sequences of Pungitius pungitius (i.e. nine-
spined stickleback) [[56]; GenBank: AB473819-
AB473831] and Pungitius sp. (Omono type) [[57]; Gen-
Bank: AB300827-AB300851]. Out of the 38 sequences,
six (GenBank: AB300830, AB300831, AB300841,
AB300842, AB300844, AB300849) were excluded from
the analyses because of low BLAST hit scores and align-
ment problems. To develop SSR markers for functionally
important genes, primer sets were designed based on the
sequences of nine-spined sticklebacks using WebSat [82].
Primer sequences were deposited in GenBank under
accession numbers GU553378-GU553434.

SSR amplification and genotyping
For the cross-species amplification test of three-spined
stickleback primers, amplification success and polymor-
phism were determined using the following three-step
procedure. Firstly, amplification was tested using four
individuals from the Pyöreälampi and Baltic Sea (two
individuals per population) with fluorescent labelled for-
ward primers (FAM, HEX or TET) and GTTT-tailed
reverse primers [83]. As a positive control, one individual
of the three-spined stickleback was used. PCRs were per-
formed under optimal conditions for three-spined stick-

lebacks and conducted in a 10 μl reaction volume
consisting of 1× PCR buffer (Bioline), 1.5 mM MgCl2, 0.2
mM dNTP (Finnzymes), 0.18 U BIOTAQ DNA poly-
merase (Bioline), 5 pmol of each primer and approx. 20
ng of template DNA. The reactions were performed as
follows: an initial degeneration step at 95°C for 3 min, fol-
lowed by 30 s at 95°C, 30 s at 53°C and 30 s at 72°C for 30
cycles with a final extension at 72°C for 5 min. Amplifica-
tion success was determined by electrophoresis on 1.6%
agarose gel. Secondly, for the loci that showed robust and
specific amplification within the expected size range,
polymorphism was investigated by genotyping 24 indi-
viduals from the Baltic Sea and the Lake 1 (12 individuals
per population). For efficient screening, PCRs were car-
ried out using the Qiagen Multiplex PCR Kit (Qiagen) in
10 μl reaction volumes containing 1× Qiagen Multiplex
PCR Master Mix, 0.5× Q-Solution, 2 pmol of each primer
and approx. 20 ng of template DNA. The reactions were
performed by the following cycle: an initial activation
step at 95°C for 15 min, followed by 30 s at 94°C, 90 s at
53°C and 60 s at 72°C for 30 cycles with a final extension
at 60°C for 5 min. PCR products were visualized with a
MegaBACE 1000 automated sequencer (Amersham Bio-
sciences) and their sizes were determined with ET-ROX
550 size standard (Amersham Biosciences). Thirdly,
genetic variability of the polymorphic loci identified with
the 24 individuals was evaluated by genotyping a total of
24 individuals from each of the Baltic Sea, Lake 1 and
Pyöreälampi populations using multiplex PCRs. For the
SSR primers developed in nine-spined sticklebacks, poly-
morphism and genetic variability were evaluated follow-
ing the procedures for the second and third steps. Since
some of the SSR markers yielded clearer allele profiles at
an annealing temperature of 55°C, this temperature was
used for these loci instead of 53°C (see Table 2 for an opti-
mal annealing temperature for each primer pair). Alleles
were scored using Fragment Profiler 1.2 (Amersham Bio-
sciences) with visual inspection and manual corrections
of alleles.

Table 4: Hierarchical analysis of genetic variability in nine-spined sticklebacks.

Source Number of alleles Expected heterozygosity

Type III SS df (den) MS F P Type III SS df (den) MS F P

Marker origin 2.653 1 (298) 2.653 0.222 0.638 0.029 1 (298) 0.029 0.527 0.468

SSR type 16.859 2 (298) 8.430 0.704 0.495 0.079 2 (298) 0.040 0.716 0.489

SSR location 73.246 2 (298) 36.623 3.059 0.048 0.416 2 (298) 0.208 3.782 0.024

SSR motif 36.085 3 (298) 12.028 1.005 0.391 0.073 3 (298) 0.024 0.445 0.721

Population 1978.000 2 (298) 989.000 12.587 2 (298) 6.294

http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB473819
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB473831
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300827
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300851
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300830
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300831
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300841
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300842
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300844
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=AB300849
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553378
http://www.ncbi.nih.gov/entrez/query.fcgi?db=Nucleotide&cmd=search&term=GU553434
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SSR data analyses
Locus and population specific gene diversities (HE) [84]
were estimated using FSTAT 2.9.3 [85,86]. Within popu-
lation and locus specific FIS were estimated for each pop-
ulation to detect possible deviations from Hardy-
Weinberg equilibrium with 10 000 permutations using
FSTAT 2.9.3. Sequential Bonferroni corrections [87] were
applied to minimize type I errors. The presence of null
alleles was tested using MICRO-CHECKER [88].

Factors affecting the levels of genetic variation were
evaluated with general linear models where allele number
or heterozygosity was treated as a dependent variable,
SSR marker origin (cf. three-spined and nine-spined
sticklebacks), SSR type, SSR location and SSR repeat
motif (cf. mono-, di-, tri- and tetranucleotide repeats) as
fixed factors and population as a random factor. These
analyses were performed with JMP 5.

Additional material
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