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Abstract

information and be sensitive to genotyping errors.

Background: Allele frequency is one of the most important population indices and has been broadly applied to
genetic/genomic studies. Estimation of allele frequency using genotypes is convenient but may lose data

Results: This study utilizes a unified intensity-measuring approach to estimating individual-level allele frequencies
for 1,104 and 1,270 samples genotyped with the single-nucleotide-polymorphism arrays of the Affymetrix Human
Mapping 100K and 500K Sets, respectively. Allele frequencies of all samples are estimated and adjusted by
coefficients of preferential amplification/hybridization (CPA), and large ethnicity-specific and cross-ethnicity
databases of CPA and allele frequency are established. The results show that using the CPA significantly improves
the accuracy of allele frequency estimates; moreover, this paramount factor is insensitive to the time of data
acquisition, effect of laboratory site, type of gene chip, and phenotypic status. Based on accurate allele frequency
estimates, analytic methods based on individual-level allele frequencies are developed and successfully applied to
discover genomic patterns of allele frequencies, detect chromosomal abnormalities, classify sample groups, identify
outlier samples, and estimate the purity of tumor samples. The methods are packaged into a new analysis tool,
ALOHA (Allele-frequency/Loss-of-heterozygosity/Allele-imbalance).

Conclusions: This is the first time that these important genetic/genomic applications have been simultaneously
conducted by the analyses of individual-level allele frequencies estimated by a unified intensity-measuring
approach. We expect that additional practical applications for allele frequency analysis will be found. The
developed databases and tools provide useful resources for human genome analysis via high-throughput single-
nucleotide-polymorphism arrays. The ALOHA software was written in R and R GUI and can be downloaded at
http//www.stat.sinica.edu.tw/hsinchou/genetics/aloha/ALOHA htm.

Background

Allele frequency denotes the relative frequency of an
allele compared with the total frequency of all alleles at
a marker locus. It is one of the most important popula-
tion indices and has been broadly applied to genetic/
genomic research [1-5]. The generalized concept of
allele frequency has two aspects: individual-level allele
frequency and population-level allele frequency. The for-
mer represents a within-individual relative frequency of
alleles and its standard error reflects inter-cell variability
in an individual; the latter represents a within-popula-
tion relative frequency of alleles and its standard error
reflects inter-individual variability in a population [6].
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Using the most abundant genetic marker in the
human genome, namely the single-nucleotide poly-
morphism (SNP), both individual-level and population-
level allele frequencies can be estimated using a (geno-
type-based) allele-counting approach and an (intensity-
based) intensity-measuring approach (Appendix A).
This paper focuses on the intensity-measuring allele fre-
quency because this allele frequency estimate is insensi-
tivity to genotyping errors and preserves data
information that might be lost in conventional geno-
type-based analyses. For instance, the genomic abnorm-
ality of a particular sample, for instance NA18996 from
the Japanese in population in the International HapMap
Project [7-10], can be easily observed by individual-level
allele frequencies using an intensity-measuring approach
[Additional file 1, Supplemental Figure S1 (A)] but not
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by using an allele-counting approach [Additional file 1,
Supplemental Figure S1 (B)]. The finding motivated us
to analyze intensity-based allele frequencies for extrac-
tion of information lost in conventional genotype-based
analyses.

An intensity-measuring approach can accurately esti-
mate allele frequencies with the aid of an adjustment for
preferential amplification/hybridization [11]. The coeffi-
cient of preferential amplification/hybridization (CPA) is
used to quantify preferential amplification/hybridization
and reduce the estimation bias of allele frequency
[12-19]. Consider a SNP with genotype AA, Aa or aa.
In comparison with an unadjusted individual-level allele
frequency [Additional file 2, Supplemental Figure S2
(A)], a CPA-adjusted frequency of allele A moves
toward the expected values of 1, 0.5 and 0 for SNPs
with genotypes AA, Aa and aa, respectively [Additional
file 2, Supplemental Figure S2 (B)]. In comparison
with an unadjusted population-level allele frequency
from a DNA pool of 240 individuals [Additional file 3,
Supplemental Figure S3 (A)], a CPA-adjusted fre-
quency of allele A moves toward the true allele frequen-
cies obtained from an individual genotyping experiment
[Additional file 3, Supplemental Figure S3 (B)] [6].
The results demonstrate the important role of CPA
adjustment in allele frequency estimation, thereby
expanding applications of allele frequency in various
genomic science disciplines. The features of CPA have
been studied, but not exhaustively [14,15,17]. Therefore,
we undertook an in-depth investigation of the relation-
ship between CPA and important factors including sam-
ple size, time of data acquisition, effects of laboratory
site, type of gene chip, ethnicity effects, and phenotypic
status, and we constructed new public CPA and allele
frequency databases.

Population-level allele frequency has many important
applications and has been well discussed [1-4]. This
paper mainly focuses on individual-level allele frequency
and investigates its applications in genetic/genomic stu-
dies, including the discovery of allele frequency patterns,
identification of chromosomal aberrations (including
aneuploidy, loss of heterozygosity (LOH), and allelic
imbalance (AI)), outlier detection, and sample classifica-
tion (including stratification by population and gender).
This is the first time that these important genetic/geno-
mic applications have been simultaneously conducted
based on individual-level allele frequencies estimated by
a unified intensity-measuring approach.

Methods

Samples

This study analyzes genotype and intensity data from
several large genomic projects. The first dataset consists
of 367 and 448 Taiwanese samples genotyped using the
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Affymetrix Human Mapping 100K Set and 500K Set
(Affymetrix, San Diego, CA, USA), respectively, from
the Taiwan Han Chinese Cell and Genome Bank [20].
The second dataset consists of 175 and 198 hyperten-
sion patients genotyped using the Affymetrix Human
Mapping 100K Set and 500K Set, respectively, from the
Academia Sinica Multi-Centered Hypertension Genetic
Study. The third dataset consists of 30 African trios of
Yoruba in Ibadan (YRI), 30 Caucasian trios of residents
in CEPH Utah (CEU), and 90 Asians (45 Han Chinese
in Beijing (CHB) and 45 Japanese in Tokyo (JPT)) from
the International HapMap Project [7-10], where all 270
samples were genotyped using both the Affymetrix
Human Mapping 100K Set and 500K Set. The fourth
dataset consists of 242 and 304 leukaemia cancer
patients who were genotyped using the Affymetrix
Human Mapping 100K Set and 500K Set, respectively;
in addition, 50 normal controls were genotyped with the
Affymetrix Human Mapping 100K and 500K Sets from
an acute lymphoblastic leukaemia (ALL) project [21,22].
All participants involved in the genomic projects signed
Informed Consent Forms.

Genotyping

All samples were genotyped with the Affymetrix Human
Mapping 100K Set and/or 500K Set (Affymetrix, San
Diego, CA, USA), which contain 116,204 SNPs with a
median inter-marker distance of 8.5 kb and 500,568
SNPs with a median inter-marker distance of 2.5 kb,
respectively. The data sheets and genotyping manuals
for the two SNP chips can be downloaded at http://
www.affymetrix.com/. For details of the SNP genotyping
experiments refer to Yang et al. [23] for the Taiwanese
normal samples and hypertensive patients, The Interna-
tional HapMap Consortium [7-10] for the International
HapMap Project samples, and Mullighan et al. [21,22]
for the ALL Project samples. SNP genotype calling algo-
rithms, DM (Dynamic Model) [24] and BRLMM (Baye-
sian Robust Linear Model with Mahalanobis Distance
Classifier) [25], were used for the Affymetrix Human
Mapping 100K Set and 500K Set, respectively.

Allele frequency estimation

An individual-level allele frequency is the proportion of
a specific allele in a genotype. Here we formulate the
existing procedures of allele frequency estimation. Con-
sider an example of a SNP with genotype aa, Aa or AA.
Two methods can be used to estimate an individual-
level allele frequency. First, the allele-counting approach
uses genotype data from an individual genotyping
experiment (IGE). The number of allele A is counted
and then used to calculate the proportion of allele A in
a genotype. Besides no calls, there are only three possi-
ble outcomes of an allele frequency estimate for a SNP.
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Therefore, allele frequency estimates are 0, 0.5 and 1,
corresponding to genotypes aa, Aa and AA, respectively
(Equation (A1l)). Second, the intensity-measuring
approach uses intensity data from an IGE. The fre-
quency of allele A is estimated by calculating the ratio
of intensities pertaining to allele A relative to the total
intensity of two alleles, where intensities are adjusted by
considering a CPA. The ratio reflects a relative amount
of allele A compared with the total amount of two
alleles at a SNP for an individual (Equation (A2)).

In contrast to an individual-level allele frequency, a
population-level allele frequency is the proportion of a
specific allele in a study population. The allele frequen-
cies can be estimated based on data from an IGE or a
pooled allelotyping experiment (PAE). In an IGE, indivi-
dual-level allele frequencies are estimated by using gen-
otype data or intensity data as mentioned above. Then a
population-level allele frequency is estimated by taking
an average over individual-level allele frequencies from
genotype data (Equation (A3)) or intensity data (Equa-
tion (A4)). In a PAE, intensity data are available, but
individual genotype data are not. A relative intensity of
allele A in a DNA pool, which is constructed by mixing
genomic DNA from multiple samples, is calculated to
estimate a population-level allele frequency (Equation
(A5)). The detailed procedures for allele frequency esti-
mation and CPA adjustment are described in Appendix
A.

Identification of chromosomal aberrations

We develop multiple chromosomal aberration indices
and a sliding-window approach in concert with a stan-
dard individual-level allele frequency plot to identify
chromosomal aberrations such as aneuploidy, Al, LOH,
long-contiguous-stretch-of-homozygosity (LCSH), and
so on. For an individual and a SNP, individual-level
allele frequency is compared with genotype-specific
reference confidence intervals. Index A;,, is used to
detect Al genomic segments characterized by SNP
points with allele frequencies outside the allele fre-
quency confidence intervals of three genotypes. Index
L;,, is used to detect LOH or LCSH, genomic regions
characterized by SNP points with contiguous homozy-
gous calls (Appendix B). The two indices are used to
identify unusual SNPs point by point. Furthermore,
based on all patients and normal controls, two multi-
point indices, Al n (Equation (B1)) and le (Equation
(B2)) are calculated in each window using a sliding-win-
dow approach. In addition, the smoothed indices,
A}, (w) and L, (w), are also calculated using a spline
smoothing technique. We identify chromosomal aberra-
tions by pinpointing the genomic regions where the
indices of a patient are higher than the 95%-quantile
indices of normal controls. Detailed procedures for
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identifying chromosomal aberrations are described in
Appendix B.

Sample classification and outlier detection

We apply an allele frequency biplot based on individual-
level allele frequencies to classify samples and detect
outliers. An allele frequency biplot, which uses a singu-
lar value decomposition to decompose an allele fre-
quency matrix into a sample matrix and a SNP matrix
(Equations (C1) and (C2)), projects samples and SNPs
onto a two-dimensional plane simultaneously. The first
dimension is a sample coordinate constructed by the
first two columns of the sample matrix, and the second
dimension is a SNP coordinate constructed by the first
two columns of the SNP matrix. The rank-2 biplot con-
figuration can be utilized for sample classification, out-
lier detection and SNP clustering. First, sample
classification allows for samples with a similar allele fre-
quency distribution to be clustered and used to study
population stratification and gender grouping. Second,
outlier detection identifies samples far away from the
majority of samples for a further examination prior to
downstream analyses. Third, SNP clustering identifies a
collection of SNPs physically close to specific sample
groups. The SNP patterns are used to separate sample
groups and explain sample characteristics. Detailed pro-
cedures for constructing an allele frequency biplot are
described in Appendix C.

Results

Coefficient of preferential amplification/hybridization

We characterize genomic patterns of CPA based on the
three genome projects, the Taiwan Han Chinese Cell
and Genome Bank [20], the Academia Sinica Multi-Cen-
ter Hypertension Genetic Study, and the International
HapMap Project [7-10]. Both Affymetrix 100K and
500K Sets are considered. This work extends our pre-
vious study by using richer study samples and denser
SNP chips [17]. We calculate CPA based on an unbiased
estimator [12] and construct public CPA databases for
the Taiwanese population, ethnic-specific populations
(African, Asian, and Caucasian populations), and a
cross-ethnicity group (a combination of African, Asian
and Caucasian populations). The CPA databases are
available online at http://140.109.72.48/index.htm. Three
CPA query methods (keyword query, general query and
advanced query) are provided. In addition, we examine
the relationship between CPA and important factors
including: (1) sample size (45, 90, 180, and 367 indivi-
duals); (2) time of data acquisition (four genotyping per-
iods) and effects of laboratory site (two sites); (3) gene
chip type (Affymetrix Human Mapping 100K Set and
500K Set); (4) ethnicity effects (Africans, Asians, and
Caucasians); and (5) phenotypic status (normal controls
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and young-onset hypertension patients). Results of the
investigation of these issues are summarized in order
they are presented here.

First, CPA can be estimated well for a moderate sam-
ple size [Additional file 4, Supplemental Figure S4
(A)], but its variance decreases significantly with
increasing sample size [Additional file 4, Supplemental
Figure S4 (B)]. Based on a total of 367 Taiwanese sam-
ples that were genotyped with the Affymetrix Human
Mapping 100K Set, 45, 90 and 180 samples are ran-
domly selected from the 367 samples. Pairwise correla-
tion coefficients of log,(CPA) obtained from different
sample sizes are calculated, and the lowest correlation
coefficient is greater than 0.975. In the fitted quadratic
regression, an intercept term is close to 0 (i.e., the
regression curve passes through the origin), and the
regression coefficients of the linear term and quadratic
term are close to 1 and 0, respectively. In other words,
CPAs are close even when they are calculated from a
relatively small sample size, implying that CPA can be
estimated well even for a moderate sample size [Addi-
tional file 4, Supplemental Figure S4 (A)]. Note that,
with respect to each SNP, only heterozygous individuals
have been used to estimate CPA. The expected number
of heterozygous individuals is the number of total sam-
ples multiplied by the probability that a SNP is hetero-
zygous. CPA variances pertaining to the four sample
sizes are calculated. The overall SNP averages of ratios
of CPA variances of 180 versus 367 samples (green
points), 90 versus 367 samples (red points), and 45 ver-
sus 367 samples (blue points) are 1.42, 1.99, and 3.90,
respectively. The larger the sample size, the smaller the
variability of CPA [Additional file 4, Supplemental Fig-
ure S4 (B)].

Second, CPA is insensitive to data from different gen-
otyping time periods [Additional file 5, Supplemental
Figure S5 (A)] and different laboratories [Additional file
5, Supplemental Figure S5 (B)]. To evaluate time effect
on CPA, CPAs are calculated based on data from the
same genotyping laboratory but from four time periods
of data acquisition (2005/05/04, 2006/01/09, 2006/03/17
and 2006/06/29), and sample sizes in experiments are
close (95, 96, 90 and 76). All the pairwise correlation
coefficients of log,(CPA) are greater than 0.966, and
quadratic regression curves act like a linear regression
line passing through the origin and having a slope of 1,
implying that CPA is robust to data from different geno-
typing periods [Additional file 5, Supplemental Figure
S5 (A)]. We also examine the effect of genotyping sites
on CPA. CPAs are calculated based on data from the 90
Asian samples in the International HapMap Project and
95 Taiwanese samples. These two datasets with similar
sample sizes were collected from Asian populations but
genotyped at different times and sites. A high
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correlation of CPA between the two datasets is found
across chromosomes, implying that CPA is robust to
data from different genotyping sites [Additional file 5,
Supplemental Figure S5 (B)].

Third, CPAs from the Affymetrix Human Mapping
100K and 500K Sets yield similar genomic patterns
[Additional file 6, Supplemental Figures S6 (A) - (D)].
Means (standard deviations) of log,(CPA) for 100K and
500K Sets are 0.04 (0.54) and 0.05 (0.70), respectively.
The majority of log,(CPA) are bounded by +1. More-
over, we examine genome-wide distributions of CPA for
different ethnic groups (CHB, JPT, YRI, and CEU), Tai-
wanese samples and their combination) and different
SNP chips (Affymetrix 100K and 500K Sets). The results
show that genome-wide CPA can be well modeled by
using log-normal distributions, where the results of Tai-
wanese samples are shown [Additional file 7, Supple-
mental Figures S7 (A) and (B)]. The finding is useful
for discussions of theoretical sampling distribution of
CPA-adjusted allele frequency estimates and statistical
tests.

Fourth, genomic distributions of CPA between ethnic
groups may differ [Additional file 8, Supplemental Fig-
ures S8 (A) and (B)]. CPAs are calculated based on
data from different populations, including 45 Han Chi-
nese (CHB), 45 Japanese (JPT), 60 Africans (YRI), 60
Caucasians (CEU), 90 Asians (CHB+JPT), and 210 com-
bined samples (CHB+JPT+YRI+CEU). Results show that
correlation of CPAs among populations is dependent on
the ethnic populations selected [Additional file 8, Sup-
plemental Figure S8 (A)]. Among all pair-wise compar-
isons, two Asian populations, CHB and JPT, have the
highest correlation (r = 0.966), depicted by a flat ellipse;
the two Asian populations and Caucasian populations
have the lowest correlation (r = 0.845 for CHB and CEU
and r = 0.845 for JPT and CEU), depicted by round
ellipses. Note that comparison of the Caucasian and the
combined Asian populations present a nephroid ellipse,
where the 95% confidence interval of the mean regres-
sion curve does not pass through the origin, and the
slope term deviates from unity. This suggests a relatively
large discrepancy of CPAs between Asian and Caucasian
populations. CPAs of the African population are located
in an intermediate position between the Asian and Cau-
casian populations, and the order is shown in a tree dia-
gram [Additional file 8, Supplemental Figure S8 (B)].

Finally, CPA distributions between hypertension
patients and normal controls are similar [Additional file
9, Supplemental Figure S9]. CPAs are calculated based
on a total of 180 Taiwanese normal control samples and
175 Taiwanese hypertension patient samples that were
genotyped with the Affymetrix Human Mapping 100K
Set in the same laboratory. A high correlation (r =
0.980) is observed. This result implies that the pooled
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DNA association mapping of a Taiwanese hypertension
study may use the same CPA for case and control
groups.

Allele frequency

Based on our CPA databases, we estimate individual-
level allele frequencies using the intensity-measuring
approach for samples from different populations, includ-
ing (1) Affymetrix Human Mapping 100K Set: 367 Tai-
wanese samples and 270 HapMap samples, and (2)
Affymetrix Human Mapping 500K Set: 448 Taiwanese
samples and 270 HapMap samples. The pattern of allele
frequency can be observed in a standard allele frequency
plot. For example, for a normal female sample
(NA19206) from the YRI population in the International
HapMap Project (The International HapMap Consor-
tium, 2003-2007), with the exception of some noisy SNP
points, an allele frequency plot exhibits three bands
formed by SNPs with an individual-level allele frequency
close to 0, 0.5 or 1 (Figure 1 and Equation (A2)). Allele
frequency plots of cancer patients with chromosomal
aberrations will be shown later in Identification of Chro-
mosomal Aberrations. In addition, we establish indivi-
dual-level allele frequency databases that provide SNP
annotation, allele frequencies and the summary statistics
for the HapMap samples for both the Affymetrix
Human Mapping 100K and 500K Sets. The databases
are available online at http://140.109.72.48/index.htm.
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Three allele frequency query methods (keyword query,
general query and advanced query) are provided. The
individual-level allele frequency estimates and databases
are applied to genomic pattern detection, chromosomal
aberration analysis, classification analysis, and outlier
detection.

Identification of chromosomal aberrations
Individual-level allele frequency can be used to identify
chromosomal aberrations, such as aneuploidy, LOH, Al,
and so on, which contribute to the complex genomic
profiles of many cancer patients. Based on our con-
structed databases of CPA and individual-level allele fre-
quency, we apply the developed sliding-window LOH
and Al detectors to identify chromosomal aberrations
for the 242 and 304 ALL patients that were genotyped
with the Affymetrix Human Mapping 100K Set and
500K Set, respectively, in the ALL Project. Two exam-
ples are given here to demonstrate whole-chromosome
aberration and segment aberration. The first example is
a male leukaemia patient with hyperdiploidy (Hyper-
dip50-SNP-#27). His genome exhibits Al on chromo-
somes 6, 8, 10, 14, 17, and 18 and LOH on
chromosomes 2, 19 and 22 (Figure 2 and Appendix B).
The second example is a male T-cell ALL patient (T-
ALL-SNP-#49). Three chromosomal regions, 2p, 6q, and
9p, of AI are identified, with chromosomes 6q and 9p
also show LOH (Figure 3 and Appendix B).
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High proportions of LOH and Al are found in the
ALL study. In the analysis of 242 patients genotyped
with the Affymetrix 100K Set, 215 samples (88.80%)
with Al are found, and 93 of these (43.26%) have whole-
chromosome Al. Among the 242 patients, 154 samples
(63.63%) with LOH are found, and 26 of these (16.88%)
have whole-chromosome LOH. In the analysis of 304
patients genotyped with the Affymetrix 500K Set, 261
samples (85.86%) with Al are found, and 53 of these
(20.31%) have whole-chromosome AI. Among the 304
patients, 240 samples (78.95%) with LOH are found, and
35 of these (14.58%) have whole-chromosome LOH.

Group classification and outlier detection

Based on individual-level allele frequencies, an allele fre-
quency biplot is developed to classify samples belonging
to different ethnic groups and gender groups and iden-
tify outlier samples.

First, in an unsupervised cluster analysis of the Inter-
national HapMap Project data, the majority of samples
from African (YRI), Caucasian (CEU) and Asian (CHB
and JPT) populations are clearly classified into three
groups in an allele frequency biplot (Figure 4 and

Appendix C). Furthermore, samples from Chinese
(CHB) and Japanese (JPT) populations are also accu-
rately classified as two distinct groups (Figure 5 and
Appendix C). The results illustrate that individual-level
allele frequencies are not only useful to distinguish the
genetic differences of the Asian, Caucasian and African
populations, but also able to distinguish the small differ-
ences between Asian subpopulations.

Second, allele frequencies can be used to judge the
gender of a person from which a sample was obtained.
Genetically, a female has two X chromosomes and a
male has only one X chromosome. High homozygosity
on the X chromosome should generally be observed in a
male sample [Additional file 2, Supplemental Figure S2
(B) for a male and Figure 1 for a female]. Our analysis
shows that an allele frequency biplot for the X chromo-
some can classify the gender of samples donors [Addi-
tional file 10, Supplemental Figure S10].

Third, allele frequency biplots can be used to detect
outliers. For example, a JPT sample (NA1902) is some
distance away from all other samples in a biplot of chro-
mosome 2 (Figure 5) because this sample has a LCSH
on this chromosome.
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Figure 3 Chromosomal aberration plots of a T-ALL patient based on the Affymetrix Human Mapping 100K Set. A chromosomal
aberration plot consists of an extended allele frequency plot, an allelic imbalance (Al) plot, and a loss-of-heterozygosity (LOH) plot from the top
to the bottom (Appendix B). In the extended allele frequency plot, clusters of Al SNPs (red points) were found on chromosomal regions of 2p,
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Figure 4 Allele frequency biplots of the three populations in the International HapMap Project dataset based on the Affymetrix
Human Mapping 500K Set. A genome-wide allele frequency biplot of data for 90 CEU, 90 YRI, and 90 subjects of Asian descent (45 CHB and
45 JPT). The figure consists of 23 subfigures. Each subfigure presents an allele frequency biplot of one chromosome, where the four axes reflect
the first two individual components and the first two SNP components in a rank-2 biplot (Appendix C). Samples from YRI (yellow line), CEU (red
line) and Asian (blue line) were clearly classified into three groups.
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Figure 5 Allele frequency biplots of the Asian population in the International HapMap Project dataset based on the Affymetrix
Human Mapping 500K Set. A genome-wide allele frequency biplot of data for 90 subjects of Asian descent (45 CHB and 45 JPT). The figure
consists of 23 subfigures. Each subfigure presents an allele frequency biplot of one chromosome, where the four axes reflect the first two
individual components and the first two SNP components in a rank-2 biplot (Appendix C). Samples from CHB (red line) and JPT (blue line) are

AF biplot

+ CHB_45

« JPT_45

Discussion

We apply individual-level allele frequencies, estimated
using an intensity-measuring approach, to genetic and
genomic studies. Under the framework, statistical infer-
ences are drawn based on intensity data instead of geno-
type data. Compared with a genotype-based analysis that
estimates allele frequencies via an allele-counting
approach, our method has three advantages. First, the
method can analyze data from DNA samples reflecting
clonal heterogeneity and containing DNA from contami-
nating “normal” cells, which is often the case in cancer
studies. Second, the method can be used to analyze data
from mixed DNA of multiple samples for cost savings.
Third, the method is insensitive to genotype calling
errors, which frequently occur in aberrant chromosomal
regions, such as segments with aneuploidy, LOH, Al,
and so on. The performance of the methods developed
for amplification/hybridization calibration, allele fre-
quency estimation, group classification, outlier detection,
and genomic aberration identification are examined
comprehensively based on the data from large-scale
genomic projects.

The proposed methods are not restricted to the Affy-
metrix GeneChip, but also are adapted to the Illumina
BeadChip. For example, the individual-level allele fre-
quency plot of a normal sample genotyped with the Illu-
mina HumanHap550-Duo BeadChip also yields the

expected three-band pattern similar to what is obtained
with the Affymetrix GeneChip [Additional file 11, Sup-
plemental Figure S11]. In addition to applications for
individual-level allele frequency, the proposed intensity-
measuring approach can be easily applied to study
population-level allele frequency. For example, in a
pooled allelotyping experiment [2,26-31], individual gen-
otype information is not available, thereby the allele-
counting approach fails to be applied; the proposed
intensity-measuring approach, however, works well in
this type of experiment (Appendix A). Allele frequency
estimates of the pooled allelotyping experiment of a
pool size of 240 are quite accurate compared to the true
answers obtained from the individual genotyping experi-
ment of all 240 samples (r = 0.983) [Additional file 3,
Supplemental Figure S3 (B)]. Pooled DNA is con-
structed by mixing DNA from multiple individuals;
therefore, allelotyping of pooled DNA provides a cost-
saving alternative to an individual genotyping experi-
ment and has been recognized as an efficient tool for
identification of polymorphisms and mutations, homo-
zygosity mapping, genetic association, and so on.

We have constructed large ethnicity-specific and
cross-ethnicity CPA databases. Compared with our pre-
vious database [17], the new databases are improved by
increased sample size and the addition of a dense SNP
chip platform. Researchers may use our free database,
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thereby curtailing study costs. The characteristics of
CPA extracted from our databases are summarized as
follows. First, CPA variance decreases significantly as
sample size increases; thus, a CPA database should be
based on a large number of samples. Second, CPA is
independent of the time and laboratory where the geno-
typing took place, and therefore the CPAs provided in
our databases are applicable to studies carried out at dif-
ferent times and places. Third, the 100K and 500K gene
chips yield similar CPA patterns. Fourth, discrepancies
of CPAs in ethnic groups discourage the direct use of
CPA from different ethnic groups. Fifth, most SNPs
have a strongly positively correlated genomic distribu-
tion of CPA between phenotypic groups of hyperten-
sion. Sixth, log-normal distributions capture the
genomic distributions of CPA well, and CPA is asso-
ciated with GC content and genotype. These findings
broaden our understanding of preferential amplification/
hybridization and will benefit a wide variety of genetic/
genomic studies. In addition, we also constructed a
database of individual-level allele frequency, which pro-
vides useful materials for genetic/genomic research dis-
cussed in this paper.

Interestingly, when compared to the result of DNA
copy number changes in T-ALL-SNP-#49 reported by
Mullighan et al. [21], Al of chromosome 2p correlates
well with amplification, whereas Al and LOH of chro-
mosomes 6q and 9p are the result of deletions. These
results demonstrate the feasibility of applying individual-
level allele frequencies to identify chromosomal aberra-
tions. Our method can be jointly used with some of the
existing copy number analysis tools such as LB [32],
PennCNYV [33], QuantiSNP [34], dCHIP [35], and Gen-
oCN [36] to move toward a more complete understand-
ing of the mechanisms underlying chromosomal
abnormalities.

In addition to identification of chromosomal aberra-
tions, individual-level allele frequency can also be used to
identify an occurrence of cell mixture. JPT sample
NA18996 is an example with “abnormal” genomic pat-
terns [Additional file 1, Supplemental Figure S1 (A)]
that obviously deviate from the three-band pattern of a
normal sample [Additional file 2, Supplemental Figure
$2 (B)]. The individual-level allele frequency plot of sam-
ple NA18996 shows that the majority of this individual’s
genome have five allele frequency bands with the excep-
tion that some autosomal regions have two or three
bands and the X chromosome has four bands, indicating
that this sample may reflect a mixture of DNA samples.
In addition, we show that individual-level allele frequency
can also be used to estimate the level of contaminating
“normal” cells (Appendix D). In the example of T-ALL-
SNP-#49, the average allele frequencies (f;) of the abnor-
mal regions of 6q and 9p were as follows: f; = 0.192 for
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6q, and f; = 0.190 for 9p, implying an estimated range of
contaminating “normal” cells of 0.235 - 0.250, which is
close to the reported sample purity (blast percentage =
76%) reported by Mullighan et al. [21].

Our analyses show that individual-level allele frequen-
cies and allele frequency biplots are useful for distin-
guishing genetic differences among ethnic populations.
On the one hand, the method can be applied to examine
population stratification, which is one of the most com-
mon factors underlying false positives in case-control
association studies, through the identification of sub-
groups. On the other hand, the method is potentially
useful to assign ethnicity for individuals with unclear
ancestry information by superimposing a new sample
point to the established ethnic groups using an allele
frequency biplot, or to assign unknown forensic indivi-
duals to pre-study groups. Compared with a principal
component analysis that can also be applied to study
sample classification, an allele frequency biplot provides
a more detailed visual appraisal of the relationship
between SNPs and samples (Appendix C).

Conclusion

Allele frequency has been studied for many years. With
the aid of whole-genome SNP chip technology, high-
throughput SNP data have become available. Based on
the individual-level allele frequencies obtained from the
unified estimation procedure, we developed new meth-
ods/software/databases to extract hidden genetic infor-
mation and broaden the potential application of allele
frequency to genomic research. Our new analysis tool,
ALOHA (Allele-frequency/Loss-of-heterozygosity/
Allele-imbalance), written in R and R GUI, provides for
genome-wide analysis of allele frequency and detection
of both LOH and Al. An allelefrequency biplot is also
provided for sample classification, outlier detection, and
SNP clustering. The software can be downloaded at
http://www.stat.sinica.edu.tw/hsinchou/genetics/aloha/
ALOHA.htm. New allele frequency and CPA databases
have been created. Functions for data query modes (key-
word query, general query, and advanced query) and
data downloads are provided. The databases are avail-
able at http://140.109.72.48/index.htm. We expect that
additional practical applications of allele frequency will
be found and allele frequency analysis will continue to
play a key role in genetic/genomic research.

Appendices

Appendix A. Allele frequency estimation

We summarize the estimation procedures for two types
of allele frequencies, individual-level and population-
level allele frequency, in this appendix. This summary
focuses on the most abundant genetic marker, the SNP,
in the human genome. SNP data can be generated from
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two types of SNP typing experiments, namely an indivi-
dual genotyping experiment (IGE) and a pooled allelo-
typing experiment (PAE), which can be carried out
using a customized platform (e.g.,, MALDI-TOF mass
spectrometry) or a genome-wide platform (e.g., Affyme-
trix and Illumina SNP chips).

An IGE collects intensity data (e.g., mass spectrometry
peak intensity provided by MALDI-TOF mass spectro-
metry or hybridization intensity provided by Affymetrix
SNP chips) and then uses a SNP calling algorithm to
assign genotype calls to SNPs based on intensity data.
Both individual-level and population-level allele frequen-
cies can be estimated by using an allele-counting
approach based on genotypic data and an intensity-mea-
suring approach based on intensity data.

In contrast to an IGE, which analyzes DNA from each
individual, a PAE analyzes mixed DNA from multiple
individuals. With PAE it is difficult to extract genotype
information for individuals although the same genotyp-
ing platform is employed for PAE as IGE. A PAE col-
lects intensity data but cannot determine individual
genotypes, and is therefore unable to estimate indivi-
dual-level allele frequency; nevertheless, a PAE provides
a cost-efficient way to estimate population-level allele
frequency by using an intensity-measuring approach.

We introduce the estimating procedures as follows.
Suppose that there are n independent individuals in
total. Consider a SNP with genotype AA, Aa or aa. Let
(pii = 1,..,n) denote individual-level allele frequencies
for n individuals and p denote a population-level allele
frequency of allele A. In an IGE, we collect two types of
data for each individual: (1) genotypes (G;i = 1,...,n),
and (2) pairs of intensities of two alleles {(S1,52,),i = 1,...,
n}. In a PAE, we collect a pair of intensities of two
alleles (S, Sp) in a DNA pool with a pool size of #.

First, we introduce the estimating procedures for an
individual-level allele frequency, which is a proportion of
a specific allele in a genotype. An individual-level allele
frequency can be estimated using an allele-counting
approach based on genotypic data and an intensity-mea-
suring approach based on intensity data from an IGE.

The allele-counting approach uses genotype data from
an IGE. The number of allele A is counted and then
used to calculate the proportion of allele A in a geno-
type. Under the assumptions of Hardy-Weinberg equili-
brium and random sampling, the formulae of the
estimator of allele frequency of allele A and its expecta-
tion and variance can be written as follows:

(A1)

by =1G; = AA]+

I[G; =A A A
HE=29 b, = pyand vip,) =

pi(1—p;)
S

where [[E] is an indicator taking a value of 1 if event E
holds; otherwise, the value is 0.
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The intensity-measuring approach uses “adjusted”
intensity data from an IGE, where intensities are
“adjusted” by considering a coefficient of preferential
amplification/hybridization (CPA). Based on intensity
data from individuals who are heterozygous at the SNP,
CPA can be estimated as follows [6,12,17]:

Mheter i Mheter
fu= 1 Sii 4 Mheter S 1 Sii
- - 7
Mheter j=1 SZi Mheter — 1 Sy Mheter S2i

j=1

where (S,,S,) are the sample means of intensities of
individuals and 7, is the number of individual hetero-
zygous for the SNP. For each individual, the frequency
of allele A is estimated by calculating the ratio of
adjusted intensities pertaining to allele A relative to the
total intensity of the two alleles. The estimator and its
expectation and variance can be written as follows:

- Sy ~ 1-p;
pi= G =pr and V) =20 o226,
Sy +Ku Syi 2

(A2)

where a first-order Taylor expansion is used to calcu-
late of the approximate expectation and variance, }’QU
is the coefficient of variation of CPA, and o? is the
experimental variation.

Second, we introduce procedures to estimate a popula-
tion-level allele frequency, which is a proportion of a spe-
cific allele in a study population. The allele frequencies
can be estimated based on data from an IGE or a PAE. In
an IGE, a population-level allele frequency can be esti-
mated by taking an average over individual-level allele
frequencies from genotype data (Equation (A1)) or
intensity data (Equation (A2)). The estimators and their
expectations and variances can be written as follows:

5= p,/n EG)=p and V(i) - 2D,

i=1

p= Ep/n E(F) = p and V(p)»Z[“1 P)] %iﬂ?(l—p‘)zvé‘,wz»(AéL)
=1 i=1

(A3)

In a PAE, relative intensities of allele A in a DNA
pool, which is constructed by mixing genomic DNA
from # samples, are calculated to estimate a population-
level allele frequency. The estimator and its expectation
and variance can be written as follows:

fe—S— by =p and V(P = AE s gy

S, + Ku- S,

Lt O'ZA(AS)

Appendix B. Identification of chromosomal aberrations

A sliding-window approach, aided by individual-level
allele frequency plots, is developed to identify chromo-
somal aberrations. All SNPs are arranged in order of
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physical position on a study chromosome. Let G;,, and
fi,m denote the genotype data and the individual-level
allele frequency of the mth SNP of the ith SNP chip.
For any SNP m, the genotype-specific reference mean
and standard deviation of the individual-level allele fre-
quency can be calculated based on a large number of
reference samples as follows:

foo- D Jin G =Gl doe - > G =i, )} Gim =Gall®

o . L ~
S MG =Gl 3 1Giw =Gl

where G, is AA, Aa or aa. Then three genotype-spe-
cific reference confidence intervals can be written as
follows:

R={Rg, =liic,+ 220G, fic,* Zaj26G,) Gy =(AA Aa,aa)}-
The first single-point index A;, =I|f;,, ¢ R] is used to

detect an allelic-imbalance (AI) SNP with allele fre-
quency outside the allele frequency confidence intervals
of the three genotypes. The second single-point index

Lim= I[fi(m ¢ R,,] is used to detect a loss-of-hetero-

zygosity (LOH) or long-contiguous-stretch-of-homozyg-
osity (LCSH) SNP with allele frequency outside the
allele frequency confidence intervals of a heterozygous
call. In other words, SNP m of individual i is identified
as an AI SNP point if A;,, = 1 and identified as an
LOH/LCSH SNP point if ;,, = 1. Two multilocus slid-
ing-window chromosomal aberration detectors are
developed as follows. The Al index can be written as

Ain(@)= D Ay 1 #(3 () (B1)
and the LOH/LCSH index as
Lin()= 3 L/ #(Sn(w), (B2)

where

Sp(w) ={max{l,m - w},A,m—1,m,m+1,A, min{m+w, M} }
denotes a study window with an anchor SNP m and
#(3,,(w)) denotes the window size, i.e., the number of
SNPs within the window. The indices are calculated for
all normal controls and patients. We calculate a 95%-
quantile of normal samples for index A;m (w) and for
index Lj, (w). The smoothed indices, Afm(w) and
L; ,(w), are calculated using a spline smoothing or
local fit technique, such as a penalized regression [37].
We identify unusual genomic regions where the indices
of a patient are higher than the 95%-quantile indices of
normal controls in the human genome. The methods
are useful for quickly scanning the human genome and
accurately determining the starting and ending positions
of chromosomal aberration regions for every patient.
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A chromosomal aberration plot consisting of three
components is used to detect special genomic patterns
such as aneuploidy, LOH, and Al (Figures 2 and 3). The
first component is an extended allele frequency plot
where AI SNPs (A;,, = 1) are depicted by red points and
non-Al SNPs (A; ,, = 0) are depicted by blue points. The
second component is an Al plot where index A;m (w)
of a patient and the 95% quantile of A;m (w) of normal
samples are displayed as light-red points and light-blue
points, respectively, and smoothed versions are displayed
as deep-red points and deep-blue points, respectively.
The top panel shows a red bar that denotes an Al
region if Afm(w) is greater than the 95% quantile of
A}, (w) of normal samples; otherwise, a blue bar is
shown. The third component is a LOH plot where
index Lj, (w) of a patient and the 95% quantile of
L;,, (w) of normal samples are displayed at light-red
points and light-blue points, respectively, and smoothed
versions are displayed as deep-red and deep-blue points,
respectively. The top panel shows a red bar that denotes
an LOH region if f;m(w) is greater than the 95% quan-
tile of L;, (w) of normal samples; otherwise, a blue bar
is shown.

Appendix C. Allele frequency biplot

The biplot invented by Gabriel [38] was applied to
explore microarray gene expression data [39,40] and
LOH [41]. This paper first applies a biplot to visualize
individual-level allele frequency data for hundreds of
thousands of SNPs and large samples. Let A denote the
individual-level allele frequency matrix with R rows
(SNPs) and C columns (samples). Let F = A - (1/C)-A-1,
where 1 is a C x 1 column vector with cell values of 1.
The matrix F is decomposed into a multiplication of an
R x K SNP-effect matrix (row-effect matrix) R and a
C x K sample-effect matrix (column-effect matrix)
C using a singular value decomposition as outlined
below. First, allele frequency matrix F is decomposed by
a singular value decomposition as follows:

F =PDQ. (C1)

P is an R x R orthogonal matrix (i.e., PP’ = I), and
the columns of P are eigenvectors of FF’; Q is an
R C orthogonal matrix (i.e, QQ’ = Iy and QQ’ = I¢)
and the columns of Q are eigenvectors of F'F; D is an
R x R diagonal matrix having w nonnegative elements
as the square root of nonnegative eigenvalues of FF’ and
F’F, where w =R C. Second, allele frequency matrix F
is further partitioned into row-effect and column-effect
matrices as follows:

F =RC, (C2)
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where R = P and C = DQ for a SNP-effect biplot, and
R = PD and C = Q for a sample-effect biplot. Note that
FF’ = RR’ for a SNP-effect biplot and FF’ = CC’ for a
sample-effect biplot. For the convenience of visualiza-
tion, a rank-2 approximate biplot is considered. Namely,
the first two columns of R and C with the largest singu-
lar values are selected to approximate the allele fre-
quency matrix F. A higher-rank approximate biplot is
also plausible by visualizing more than two components
pairwise.

Appendix D. Estimation of the level of contamination by
“normal” cells

Individual-level allele frequency can also be used to cal-
culate the level of contaminating “normal” cells. By
extending the previous method [42], we derive a general
formula to estimate the proportion of contamination by
normal cells for tumor cell samples using individual-
level allele frequencies. Suppose that the study DNA is
composed of 100(1-p)% tumor cells and 100p% contami-
nating “normal” cells. In normal cells without AI, the
ratio of two alleles of a heterozygous SNP is 1 : 1; in
cancer cells with Al the ratio of two alleles is a : b,
where a and b are the copies of the two alleles. Then
the frequency of the first allele is fi=[p+ax(1-p)]/{[2-
(a+b)]xp+(a+b)} and the frequency of the second allele
is fo=[(1-b)xp+b]/{[2-(a+b)]xp+(a+b)}. Note that p, a,
and b cannot be zero simultaneously. Using simple alge-
bra, the normal cell contamination proportion is derived
to be p=[ax(1- fi)-bxfil/[(1- b)xf1)-(1-a)xf] if (1-a)xf =
(1-b)xf1. As an example of a hemizygous deletion of the
first allele (i.e., a = 0, b = 1), then fi=p/(1+p), f> = 1/
(1+p) and p = fi/(1-f1). As an example of a single copy
gain of the first allele (i.e., a = 2, b = 1), then fi=(2-p)/
(3-p), fo = 1/(3-p) and p=(2-3f1)/(1-f1).

Additional material

Additional file 1: Figure S1.-Allele frequency of an individual
(NA18996) from the JPT population based on the Affymetrix
Human Mapping 100K Set. This figure consists of 23 subfigures. Each
subfigure presents an allele frequency plot of one chromosome. The
vertical axis is the estimated allele frequency, and the horizontal axis is
physical position (Mb). Each point denotes a SNP, and the gap in each
subplot represents the centromeric gap. (A) Estimated allele frequency
using an intensity-measuring approach. (B) Estimated allele frequency
using an allele-counting approach.

Additional file 2: Figure S2-Unadjusted and adjusted individual-
level allele frequency of a sample (NA18940) from the JPT
population based on the Affymetrix Human Mapping 100K Set. This
figure consists of 23 subfigures. Each subfigure presents an allele
frequency plot of one chromosome. The vertical axis is the estimated
allele frequency, and the horizontal axis is physical position (Mb). Each
point denotes a SNP, and the gap in each subplot represents the
centromeric gap. (A) Unadjusted individual-level allele frequency
estimates. (B) CPA-adjusted individual-level allele frequency estimates.
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Additional file 3: Figure S3.-Unadjusted and adjusted population-
level allele frequency of an artificial DNA pool with a size of 240
individuals based on the Affymetrix Human Mapping 100K Set. The
vertical axis is the estimated allele frequency, and the horizontal axis is
the true allele frequency. (A) Unadjusted population-level allele frequency
estimates. (B) CPA-adjusted population-level allele frequency estimates.

Additional file 4: Figure S4.-Genomic distributions of CPA in log,
scale and standard error of CPA for four sample sizes. (A) This figure
consists of 16 subfigures. The four diagonal subfigures are the
histograms of 1og,(CPA) for sample sizes of 367, 180, 90 and 45. The off-
diagonal subfigures are scatter plots of log,(CPA) for pairs of sample
sizes, where each blue point denotes a log,(CPA) value of a SNP. A
quadratic regression curve is fitted. The mean regression curve is plotted
in red, and the corresponding 95% confidence interval is plotted in
green. (B) The figure contains ratios of CPA standard errors of 180 versus
367 samples (green points), 90 versus 367 samples (red points) and 45
versus 367 samples (blue points). The red reference line denotes the ratio
of 1, ie, equal to the CPA standard error of 367 samples.

Additional file 5: Figure S5.-Genomic distributions of CPA in log,
scale for different data acquisition times (four genotyping periods)
and experimental sites (two laboratories). (A) This figure consists of
16 subfigures. The four diagonal subfigures are the histograms of log,
(CPA) for the genotyping done on the time 2005/05/04, 2006/01/09,
2006/03/17 and 2006/06/29. The off-diagonal subfigures are scatter plots
of log,(CPA) for pairs of genotyping periods, where each blue point
denotes a log,(CPA) value of a SNP. (B) This figure consists of 23
subfigures. Each subfigure shows a scatter plot of CPAs in log, scale of
one chromosome based on 90 Asian samples in the HapMap project
(vertical axis) and 95 Taiwanese samples (horizontal axis). A quadratic
mean regression curve (red) and the corresponding 95% confidence
intervals (green) are calculated.

Additional file 6: Figure S6.-Genomic distributions of CPA in log,
scale based on the Affymetrix Human Mapping 100K and 500K
Sets. This figure consists of 23 subfigures. Each subfigure shows a scatter
plot or histogram of CPAs in log, scale of one chromosome. (A) Scatter
plots of CPAs in log, scale for the Affymetrix Human Mapping 100K Set
based on 457 Asian samples. (B) Histograms of CPAs in log, scale for the
Affymetrix Human Mapping 100K Set based on 457 Asian samples. (C)
Scatter plots of CPAs in log, scale for the Affymetrix Human Mapping
500K Set based on 538 Asian samples. (D) Histograms of CPAs in log,
scale for the Affymetrix Human Mapping 500K Set based on 538 Asian
samples.

Additional file 7: Figure S7.-Lognormal distribution of CPA based
on Taiwanese samples. CPAs are fitted using log-normal distributions
by chromosome. The green curve is a fitted curve, and the purple curve
is a theoretical lognormal curve. (A) Taiwanese samples (367 in total) that
were genotyped with the Affymetrix Human Mapping 100K Set. (B)
Taiwanese samples (448 in total) that were genotyped with the
Affymetrix Human Mapping 500K Set.

Additional file 8: Figure S8.-Genomic distributions of CPA in log,
scale for different ethnic groups and a tree diagram. (A) This figure
consists of 16 subfigures. The six diagonal subfigures are the histograms
of log,(CPA) for 45 CHB, 45 JPT, 60 CEU founders, 60 YRI founders, 90
Asians (45 CHB and 45 JPT), and 210 combined samples. The off-diagonal
subfigures are scatter plots of log,(CPA) for pairs of groups, where each
blue point denotes a log,(CPA) value of a SNP. A quadratic mean
regression curve (red) and the corresponding 95% confidence intervals
(green) are provided. (B) The studied populations are clustered according
to between-population proximity (CPA correlation) via an average-linkage
clustering analysis.

Additional file 9: Figure S9.-Genomic distributions of CPA in log,
scale for hypertensive case group and normotensive control group.
This figure consists of 23 subfigures. Each subfigure shows a scatter plot
of CPAs in log, scale of one chromosome based on data from 175
hypertension patient samples (vertical axis) and 180 normal control
samples (horizontal axis). A quadratic mean regression curve (red) and
the corresponding 95% confidence intervals (green) are shown.
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Additional file 10: Figure S10.-Allele frequency biplots of sex
chromosomes of HapMap samples based on the Affymetrix Human
Mapping 500K Set. (A) Allele frequency biplots of sex chromosomes for
YRI populations in HapMap (30 fathers and 30 mothers in YRI). (B) Allele
frequency biplots of sex chromosomes for CEU populations in HapMap
(30 fathers and 30 mothers in CEU).

Additional file 11: Figure S11.-Allele frequency of a normal sample
based on the lllumina HumanHap550-Duo BeadChip. This figure
consists of 23 subfigures. Each subfigure presents an allele frequency
plot of one chromosome. The vertical axis is the estimated allele
frequency, and the horizontal axis is physical position (Mb). Each point
denotes a SNP, and the gap in each subplot represents the centromeric
gap. The allele frequencies were estimated using an intensity-measuring
approach.
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