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Abstract

Background: High-throughput genomics has enabled the global mapping of genetic interactions based on the
phenotypic impact of combinatorial genetic perturbations. An important next step is to understand how these
networks are dynamically remodelled in response to environmental stimuli. Here, we report on the development
and testing of a method to identify such interactions. The method was developed from first principles by treating
the impact on cellular growth of environmental perturbations equivalently to that of gene deletions. This allowed
us to establish a novel neutrality function marking the absence of epistasis in terms of sensitivity phenotypes
rather than fitness. We tested the method by identifying fitness- and sensitivity-based interactions involved in the
response to drug-induced DNA-damage of budding yeast Saccharomyces cerevisiae using two mutant libraries -
one containing transcription factor deletions, and the other containing deletions of DNA repair genes.

Results: Within the library of transcription factor deletion mutants, we observe significant differences in the sets of
genetic interactions identified by the fitness- and sensitivity-based approaches. Notably, among the most likely
interactions, only ~50% were identified by both methods. While interactions identified solely by the sensitivity-
based approach are modulated in response to drug-induced DNA damage, those identified solely by the fitness-
based method remained invariant to the treatment. Comparison of the identified interactions to transcriptional
profiles and protein-DNA interaction data indicate that the sensitivity-based method improves the identification of
interactions involved in the DNA damage response. Additionally, for the library containing DNA repair mutants, we
observe that the sensitivity-based method improves the grouping of functionally related genes, as well as the
identification of protein complexes, involved in DNA repair.

Conclusion: Our results show that the identification of response-modulated genetic interactions can be improved
by incorporating the effect of a changing environment directly into the neutrality function marking the absence of
epistasis. We expect that this extension of conventional epistatic analysis will facilitate the development of dynamic
models of gene networks from quantitative measurements of genetic interactions. While the method was
developed for growth phenotype, it should apply equally well for other phenotypes, including the expression of
fluorescent reporters.

Background
The principle of epistasis has been an important tool in
functional genomics and genetics research for more
than a century [1,2]. According to this principle, genes
may be defined as epistatic to one another when the
phenotypic impact associated with a given mutation is
altered by the presence of a second gene mutation. By
measuring epistasis scores, which quantify departure

from a given neutrality model marking the absence of
epistasis (reviewed by [3]), it is possible to delineate
genes functioning within common or parallel pathways
and to infer regulatory hierarchies or functional com-
plexes [4-10]. For example, aggravating interactions,
which occur when the phenotypic impact of the double
deletion is greater than predicted by neutrality, may
result from the loss of compensatory pathways. Alterna-
tively, alleviating interactions, which occur when the
phenotypic impact is less than expected, may indicate
that genes function within a common pathway or
complex.
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While epistasis reflects the structure of genetic net-
works in a given environment, the sign and strength of
these interactions are expected to change in accordance
to the substantial changes in physical interactions
observed in response to external perturbations (see e.g.
[11,12]). Such changes are anticipated to reflect the acti-
vation or inactivation of different pathways across envir-
onments. Indeed, it is has been well established that
epistasis depends on both genetic and environmental
contexts [8,9,13,14]. Interestingly, while the phenotypic
impact of a changing environment is extensively ana-
lyzed in studies of gene-drug and drug-drug interactions
(see e.g., [15-17]), the environmental modulation of epis-
tasis between genes has received much less attention.
Importantly, the analysis of fitness phenotypes may not
enable a focus on pathways responding to specific envir-
onmental perturbations if the mutant strains involved
have fitness defects in both the presence and absence of
the perturbation [8].
To address this issue, we have developed a method

from first principles to specifically identify pair-wise
genetic interactions that change dynamically between
environments. This analysis of gene-gene-environment
interactions is similar to the generalization of epistasis
in terms of three-dimensional genotopes [18]. We devel-
oped the method by explicitly incorporating environ-
mental effects into the neutrality function used to
identify epistatic relationships. It turns out that the
derived neutrality function can be expressed in terms of
sensitivity phenotypes. The method may thus be viewed
not only as an identification scheme, but also as provid-
ing a formal basis for the sub-classification of fitness-
based genetic interactions recently proposed by St. Onge
et al. [8].
To explore the utility of sensitivity-based epistatic

analysis, we examined two comprehensive Saccharo-
myces cerevisiae datasets describing the phenotypic
impact of single and double gene-deletion in the pre-
sence and absence of the DNA-damaging agent methyl
methanesulfonate (MMS). For the purpose of inferring
transcriptional regulatory networks, we generated and
analyzed 342 mutant strains carrying single- and dou-
ble-deletions of 26 transcription factor (TF) genes.
These TFs were selected due to the availability of
comprehensive datasets describing the impact of MMS
on their binding to downstream genes, as well as the
genome-wide changes in MMS-induced differential
gene expression following TF deletion [12]. As a pre-
amble, we derive the classical multiplicative neutrality
function and perform a conventional fitness-based epi-
static analysis to identify genetic interactions in the
both presence and absence of MMS. We also discuss
in more detail why the results of a fitness-based epi-
static analysis should not be used on its own to

determine if a genetic interaction plays a role in a
given cellular response. We then derive the sensitivity-
based neutrality function by adopting the common
assumptions that genetic and environmental perturba-
tions can be treated equivalently [15-17], and that
gene-environment interactions should remain invar-
iant across genotypes in the absence of context-depen-
dent epistasis.
Using the data obtained for single and double TF

deletion mutants, we show that sensitivity-based epi-
static analysis implicates a set of genetic interactions in
the MMS-induced DNA damage response that is signifi-
cantly different from that obtained using fitness pheno-
types. Notably, only ~50% of the interactions identified
using fitness phenotypes are also among those identified
using sensitivity. A direct quantitative comparison of the
two sets confirms that the sensitivity-based analysis spe-
cifically identifies interactions that change between
environments. To explore this further, we compare sets
of sensitivity- and fitness-based genetic interactions with
datasets generated by Workman et al [12] describing
MMS-induced differential gene expression and protein-
DNA interactions in the presence of MMS. This com-
parison demonstrates that sensitivity-based epistatic ana-
lysis can improve the identification of environmental-
dependant regulatory relationships within transcriptional
regulatory networks.
To evaluate the utility of sensitivity-based epistatic

analysis for the identification of functional relationships
among DNA repair genes, we analyzed a dataset gener-
ated by St. Onge et al [8]. This dataset describes the
phenotypic impact of MMS treatment on 349 single and
double mutants carrying deletions of 26 genes confer-
ring resistance to MMS. We demonstrate that hierarchi-
cal clustering of sensitivity-based epistasis signatures
captures the composition and order of complexes and
pathways with known roles in the DNA damage
response. We also show that a sensitivity-based
approach performs better than a fitness-based analysis
for the identification of multi-component protein com-
plexes with known functions in drug-induced DNA
damage repair.
Taken together, our results suggest that sensitivity-

based epistatic analysis may provide a useful tool to
map how environmental perturbations modulate the
architecture of genetic networks and reveal new insight
into the regulatory networks and pathways mediating
cellular responses to changing environments.

Results and Discussion
Fitness-based epistatic analysis
The identification of genetic interactions using fitness
phenotypes is typically based on the expectation that the
absence of epistasis is marked by the equality:
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W X Y W wt W X W Y( , ) ( ) ( ) ( ),× = × (1)

where W(wt), W(X), W(Y) and W(X, Y) are the fitness
of the reference strain (wildtype, wt) and its single- and
double-deletion derivatives, respectively. This relation-
ship, which is attributed to Fisher [1], can be derived by
comparing fitness defects caused by deleting gene X in
the wildtype strain, defined by δW(X, wt) = W(X)/W
(wt), and a strain in which gene Y is also deleted,
defined by δW(X, Y) = W(X, Y)/W(Y). The equality in
Eq. (1) is then obtained by assuming that the fitness
defect caused by the deletion of X is independent of the
presence or absence of gene Y, i.e., by setting δW(X, wt)
= δW(X, Y). Defining fitness in terms of relative growth
rates, Eq. (1) predicts that the growth rate m(X, Y) of
the double mutant strain in the absence of epistasis is
given by:

m X Y
m X m Y

m wt
( , )

( ) ( )
( )

,exp = ×
(2)

where m(wt), m(X) and m(Y) are the growth rates of
the wildtype and single mutant strains, respectively. The
strength of an epistatic interaction can correspondingly
be defined as the relative difference between the
observed and expected double mutant growth pheno-
type:

 fit =
−

= ×
×

−
m X Y m X Y

m X Y
m X Y m wt
m X m Y

( , ) ( , )exp
( , )exp

( , ) ( )
( ) ( )

.1 (3)

We refer to Eq. (3) as the fitness-based epistasis score
(F-score) since relative growth rate fitness and growth
rates can be used interchangeably.
To conduct a fitness-based epistatic analysis, we mea-

sured the growth rates of 342 single- and double-dele-
tion TF mutants in the absence and presence of MMS
(Figure 1a and Methods). Detailed results are provided
in Additional File 1. Among the 26 single mutant
strains, 15 had growth rates significantly different from
that of the wildtype strain (Figure 1b, T-Test; P < 0.05).
Eleven of 14 TF mutants identified as MMS sensitive in
the study performed by Workman et al. [12] are also
identified in our screen. The three mutants “missing”
from our set (ecm22Δ, gcn4Δ, and yap1Δ) all have P-
values just above threshold (P = 0.056, 0.055 and 0.080,
respectively). Despite using conditions and methods that
are significantly different, the overlap is comparable to
that between the Workman study [12] and one by Beg-
ley at al [19] where 12 of 17 strains were identified in
both studies using the same approach.
Fitness-based epistatic analysis can be performed using

the measured single mutant growth rates directly [8], or
by estimating the expected phenotypic outcome of

double gene deletion from pooled fitness measurements
[20]. Both approaches have their advantages and disad-
vantages. While the former is associated with uncer-
tainty arising from alterations in growth phenotypes
during the strain generation procedure [21], the latter
requires a low frequency of growth defects and genetic
interactions. Since the frequency of statistically signifi-
cant growth defects is high within the TF single mutant
library, we employ a variant of the pooling method in
which growth rates of the single mutant strains is esti-
mated from the median double mutant growth rate cor-
rected for the phenotypic impact of the second deletion
(see Methods). In most cases, the estimated single
mutant growth rates obtained using this method is con-
sistent with their directly measured values (Figure 2a).
However, certain strains (yap5Δ, sok2Δ and adr1Δ) had
deviations greater than 5%. This deviation could indicate
a high number of epistatic interactions, or that a sys-
tematic bias was introduced during the generation of
the double mutants. For example, the yap5Δ single
mutant grew consistently slower than its double mutant
progeny, suggesting that the mutant might carry a sec-
ondary mutation that is lost following mating. To miti-
gate the impact of such experimental uncertainties, we
used estimated growth rates for the yap5Δ, sok2Δ and
adr1Δ strains in our subsequent analyses.
The results of the fitness-based epistatic analysis are

summarized in Figures 2b and 2c. Detailed results
regarding F-scores obtained in both the presence and
absence of MMS, as well as their associated P values,
are provided in Additional File 2. Following strain gen-
eration, 316/325 of the possible double deletion strains
were obtained for analysis. Figure 2b shows the histo-
grams of F-scores for the corresponding TF-TF pairs in
the presence and absence of MMS, as well as 45 interac-
tions identified when the criteria P < 0.01 is used to
reject the null hypothesis that epistasis is absent (see
Methods). As expected, the F-score distributions are
centred at zero in both environments (the median εfit is
0.007 and 0.0012 in the absence and presence of MMS,
respectively), and scores associated with identified inter-
actions are located in the tails of these distributions. Of
the 45 interactions identified, a significant fraction (27/
45) is identified in the presence of MMS while the
remaining interactions are identified only in its absence.
The association of genetic interactions with specific

environmental conditions using F-scores does not neces-
sarily support correct interpretations about their envir-
onmental dependency. For example, the identification of
an interaction in both the presence and absence of
MMS does not inherently indicate an MMS-indepen-
dent relationship. While the interaction may be con-
served across most environments, it could be of
particular importance in a specific environment. For
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example, genetic interactions important for the mainte-
nance of chromosome integrity in all environments may
be critical for the repair of MMS-induced DNA damage.
Conversely, it should not be concluded that an interac-
tion is important for the MMS-induced response based
on its identification exclusively in the presence of MMS.
Several non-biological factors can contribute to a differ-
ential identification across different environments. For
example, the true variance may by chance be over- or
underestimated in one of the two environments. This
may in turn cause the P value to be above its critical
value in one environment and below it in the other.
Within our dataset, we found that the variance among
replicates is increased in the presence of MMS (data not
shown), which inevitably introduce a bias towards

identifying interactions in its absence. For these reasons,
it is not possible to conclude if a given genetic interac-
tion plays a role in pathways responding to specific
environmental perturbations based solely on the mea-
surement of fitness in the presence of the perturbation.

Quantifying gene-environment interactions
To derive a neutrality function that incorporates envir-
onmental effects, it is noted that the phenotypic impact
of changing the environment should be independent of
a gene deletion when the mutated gene is not involved
in the cellular response to this change. The principle of
epistasis can thus be extended to gene-environment
interactions when it is assumed that genetic and envir-
onmental perturbations can be modelled equivalently

Figure 1 Growth rate measurements. (a) Representative optical density time course (open circles) illustrating the data used to estimate the
logarithmic growth rate (filled circles). (b) Growth rates of the single TF deletion mutants in the presence and absence of MMS. Error bars
indicate standard deviation. Asterisks indicate strains with altered growth rates compared to the wildtype (T-Test; P < 0.05).
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with respect to their impact on fitness, an assumption
frequently employed in chemical biology (see e.g.,
[15-17]). To quantify the strength of gene-environment
interactions analogously to that of genetic interactions,
let the fitness defect caused by changing environment
from E1 to E2 be given by δW(wt,ΔE) = m(wt, E2)/m
(wt, E1) in the presence of gene X and by δW(X,ΔE) =
m(X, E2)/m(X, E1) in its absence. When mutating gene
X has no impact on the environmental response, i.e. δW
(wt,ΔE) = δW(X,ΔE), the absence of a gene-environment
interactions is marked by the equality:

W X E W wt E W X E W wt E( , ) ( , ) ( , ) ( , ).2 1 1 2× = × (4)

Equation (4) describes a neutrality function parallel to
Eq. (1) in which a genetic perturbation has been substi-
tuted by an environmental perturbation to identify an
interaction between a gene and the environmental con-
dition rather than between genes. Using relative growth
rate fitness, the expected growth rate of the mutant
strain is in turn given by:

m X E
m X E m wt E

m wt E
( , )

( , ) ( , )
( , )

.exp2
1 2

1
= ×

(5)

Defining sensitivity as the ratio of growth rates in the
two environments, S = m(E1)/m(E2), the relative differ-
ence between the observed and expected growth rate of
the doubly perturbed strain can be written as:

 env = ×
×

− = −m X E m wt E
m X E m wt E

S wt
S X

( , ) ( , )
( , ) ( , )

( )
( )

.
2 1
1 2

1 1 (6)

We refer to Eq. (6) as the environmental sensitivity
score (ES-score) since it quantifies the relative change
in sensitivity to a new environment caused by a single
genetic perturbation. Neutrality between gene X and
the environmental change is inferred when deleting the
gene has no impact on sensitivity, i.e., when εenv(X) =
0. Conversely, a non-zero ES-score implicates the gene
in the cellular response to the environmental
perturbation.

Figure 2 Fitness-based epistatic analysis. (a) Correlation between measured and estimated single mutant growth rates. (b) Histograms of
fitness-based epistasis scores (F-Score) calculated for all TF-TF pairs (grey) and those associated with high confidence genetic interactions (red) in
the presence of MMS. Insert displays the corresponding histograms in the absence of MMS. (c) The number of epistatic interactions identified for
each TF, categorized according to the environment where the interaction was identified. 18 interactions are identified exclusively in absence of
MMS, 15 are identified only in the presence of MMS and 12 are identified in both environments.
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To identify which of our TFs are involved within the
cellular response to MMS, we calculated ES-scores for
the 26 single mutant strains (Figure 3a). Seven of these
mutants have P-values indicating a significant interac-
tion (P < 0.05), including rpn4Δ, which displayed the
greatest effect (εenv = -0.31), and adr1Δ, dal81Δ, fkh2Δ,
swi5Δ, swi6Δ and pdr1Δ, which displayed mild effects
(εenv between -0.04 and -0.10). Noticeably, all displayed
fitness defects in the presence of MMS (Figure 1). Con-
versely, not all strains associated with a fitness defect in
the presence of MMS are accompanied by a high ES-
score. Since the ratio of sensitivities in Eq. (6) may be
expressed as a ratio of fitness values between the two
environments, the relative impact of the mutation must
be different across the two environments for the ES-
score to assume a significant value. Consistent with this
interpretation, with the exception of rfx1Δ, the eight
mutants that display fitness defects in the presence of
MMS but have low ES-scores also display fitness defects
also in the absence of MMS (see Figure 1).

Sensitivity-based epistatic analysis
Extending the definition of the ES-score in Eq. (6) to
genetic backgrounds other than wildtype enables the
identification of genetic interactions that change dyna-
mically between environments. To demonstrate this, we

note that the ES-score associated with deletion of gene
X, in a strain that lacks gene Y is given by:

 env = ×
×

− = −m X Y E m Y E
m X Y E m Y E

S Y
S X Y

( , , ) ( , )
( , , ) ( , )

( )
( , )

.
2 1
1 2

1 1 (7)

In Figure 3b, we illustrate that the ES-scores asso-
ciated with specific TF deletions can vary considerably
in the presence of a second TF deletion. In the plot, we
include only the TFs with a high number of fitness-
based epistatic interactions to specifically highlight the
variation of environmental sensitivity across different
genetic backgrounds.
To derive a neutrality function that incorporates

environmental effects, we impose the definition of epis-
tasis by assuming that mutating gene Y should not affect
the phenotypic impact of mutating gene X when the two
genes act independently. Considering the impact on sen-
sitivity following deletion of gene X as the phenotype
preserved across different genotypes, it immediately fol-
lows from the equality εenv(X) = εenv(X, Y) that the
absence of epistasis is marked by a sensitivity-based
neutrality function where:

S X Y S wt S X S Y( , ) ( ) ( ) ( ).× = × (8)

Figure 3 Analysis of environmental sensitivity scores. (a) Mean ES-scores for the wildtype (wt) and the 26 single deletion mutants. Asterisks
indicate strains with statistically significant environmental sensitivity (P < 0.05). (b) Examples of variation in ES-scores for selected deletion
mutants following the introduction of a second TF deletion. Grey squares indicate double mutants not assayed.
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Equation (8) is a direct analogue of the fitness-based
neutrality function in Eq. (1) and the strength of the
interaction between genes X and Y can correspondingly
be quantified by the sensitivity-based epistasis score
(S-Score):

 sen =
−

= ×
×

−
S X Y S X Y

S X Y
S X Y S wt
S X S Y

( , ) ( , )exp
( , )exp

( , ) ( )
( ) ( )

.1 (9)

where S(X, Y)exp is the sensitivity satisfying Eq. (8)
expected under the null hypothesis that epistasis is
absent.
To compare and contrast the fitness- and sensitivity-

based approaches, we identified the 45 most likely epi-
static interactions using F- and S-scores, respectively.
The results of sensitivity-based analysis are summarized
in Figure 4a, which displays the histograms of S-scores
for all TF-TF pairs and the 45 interactions with the low-
est P values. As in the fitness-based calculation, the S-
score distribution is centred at zero (median εsen =
-0.007) and S-scores associated with high-confidence
interactions are located in the extreme tails of this

distribution. Of the 45 interactions, 37 have P values
below 0.05, while the remaining eight have P values
between 0.05 and 0.07. The additional interactions are
included only to allow for a comparison of interaction
sets of equal size. Interestingly, only half of the fitness-
based epistatic interactions (24/45) are among those also
identified using sensitivity phenotypes (Figure 4b).
When a P value of 0.05 is used as the significance
threshold, 16 of the 37 interactions are identified exclu-
sively by the sensitivity-based method. Sensitivity-based
epistatic analysis thus provides a perspective on TF-TF
interactions in the DNA-damage response that is signifi-
cantly different from that provided by fitness-based
analysis.
To further explore the differences between the two

methods, we plot in Figure 4c the correlation between
the absolute value of εsen and the absolute change in εfit
across the two environments. This plot demonstrates
that the strength of F-scores associated with interactions
not identified by sensitivity vary little between the two
environments. One example is the interaction between
the cell cycle regulators SWI6 and ASH1, which have a

Figure 4 Comparison of fitness- and sensitivity-based epistatic analysis. (a) Histograms of sensitivity-based epistasis scores (S-Score) for all
TF pairs (grey) and the 45 most likely epistatic interactions (red). (b) The number of epistatic interactions identified for each TF categorized
according to the methodology by which the interaction was identified. (c) Correlation between the absolute S-score and the absolute difference
in F-scores in the presence and absence of MMS.
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strongly alleviating interaction in both environments
(εfit = 0.25 and 0.33, respectively), but has a low S-score
(εsen = -0.06). In contrast to this, interactions identified
solely by the sensitivity-based method involve an appar-
ent change in the epistatic relationship between the two
genes following MMS treatment. An example includes
the interaction between the homologues, ACE2 and
SWI5, which have well-documented overlapping func-
tions in cell cycle regulation [22]. All interactions high-
lighted by the sensitivity-based method involve a
marked change in F-scores between the two environ-
ments. For example, the four SWI6 interactions identi-
fied by both methods have F-scores that are high in one
environment and low in the other. This includes the
interaction between SWI6 and MSN4 interaction, which
is weak in the absence of MMS (εfit = -0.03) and
strongly aggravating in its presence (εfit = -0.33), result-
ing in a high S-score (εsen = 0.6). Thus, sensitivity-based
epistatic analysis allows for an assessment of the
dynamic change in epistasis following an environmental
perturbation. This may improve the identification of
context-dependent regulatory relationships among
genes, as well as the association of proteins to physical
complexes and pathways involved in the response to
environmental change.

Inferring regulatory relationships
To evaluate the utility of sensitivity-based epistatic ana-
lysis in identifying putative MMS-dependent regulatory
relationships, we compared sets of interactions identified
by fitness- and sensitivity-based epistatic analysis to
datasets generated by Workman et al [12] describing
the loss of MMS-induced differential gene expression
following TF deletion, referred to as genetic buffering
[12] or regulatory epistasis [23], as well as protein-DNA
interactions in the presence and absence of MMS. To
ensure a fair comparison, we used a set of sensitivity-
based interactions identified with P < 0.05 and two sets
of fitness-based interactions identified in the presence of
MMS. The first containing 27 high-confidence (HC)
interactions with P < 0.01, and the second containing 62
reduced-confidence (RC) interactions with P < 0.05. The
results of this analysis are summarized in Figure 5a.
We first evaluated if the three sets of genetic interac-

tions are enriched in direct genetic buffering whereby
the deletion of one TF causes the loss of MMS-induced
differential expression of another. Within the buffering
dataset, there is evidence for genetic buffering interac-
tions between 26 of the 316 TF pairs tested (P < 0.05).
About one-third (9/26) of these direct buffering events
are also identified by the sensitivity-based analysis corre-
sponding to a significant 3.0 fold enrichment (P = 0.001,
hypergeometric test). By contrast, the set of interactions
identified using fitness phenotypes displays no

significant enrichment over a random model (0.9 fold,
P = 0.68 or 0.8 fold, P = 0.79 for the HC and RC sets,
respectfully). In other words, if genetic buffering of one
TF by another is viewed as evidence for a putative regu-
latory relationship, the sensitivity-based analysis clearly
outperforms a fitness-based model in identifying such
interactions.
To determine which genetic interactions are sup-

ported by physical interaction data, we analyzed the
Workman protein-DNA interaction dataset focusing on
genes that are differentially expressed following MMS
treatment. We evaluated two scenarios where TF-DNA
binding might manifest as a genetic interaction in the
presence of MMS - the direct binding of one TF to
another and the co-binding of two TFs to a common
downstream gene. The analysis of direct binding to dif-
ferentially expressed TF genes (identified using P < 0.05)
provides evidence for putative regulatory relationships
among 10 TF pairs. Four of these interactions are also
identified in sensitivity-based set of interactions corre-
sponding to a significant 3.4 fold enrichment (P = 0.02,
hypergeometric test). By contrast, neither of the fitness-
based sets displays enrichment.
To investigate the second scenario, we implemented a

two-step analysis. First, for each genetic interaction, we
performed a hypergeometric test by counting the num-
ber of differentially expressed genes bound by each TF
and the number of genes bound by both. Here, the
identification of differentially expressed genes uses a
lower P-value (P < 0.01) to reduce the false positive rate.
Within the set of interactions identified from sensitivity
analysis, seven TF pairs display a significant enrichment
in co-binding using a stringent cut-off of P < 0.01. To
evaluate if this number of interactions is greater than
expected from a random model, we counted the number
of genes bound by any combination of TF pairs using
the same criteria. This identified 46 TF pairs that are
significantly enriched in co-binding among the 316 pairs
tested. A hypergeometric test of these frequencies indi-
cates no significant enrichment (1.3 fold, P = 0.28).
Similar values are obtained for the fitness-based sets.
The most compelling evidence for the improved iden-

tification offered by sensitivity-based epistatic analysis is
obtained by considering the totality of the Workman
data. When direct buffering, direct binding and shared
target binding are all considered evidence for a putative
regulatory relationship among TFs, nearly 50% of the
interactions identified by using sensitivity phenotypes
are supported by at least one line of evidence (18/37
interactions, 2.0 fold enrichment, P = 0.001). By con-
trast, the sets of fitness-based interactions show no sig-
nificant enrichment (Figure 5a). Some of the identified
interactions are well established in the literature. One
example is the interaction between FKH2 and SWI5,
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which, according to the Saccharomyces Genome Data-
base, share a number of genetic interactions with genes
involved in cell cycle progression. FKH2 is essential for
the correct cell cycle periodicity of SWI5 transcription
[24] and has been reported to prevent Swi5-specific acti-
vation of the cell cycle gene CTS1 [22]. Another notable
example is the interaction between SWI6 and RPN4,
which co-localize to several common genes and both
buffers the mitochondrial DNA repair gene DIN7 [12].
The TFs also share 26 of 61 genetic interactions with
genes that have MMS-specific phenotypes and docu-
mented roles spanning numerous DNA repair modules,
including homologous recombination and post replica-
tion repair [25]. Existing genetic interaction data thus
suggests that SWI6 and RPN4 are functionally linked in
the MMS-response, in agreement with our observation
of dynamic MMS-dependent genetic interaction between
these genes.

To further compare the two methodologies, we calcu-
lated the true- and false-positive rates at varying P value
thresholds when direct buffering, direct binding and
shared target binding are all considered as evidence for
a putative regulatory relationship. The results, which are
displayed in Figure 5b, indicate that sensitivity-based
analysis can improve the identification of regulatory
relationships among TFs. Specifically, the sensitivity-
based method identifies a higher number of true posi-
tives than the fitness-based method at any false-positive
rate. This improvement becomes more evident when the
predictive value, defined as the fraction of correctly
identified interactions, is plotted for P values usually
considered to imply statistical significance (Figure 5c).
While the sensitivity-based method achieves a success
rate of about 50% for P values between 0.01 and 0.05,
the success rate associated with the fitness-based
method at best is in the 25-35% range.

Figure 5 Statistical comparison of genetic interaction sets. (a) Genetic buffering and genome-wide TF-DNA binding data (Workman dataset)
is taken for evidence of putative regulatory relationships among TFs. R gives the fold enrichment defined as a ratio of frequencies relative to a
random model, and P the probability of observing a ratio of equal or greater value by chance. Boldface is used to indicate statistically significant
enrichments (P < 0.05) within the genetic interaction sets relative to the frequency (hits/N) of interactions within the Workman data. Enrichment
is analyzed in four categories: (1) Genetic buffering of one TF by another, (2) Direct binding of one TF to the gene encoding another, (3) TF pairs
that bind to the same target gene(s), (4) interactions supported by any of the categories (1)-(3). The number of hits in the Workman dataset
among the 316 pairs tested for each category are 26, 10, 46 and 77, respectively. (b) Comparison of true- and false-positive rates associated with
each methodology. (c) The predictive value of the fitness- and sensitivity-based methods at different P value thresholds. The predictive value is
defined as the fraction of correctly identified interactions.
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Inferring functional complexes and pathways
To explore if sensitivity-based epistatic analysis can be
used to identify functional complexes and pathways, we
conducted hierarchical clustering of S-score profiles (see
Methods). Clustering of S-scores calculated for the TF
dataset did not yield meaningful results (data not
shown) presumably due to the diverse and only partially
overlapping roles of the different TFs in the MMS
response. As an alternative, we analyzed a dataset gener-
ated by St. Onge et al. (2007) describing the fitness of
349 mutants carrying single- and double-deletions of 26
genes displaying fitness defects in MMS.
The hierarchical clustering of S-scores, displayed in

Figure 6a, yields a grouping of the 26 genes that is con-
sistent with known functional modules within the DNA
damage response. These include members of the Rad6
epistatis group (RAD5, RAD18 and HPR5), which func-
tion within the post-replication repair (PRR) pathway
[26,27], the Shu complex (SHU1, PSY3, CSM2 and
SHU2) involved in promoting the formation of homolo-
gous recombination repair (HRR) intermediates [28], the

Rad52 epistatis group (RAD54, RAD51, RAD57, RAD55,
RAD2 and RAD59) involved in homologous recombina-
tion [29], as well as the Rtt101-Mms1 ubiquitin ligase
[30] and the Mus81-Mms4 recombination factor [31].
As expected, the genes within these clusters have MMS-
enhanced alleviating interactions with one another
(negative S-score).
Interestingly, the sensitivity-based clustering places

SGS1 within the Rad52 epistasis group in agreement
with previous findings [32], but also appears to separate
this group into two different components - one com-
prising RAD54, RAD51, RAD57 and RAD55 and the
other comprising RAD52 and RAD59. The former group
are members of the Rad51-dependent HRR pathway and
function in parallel with members of the Shu complex
to generate HRR intermediates processed by SGS1 [28].
The latter group is known to have additional functions
in single stranded annealing not shared by the other
members of the group [29]. It may therefore not be sur-
prising that RAD52 and RAD59 cluster farther from the
Shu genes and that SGS1 clusters together with RAD54,

Figure 6 Inference of functional modules and complexes relationships. (a) Hierarchical clustering of S-score profiles. Red bars indicate
genes in the Rad5 epistasis group, members of the Shu complex, the Rad51-dependent and independent branches of the Rad52 epistasis
group, members of the Mms22-dependent pathway and the Mms4/Mus81 endonuclease complex. The orange bar highlights the clustering of
genes in the Shu complex with the Rad51-dependent pathway and Sgs1 (see text for details). Grey squares indicate double mutants not
assayed. (b) Comparison of true positive and false positive rates for fitness- and sensitivity-based identification obtained by varying the threshold
(Δthr) used to establish equivalence between single- and double-deletion phenotypes (see text). (c) Comparison of true positive rates for fitness-
and sensitivity-based identification at different values of the equivalence threshold.
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RAD51, RAD57 and RAD55. It is, however, interesting
that hierarchical clustering of S-scores may be able to
resolve how the different groups of genes act together
within the MMS response. It is also interesting that the
group comprising RTT107, which is grouped with
Mms22-dependent repair in agreement with previous
findings [33], SLX4, CLA4, and MAG1 display strong
aggravating interactions with members of the group
comprising SGS1, the Shu complex genes and the genes
the in Rad51-dependent and independent HRR. This
suggests that RTT107, SLX4, CLA4 and MAG1 may
function in parallel to the main HRR pathway. In the
case of SLX4, this is consistent with the finding that the
Slx4 and Sgs1 are part of functionally redundant endo-
nuclease complexes [34].
The clusters obtained using S-scores differ from those

obtained by St. Onge et al [8] using fitness-based epista-
sis scores. Both analyzes correctly identify the functional
relationships between RAD5 and RAD18, all members of
the Shu complex, four members of the Rad52 epistasis
group (RAD52, RAD51, RAD55 and RAD57), the lin-
kages between RTT107, RTT101 and MMS22, as well as
those between MMS4 and MUS81. However, the fit-
ness-based clustering failed to reveal the functional rela-
tionship between HPR5 and members of the Rad6
epistasis group (RAD5 and RAD18), the involvement of
RAD54 and RAD59 with other members of the Rad52
epistasis group, as well as the upstream role of Sgs1 in
processing HRR intermediates generated by Shu com-
plex and the Rad51-dependent HRR pathway. Notably,
while analysis of fitness phenotypes performed by St.
Onge et al identified an alleviating interaction between
HPR5 and both RAD5 and RAD18, the use of sensitiv-
ity-based clustering appears to better capture the inter-
play of HPR5, with both the Rad6 pathway (see Figure
6a), consistent with the observation of direct physical
interactions between HPR5 and both RAD5 and RAD18
[27].
To further compare the two methods, we evaluated

their ability to correctly recover interactions among
genes encoding multi-component protein complexes.
Within a positively regulated pathway where X acts
upstream of Y, deleting the upstream gene is expected
to mask the phenotypic effect of deleting the down-
stream gene [4]. This phenotypic masking can be
detected if WXY = WX or SXY = SX. In terms of epistasis
scores, this corresponds to εfit = Wwt/WY-1 when fitness
phenotypes are used, and to εsen = εenv(Y) = Swt/SY-1
when sensitivity phenotypes are used. For genes encod-
ing different components of a physical complex, it is
further expected that εfit = Wwt/WX-1 and εsen = Swt/SX-
1, corresponding to co-equivalence among mutant phe-
notypes. Figure 6b compares the fitness- and sensitivity-
based methods in recovering phenotypic masking

among protein complex genes. We focussed on three
putative multi-component protein complexes involving
members of the Rad6 epistasis group (RAD5/RAD18/
HPR5), the Shu complex (SHU1, PSY3, CSM2 and
SHU2) and 3 members of the Rad51 HRR pathway
(RAD51/RAD57/RAD55). The genes within each com-
plex are annotated as interacting physically with one
another according to the BioGRID database [35] and
define a set of 24 directional interactions displaying phe-
notypic masking; two for each of the 12 gene pairs. Full
data is provided in Additional File 3. We defined pheno-
typic masking as an alleviating interaction (P < 0.05)
where the difference between respective single- and
double- deletion mutants for fitness (Δthr x = |εfit -Wwt/
WY+1| and Δthr y = |εfit -Wwt/WX+1|) or sensitivity-
based (Δthr x = |εsen-εenv(Y)| and Δthr y = |εsen-εenv(X)|)
measurements are below a certain threshold (Δthr). By
applying this approach to test for phenotypic masking
between all 636 directional interactions, the sensitivity-
based identification outperforms that based on fitness
phenotypes (Figure 6b). This is more clearly demon-
strated in Figure 6c, which shows the fraction of mask-
ing relationship recovered when Δthr is less than 10%.
Indeed, for Δthr = 0.1, the sensitivity-based approach
recovers 92% (22/24) of the predicted interactions,
including those between Rad5 and Rad18, all the mem-
bers of the Shu complex, as well as the putative complex
involving Rad51, Rad55 and Rad57. By contrast, the fit-
ness-based approach recovers only the interactions
among members of the Shu complex, which accounts
for less than 60% of the predicted relationships.

Conclusion
We have presented a method that extends conventional
fitness-based epistatic analysis to specifically identify
genetic interactions that are dynamically modulated in
response to an environmental perturbation. The identifi-
cation of such interactions may provide several advan-
tages by allowing a focus on pathways responding
specifically to a given environmental perturbation [8].
Noticeably, within the TF dataset analyzed, as few as
~50% of the interactions identified using fitness pheno-
types are also identified using sensitivity. These interac-
tions represent linkages among transcriptional
regulators that change in a response-specific manner.
Thus, combining the two approaches may enable the
segregation of genetic interactions within pathways
involved in specific cellular responses, and interactions
associated with core processes preserved across environ-
ments. This conclusion is supported by the analysis of
genome-wide profiling of MMS-induced changes in
transcription and protein-DNA interaction data. This
analysis demonstrates a clear enrichment in putative
regulatory relationships among TF pairs identified by
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sensitivity-based epistatic analysis, a result not provided
by the analysis of fitness phenotypes. Moreover, our
analysis of epistasis within known DNA damage repair
pathways confirms that quantifying the environmental
dependency of genetic interactions can be used to
associate genes with different functional groups, physical
complexes and pathways. By applying this principle
across a larger dataset encompassing additional environ-
mental conditions, we anticipate that this methodology
could aid in deciphering the dynamics of gene networks.
Integrating physical and phenotypic data into compre-

hensive and accurate models of regulatory networks and
pathways remains a major challenge in systems biology
[36]. The mapping of biomolecular interactions and
transcriptional profiling provide fundamental insight
into the substantial remodelling of gene regulatory net-
works that take place following environmental perturba-
tions. However, it is not always clear if and how
observed changes in the physical interaction network
manifest at the physiological level. This can be clarified
using the phenotypic information provided by sensitiv-
ity-based epistatic analysis since the dynamically modu-
lated interactions identified by this method are likely to
reflect the remodelling of network architecture in
response to environmental cues. As such, the method
may have important applications in the inference and
analysis of biological networks.

Methods
Strains
Double gene deletion mutants were generated as
described [37]. To construct a single-deletion “starter”
strain library, the TF-encoding open reading frames
were deleted using a PCR-based gene replacement strat-
egy conferring uracil prototrophy or kanamycin resis-
tance. Kanamycin-resistant single-deletion mutants
derived from strain BY4741 (MATa his3Δ leu2Δ
met15Δ ura3Δ) were obtained from Open BioSystems.
Uracil prototrophic strains were derived from strain
Y7092 (MATa can1Δ::STE2pr-LEU2 lyp1Δ ura3Δ0
leu2Δ0 his3Δ1 met15Δ0, kind gift of Dr. Kristin Baetz).

Growth Assays
Glycerol stocks maintained at -80°C were thawed at 4°
C and 20 μl used to inoculate 380 μl YPD media, con-
taining 10 g/l yeast extract (Wisent), 20 g/l of Bacto-
peptone (Fisher), 20 g/l of dextrose (Fisher) and 0.042
g/l adenine (Sigma), followed by incubation overnight
at 30°C under continuous shaking (250 rpm). 20 μl
aliquots were subsequently diluted with 280 μl YPD
and the optical density at 600 nm (OD) measured
using a PerkinElmer Victor3 V 1420 Multilabel Coun-
ter following incubation at 30°C for 1.5 hours. The
OD was then adjusted to ~0.16 by dilution with fresh

YPD, and 35 μl added to 35 μl YPD or 35 μl YPD sup-
plemented with 0.015% MMS (Sigma) in a 384 well
plate. Each well was overlaid with a 6 μl layer of light
mineral oil (Sigma) to minimize evaporation. Growth
curves were estimated by measuring OD at ~15 min-
ute intervals for 10 hours at 30°C in no less than 19
and 4 replicates for single- and double-deletion
strains, respectively. A custom Matlab script was used
to calculate growth rates from OD values in the range
from 0.1 to 0.4, and obtained between 60 and 360
minutes after inoculation by fitting to an exponential
growth model. Following manual inspection, growth
rate estimates were computed based no less than 10
(-MMS) or 12 (+MMS) data points. A decreased OD
window was used in a few cases to allow for the analy-
sis of strains with slow initial growth. Single mutant
growth rate were estimated from double mutant data
using the following procedure. For each TF, a set of
growth rates μ(X) = μ1(X)... μN(X) was calculated from
Eq. (1) under the hypothesis that epistasis with each
of the other TFs is absent, i.e., μi(X) = m(X, Yi)×m
(wt)/m(Yi) where Yi refers to the second TF deleted.
The single mutant growth rate is then estimated by
the median of μ(X).

Statistical analysis
Statistical significance was assessed using parametric
bootstrapping. Simulated data, consisting of random
numbers drawn from distributions with the same
mean and variance as the experimental data was used
to estimate the probability of observing an epistasis
score as extreme, or more extreme than the observed
epistasis score by chance under the null hypothesis
that epistasis is absent. The null hypothesis was
imposed on the simulated data by drawing the appro-
priate double mutant growth rate from a distribution
with a mean (m0) given by the growth rate expected
in the absence of epistasis and a variance given by
m0

2×(cv1
2 + cv2

2) where cv1 and cv2 are the coeffi-
cients of variation associated with the measured dou-
ble mutant growth rate and the median coefficients of
variation of all double mutant growth rates, respec-
tively. P-values for each epistasis score was computed
based on 300000 trials.
The assignment of fitness-based epistasis to specific

environments (E1, -MMS; E2, +MMS) was based on the
P values in the two environments. Interactions were
associated with the absence of MMS if P-MMS < 0.01
and P+MMS > 0.01, to the presence of MMS if P-MMS >
0.01 and P+MMS < 0.01, and to both environments if
P-MMS < 0.01 and P+MMS < 0.01. The P values associated
with protein-DNA interactions and loss of differential
expression in TF deletion strains were provided by
Dr. Trey Ideker and analyzed as described [12].
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Hierarchical clustering
The analysis was performed in the R programming lan-
guage using the pvclust package with default parameters
(correlation-based measure of dissimilarities between
objects, and agglomeration based on averages) [38].

Additional material

Additional file 1: Analysis results for single TF mutant data. Tab-
delimited text file containing information on single mutant growth
phenotypes in the presence and absence of MMS.

Additional file 2: Epistatic analysis results for TF mutants. Tab-
delimited text file containing calculated F- and S-scored as well as
associated P-values computed for double mutant strains.

Additional file 3: Results for phenotypic masking. Tab-delimited text
file containing information on measured and predicted F- and S-scores
used to identify masking interactions.

Abbreviations
TF: transcription factor; MMS: methyl methansulfonate; F-score: fitness-based
epistasis score; ES-score: environmental sensitivity score; S-Score: sensitivity-
based epistasis score; HC: high-confidence fitness-based epistatic
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