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Abstract

Background: In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in
processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to
substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information
towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific
environmental niches.

Results: We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB
genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by
integrating protein subcellular location prediction and homology clustering methods. The initial clusters were
further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene
analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-
specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the
distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes.
A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the
extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly
when new bacterial genomes become available.

Conclusions: The LAB-Secretome database could be used to understand the evolution and adaptation of lactic
acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for
targeted experimental studies.

Background
Lactic Acid Bacteria (LAB) have been used for centuries
in industrial and artisanal food and feed fermentations
as starter cultures and are important bacteria linked to
the human gastro-intestinal (GI) tract [1-8]. Phylogeneti-
cally they form a relatively compact group of mainly
Gram-positive, anaerobic, non-sporulating, low G+C
content acid-tolerant bacteria [9-12]. The genera that
comprise the LAB belong to the order Lactobacillales,
and are primarily Lactobacillus, Pediococcus, Lactococ-
cus, Streptococcus and Leuconostoc, while some periph-
eral genera are Enterococcus, Oenococcus, Aerococcus,

and Carnobacterium. Interestingly, even within such a
compact group, vastly divergent phenotypes have been
reported, providing indications of high flexibility and
adaptation of these species to their living environments
[13-16].
Extracellular and surface-associated proteins play a

most important role in many essential interactions and
adaptations of LAB to their environment [17-26]. By defi-
nition these proteins are either exposed on (anchored to
membrane GO:0046658, intrinsic to external side of
plasma membrane GO:0031233 and the cell wall, GO:
0005618) or released (extracellular milieu, GO:0005576)
from the bacterial cell surface. On a genome scale these
proteins form a subset of the proteome which contains
both the exoproteome [27] and part of the surface pro-
teome [28], but excluding the integral membrane
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proteins (GO: 0005887) and the proteins that are intrin-
sic to internal side of plasma membrane (GO:0031235).
This subset of the proteome belongs to what Desvaux
et al have defined as “secretome” [27] and is known to
mainly be involved processes such as: (1) recognition,
binding, degradation and uptake of extracellular complex
nutrients, (2) signal transduction, (3) communication
with the environment and (4) attachment of the bacterial
cell to specific sites or surfaces, e.g. to intestinal mucosa
cells of the host [29-37]. Hence, genome-scale compara-
tive analysis of these secretome (surface-associated and
released from the cell) proteins may provide an under-
standing of the molecular function, evolution, and diver-
sity of different LAB species and their adaptation to
different environments.
Here we report a comparison of the predicted secre-

tomes of 26 sequenced genomes of LAB representing 18
different species (Table 1). The secretome clusters of

orthologous protein families (LaCOGs: Lactobacillales
Cluster of Ortholog Groups) were extracted by combin-
ing homology clustering methods with protein subcellu-
lar location (SCL) prediction. The comparative analysis
of LaCOGs shows many niche-specific protein families
that can be used as leads for future experiments.
The complete results of this study are stored in our

open-source database LAB-Secretome http://www.cmbi.
ru.nl/lab_secretome with a user-friendly web-interface.
An automatic update scheme was constructed to be able
to add information to the database on new bacterial
genomes.

Results and Discussion
Construction of the secretome protein clusters (LaCOGs)
In this study we focus on those proteins that are pre-
dicted to be wholly or largely on the outside of the cell,
regardless of the translocation systems. These proteins

Table 1 The predicted LAB secretomes (genomes included in the original LaCOG analysis 43 are marked by *)

Secretome proteins (%)

LAB species and strains Total proteins A B C D E F G Total
(%)

E.faecalis_V583 3186 2.32 1.26 3.36 0.97 0.16 1.6 0.13 9.8

L.acidophilus_NCFM 1834 2.24 0.65 4.09 0.93 0 2.45 0.05 10.41

L.gasseri_ATCC_33323* 1733 1.85 0.69 3.92 0.52 0.12 0.69 0 7.79

L.johnsonii_NCC_533* 1789 2.07 0.89 4.3 0.56 0.39 0.06 0 8.27

L.delbrueckii_bulgaricus
_ATCC11842

1536 1.56 0.13 3.45 1.04 0.07 2.02 0 8.27

L.delbrueckii_bulgaricus
_ATCC_BAA-365*

1681 1.43 0.06 3.15 0.95 0.18 2.08 0 7.85

L.casei_ATCC_334* 2693 1.63 0.78 3.79 0.78 0.15 1.41 0.07 8.61

L.casei_BL23 2973 1.68 0.77 3.4 0.84 0 1.35 0.13 8.17

L.salivarius_UCC118 1973 0.91 0.25 3.4 0.61 0.15 1.27 0.1 6.69

L.sakei_23K 1845 1.52 0.33 3.36 0.76 0.05 2.06 0.27 8.35

L.plantarum_WCFS1* 2981 1.61 1.11 3.99 0.91 0.3 0.1 0 8.02

L.brevis_ATCC_367 2178 1.29 0.55 3.35 1.52 0.14 2.53 0.09 9.47

L.fermentum_IFO_3956 1826 0.66 0.22 2.96 0.55 0 1.15 0.05 5.59

L.helveticus_DPC_4571 1597 1.38 0.13 4.51 0.44 0 2.13 0 8.59

L.reuteri_F275_JGI 1881 0.74 0.21 3.67 0.85 0 1.01 0 6.48

L.reuteri_F275_Kitasato 1803 0.78 0.28 3.55 1 0 1.22 0 6.83

L._lactis_cremoris_MG1363 2393 1.46 0.46 3.01 0.79 0 1.96 0 7.68

L.lactis_cremoris_SK11* 2459 1.38 0.41 3.17 1.02 0.12 1.67 0.08 7.85

L.lactis_lactis_IL1403* 2284 1.4 0.61 4.29 0.74 0.04 1.62 0.18 8.88

L.citreum_KM20 1784 0.06 0.28 4.43 1.23 1.23 0 0.06 7.29

S.thermophilus_CNRZ1066* 1872 1.28 0.05 3.47 0.53 0.27 0.43 0.05 6.08

S.thermophilus_LMD-9* 1669 1.5 0.24 3.89 0.54 0.18 0.84 0 7.19

S.thermophilus_LMG_18311 1854 1.29 0.11 3.78 0.54 0.49 0.65 0 6.86

L.mesenteroides_ATCC_8293* 1966 0.1 0.31 4.93 1.12 0.31 1.22 0.15 8.14

O.oeni_PSU-1* 1664 0.12 0.06 4.33 0.9 1.56 0 0.06 7.03

P.pentosaceus_ATCC_25745* 1727 1.1 0.17 3.88 0.35 0.17 0.98 0.12 6.77

A: Lipid anchored; B: LPxTG Cell-wall anchored; C: N-terminally anchored (No cleavage site); D: N-terminally anchored (with cleavage site); E: Secreted via minor
pathways (bacteriocin) (no cleavage site); F: Extracellular (with cleavage site); G: C-terminally anchored (with cleavage site)

The SCL prediction was made by LocateP.
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form a sub-proteome of what Desvaux et.al defined as
the “secretome” [27] by excluding the translocation sys-
tems, the integral membrane proteins, and non-protein
products. Although we adapt this term “secretome” to
describe our protein subset of interest, we must specify
that in our analysis the term “secretome” refers to only
the proteins that are released from the cells to the extra-
cellular milieu (also called exoproteome), and the pro-
teins that remain cell-surface associated, but nothing
else.
Ideally, a comparative secretome analysis should be

performed on the experimentally validated sub-pro-
teomes or on in silico predicted secretome proteins with
the highest possible accuracies. However, it is well-
known that wet-lab proteomic studies are extremely
costly and can lead to many false predictions of subcel-
lular location, while all the currently available in silico
protein SCL predictors have only 80%-93% prediction
accuracy [38-41]. Therefore, instead of clustering pre-
dicted extracellular proteins directly, we designed an
alternative process which firstly groups all proteins in
the sequenced LAB genomes into ortholog groups
(LaCOGs) and afterwards extracts the secretome groups
by using genome-scale SCL predictions (Figure 1). In
this way, the wrongly predicted secretome proteins
could be reduced because homologous proteins with
similar functions and domains always tend to have the
same SCL, and vice versa [39-42].
The Lactobacillales-specific clusters of orthologous

groups of proteins (LaCOGs) previously generated by
Makarova et.al [43] were used as the basis for protein
clustering into protein families. In total 3374 (729 new
and 2645 existing) LaCOGs were formed by adding 14
recently sequenced LAB genomes to the Makarova
et. al. set. Subsequently, a genome-scale SCL prediction
was performed on all proteins in the 26 genomes
(Table 1). By combining the SCL prediction and
LaCOGs, and after manual curation (see below), we
defined 462 secretome LaCOGs (of which 212 are new
compared to the Makarova et. al. set) composed of 3357
proteins, representing 7.4% of the complete genome
dataset and 93% of all predicted secretome proteins in
these 26 genomes. We defined thirteen general func-
tional classes for these proteins, and the distribution of
these clustered secretome proteins over the classes and
LaCOGs is shown in Figure 2. An additional 249 puta-
tive secretome proteins could not be grouped into these
LaCOGs, comprising 69 proteins that had only a distant
homolog in non-LAB, and 180 proteins that had no
homolog in any sequenced bacterial genomes, which we
termed the extracellular “ORFans” (Table 2, Additional
file 1, sheet S1).
Although the LAB genomes vary in size, the size of

the secretome as a fraction of each genome was fairly

consistent (6-10%), as well as the distribution of proteins
over different SCLs. The N-terminally anchored proteins
with no signal peptidase cleavage site are the most
abundant kind among all predicted secretome proteins.
A striking feature of numerous secretome proteins, and
particularly surface-associated proteins, is that they are
large and consist of many different domains (often in
repeats), and domain compositions (see examples in Fig-
ure 3). In fact, this variation in domain composition has
been used in constructing and sub-dividing the LaCOGs
and separating sub-families of homologous proteins.
Distinct combinations of domains provide hints for
functions of these extracellular proteins in cell-wall
metabolism, cell-wall binding and their communication
with the environment (see below).

False predictions and pseudogenes
The preliminary secretome clusters were curated manu-
ally and corrected based on expert knowledge, e.g. for
false-positive and false-negative predictions, incorrect
gene starts, pseudogenes, etc. Examples of proteins of
known intracellular function, but with consistent false-
positive extracellular SCL prediction are listed in Addi-
tional file 2, sheet S1. In most cases the mis-prediction
was caused by an a-helix-like N-terminal sequence in
these proteins (possibly as part of the hydrophobic core
of a globular protein), leading to the prediction as a sig-
nal peptide by LocateP. A further improvement was
made by finding and removing those LaCOGs that have
proteins which are anchored in the cell membrane with
a single N-terminal transmembrane helix, but with the
rest of the protein inside the cell (so-called outside-in
topology, GO:0031235) [44-53]. By aligning proteins
within these LaCOGs we found that these proteins
do not have positively charged residues preceding the
N-terminal hydrophobic helix, but exclusively have a
positively charged residue(s) immediately downstream of
the transmembrane helix (examples in Additional file 2,
sheet S2). Hence such features could be used for further
development of a model for SCL prediction of N-term-
inally anchored proteins by LocateP.
Nearly 400 pseudogenes were identified, but this is

probably an underestimate. In most cases this was
due to gene frameshifts, and occasionally to N- or C-
terminal truncation of genes. Most of these genes could
be concatenated to encode larger proteins with high
similarity to known proteins in the LaCOGs. Many of
these pseudogenes were initially predicted to encode
intracellular proteins by LocateP, but after concatenation
these proteins are predicted to be extracellular and/or
contain domains of extracellular functionalities. An
example are the proteins encoded by adjacent genes
LSA1731 and LSA1730 in L.sakei 23K which were anno-
tated as hypothetical proteins. The concatenated protein
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Figure 1 The flowchart for constructing the secretome LaCOGs. The completely sequenced LAB genomes are used as input data. No
plasmid sequences were used for the Inparanoid search. The squares with dash-line frames are intermediate products that are not user-
queryable from the LAB-Secretome interface; the squares with full-line frames are the final information stored in LAB-Secretome database. The
upper left frame shows the processes that produce new LACOGs; the upper right frame shows the processes that extend existing LaCOGs. The
new LaCOGs are coded starting with “9”, the extended existing LaCOGs retain the original names from Makarova et.al [43]. BlastP1: the Blast
results were processed by a revised criterion “uniform top 3” (see Material and Methods); BlastP2: the Blast results were processed by cut-off of
1e-3 and aligned sequence coverage of 60% for distant homolog identification. This work scheme can be used to update the LAB-Secretome
database when new bacterial genomes are available.
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showed high similarity to proteins in LaCOG02935
which were exclusively cell-surface protein Csc complex
family members [54]. In total 129 concatenated pseudo-
proteins were made with 279 protein fragments (Addi-
tional file 3, sheet S1), while 87 pseudogenes could not
be combined (Additional file 3, sheet S2).

The LAB-Secretome database
The LAB-Secretome database http://www.cmbi.ru.nl/
lab_secretome was constructed to store and browse all
the predicted extracellular proteins and LaCOGs. An
overview page summarizes all predicted secretomes,
LaCOGs, distant homologs in non-LAB species and the
ORFans, with hyperlinks to the corresponding HTML
pages to help users to browse the whole database
(Figure 4A). The LAB-Secretome database can be

queried in many ways, e.g. by bacterial species, protein
subcellular location, protein accession identifiers,
LaCOG numbers, protein functional classes, and Pfam
domain accession codes or domain functions (Figure
4B). Visualization includes a description of LaCOG
members and function, protein functional domain com-
position, and multiple alignments with notification of
corrected start codons, pseudogenes and concatenated
proteins (Figure 4D). A Blast function, utilizing the
BlastP [55] program, enables users to query the cluster-
ing information of their proteins of interest to the extra-
cellular proteins and families that are already in the
database (Figure 4C). An automatic updating scheme for
the LaCOGs (Figure 1) was designed to ensure that the
need for manual curation is minimized when adding
new bacterial genomes to the database.

Figure 2 overview of distribution of secretome proteins in LaCOGs. The central pie depicts the distribution of secretome proteins in
LaCOGs according to their functional classes. The percentage was calculated as the number of proteins in the category divided by the total of
3357 secretome proteins that were clustered into LaCOGs. The number of LaCOGs in each category is listed in the pie chart legend behind the
name of the functional class. The separate yellow-red-green piecharts for each functional class represents the distribution of this LaCOG in the
LAB genomes, i.e. ubiquitous, .species/strain-specific, or variable.
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Overview of the extracellular protein families
Ubiquitous/essential LaCOGs
Only 22 LaCOGs were found to be fully conserved
among all 26 LAB secretomes, or only lacking in 1 gen-
ome (5 LaCOGs), e.g. the absence of an ATP-dependent
protease from LaCOG01453 in P. pentosaceus (Addi-
tional file 1, sheet S3).
Most of these LaCOGs contain proteins with universal

functionalities involved in cell-wall metabolism, secre-
tion, transport and DNA uptake (Figure 2). Only one
conserved family (LaCOG01219) contains proteins of as
yet unknown function, but presumably essential as they
are conserved in all genomes.
Most common functionalities in the secretomes of LAB
Among all 215 secretome LaCOGs with known or pre-
sumed functions, almost half of them contain proteins
which are involved in cell-wall metabolism, e.g. the mur-
amidase, lysin, lysozyme and beta-lactamase families
(Figure 2). Many of these enzyme families are further
subdivided into different LaCOGs based on variations in
sequence homology and protein domain compositions,
and some may represent species/niche-specific subfami-
lies. One example is the subdivision of proteins with an
Nlpc/P60 family domain (e.g. gamma-D-glutamate-

meso-diaminopimelate muropeptidase) into 5 separate
LaCOGs (Additional file 4, sheet S1). These proteins
vary in length from ~150 to ~500 amino acids, all with
the Nlpc/P60 domain in the C-terminal part. In only
one of these subfamilies (LaCOG90015), all 16 members
have 1-3 copies of LysM domains (Pfam PF01476) in
their N-terminal part, indicating extra binding functions
to the cell-envelope. A similar domain architecture is
found in one of the four N-acetylmuramoyl-L-alanine
amidase subfamilies (LaCOG01848), which has an enzy-
matic C-terminal domain and 0-3 N-terminal SH3
domains (Pfam PF08239), known to bind to proline-rich
regions of proteins. In the pepdidoglycan hydrolase sub-
families LaCOG00186 and LaCOG01653 the enzymatic
domain is located at the N-terminus and can be fol-
lowed by different kinds, combinations and numbers of
binding domains such as LysM, SH3 or surface layer
domain (Pfam PF03217) (Figure 5). These examples all
illustrate that the many types of extracellular enzymes
involved in cell-wall turnover have different mechanisms
to attach to components of the cell surface.
Niche-specific LaCOG families
1/L. acidophilus complex specific The acidophilus
“complex” including the species L. acidophilus,

Table 2 Overview of the LaCOGs (genomes included in the original LaCOG analysis 43 are marked by *)

LAB species and strains Secretome size Proteins in LaCOG Distant Homologs ORFans LaCOGs

E.faecalis V583 281 232 22 27 131

L.acidophilus NCFM 171 161 2 8 108

L.brevis ATCC 367 177 154 5 18 113

L.casei ATCC 334 * 192 187 3 2 148

L.casei BL23 205 197 0 8 153

L.citreum KM20 112 112 0 0 93

L.delbrueckii bulgaricus ATCC BAA-365 * 115 113 0 2 94

L.delbrueckii bulgaricus ATCC11842 87 79 3 5 68

L.fermentum IFO 3956 112 112 0 0 89

L.gasseri ATCC 33323 * 115 113 0 2 88

L.helveticus DPC 4571 131 123 2 6 97

L.johnsonii NCC 533 * 236 209 6 21 131

L.lactis cremoris MG1363 105 103 0 2 86

L.lactis cremoris SK11 * 105 105 0 0 87

L.lactis lactis IL1403 * 136 114 4 18 80

L.mesenteroides ATCC 8293 * 112 94 5 13 77

L.plantarum WCFS1 * 160 151 5 4 123

L.reuteri F275 JGI 159 156 1 2 124

L.reuteri F275 Kitasato 171 156 2 13 123

L.sakei 23K 114 103 4 7 80

L.salivarius UCC118 135 126 3 6 103

O.oeni PSU-1 * 95 90 0 5 70

P.pentosaceus ATCC 25745 * 99 89 1 9 79

S.thermophilus CNRZ1066 * 90 90 0 0 77

S.thermophilus LMD-9 * 97 94 1 2 84

S.thermophilus LMG 18311 94 94 0 0 81
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L. johnsonii, L. gasseri, L. delbrueckii ssp bulgaricus and
L. helveticus has long been regarded as a phylogenetic
subgroup [56-58]. About 30 LaCOGs appear to be speci-
fic for these species (Additional file 1, sheet S4). Their
proteins include an ABC-type phosphate/phosphonate
transport system (LaCOG02118), the aggregation pro-
moting factor (LaCOG90005) [59-61], a putative compe-
tence protein (LaCOG03110) and several families of
S-layer proteins, which may reflect the special binding
function that these S-layer proteins generally share in
these acidophilus complex species [62-69]. Interestingly,
twenty of these acidophilus complex-specific LaCOGs
contain only extracellular proteins of unknown function,
and it should be challenging to focus on experimental
determination of their function.
2/GI-tract specific If we consider the LAB species L. acid-
ophilus, L. johnsonii, L. gasseri, L. reuteri, and L. salivarius

to be specifically found in the GI-tract, then we can iden-
tify 17 LaCOGs which are not found outside of this group,
of which 13 families contain only proteins of unknown
function (Additional file 1, sheet S4). One mucus-binding
protein family (LaCOG02280) was found to be specific for
these GI-tract LAB, and contains 4 proteins from L. acido-
philus, L. gasseri and L. johnsonii. All four proteins are lar-
ger than 2300 amino acids, contain a signal peptide with
YSIRK domain (Pfam PF04650) and appear to be anchored
to the peptidoglycan by an LPxTG cell-wall anchor (Pfam
PF00746). Each protein has 5-11 copies of a mucus-
binding domain, as defined by Boekhorst et al [60], show-
ing their particular role in binding to mucus components
in the GI-tract [5,70-72]. The 3 D structure of this domain
of 184 residues has recently been determined and shows
similarity to the functional repeat found in a family of
immunoglobulin-binding proteins [73].

Figure 3 Variations in domain composition. Examples of LaCOGs families showing different domain types, domain compositions and repeats.
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3/Plant-associated specific Twelve LaCOGs appear to
be specific for the group of plant-associated species Leu-
conostoc, Oenococcus, L. plantarum, L. brevis, and
P. pentosaceus, of which 7 familes contain only proteins
of unknown function (Additional file 1, sheet S4). One
of these (LaCOG02876) includes 4 homologous proteins
from L.brevis, L.plantarum, O.oeni and L. citreum,
which show a high sequence similarity to each other,
but the protein from L. plantarum has a much longer
serine-rich spacer between the N- and C-terminal
domains. A similar domain structure differing in a long
serine-rich spacer is seen in the 2 hypothetical proteins
from L. plantarum and L. brevis in LaCOG02927.
4/Dairy LAB specific A few protein families were found
only to occur in the secretomes of the dairy LAB S.
thermophilus, L. lactis and E. faecalis (Additional file 1,
sheet S4). These proteins have functional properties that
may be relevant to the dairy niche, e.g. LaCOG00374
contains ABC transporter substrate-binding proteins for
polar amino acids, and could possibly be required for
growth in milk [74-77]. The L. lactis strains have a

single copy of this gene, while the S. thermophilus
strains all have 3 consecutive genes encoding paralogs
of this amino acid-binding protein. All dairy Streptococ-
cus and Lactococcus strains contain a single gene encod-
ing a beta-lactamase (LaCOG00012) which may play a
role in destroying penicillin that these strains may
encounter in milk [78-82]. A putative chitinase (glycosyl
hydrolase family 18; LaCOG02690) is found exclusively
in E. faecalis and in L. lactis strains.
Species-specific and strain-specific LaCOGs
Up to 150 LaCOGs were found to be species-specific or
strain-specific (Additional file 1, sheet S5). The distinc-
tion is not so clear yet because for some species several
strains were sequenced (e.g. L. lactis, S. thermophilus)
while for many species only a single strain was sequenced
to date. Most of these families are made up solely of
hypothetical proteins with highly conserved sequence
(Figure 2). L. casei and L. lactis have the highest number
of species-specific LaCOGs, indicating that they may
have more unique extracellular functions. Examples of
species-specific extracellular proteins are the PrgA/PrgB/

Figure 4 Screen shot of the LAB-Secretome database. A: Overview page of the database showing statistical information of the predicted LAB
secretomes with active links to their corresponding pages; B: The search engine in LAB-Secretome which can browse the database by various
types of queries; C: The BlastP search page of LAB-Secretome; D: An example page depicting parts of the detailed information that LAB-
Secretome presents for each LaCOG.
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PrgC surface proteins of E. faecalis [83-85], an alpha-
amylase (LaCOG02644) in L. lactis strains, a phospholi-
pase A2 family enzyme (LaCOG99223) in L. casei strains,
a cyclo-nucleotide phosphodiesterase (LacOG00213) in S.
thermophilus strains, and a mucus-binding protein
(LaCOG90010) in L. delbrueckii strains.
Extracellular proteins not in LaCOGs: ORFans and proteins
with only distant homologs in non-LAB
About 249 putative extracellular proteins could not be
classified into LaCOG families, and comprise 69 pro-
teins that have only distant homologs in non-LAB spe-
cies and 180 ORFans that are species-specific
(Additional file 1, sheets S6 and S7). While the ORFans
are nearly all hypothetical proteins of unknown func-
tion, the distant homologs also contain proteins with a
variety of known functions, such as extracellular
enzymes (e.g. xylanase, pectate lyase, endo-beta-N-

acetylglucosaminidase, proteases and beta-fructosidase),
substrate-binding proteins of transporters, miscellaneous
binding proteins and specific bacteriocins. The unique-
ness of these proteins suggests that most species or
strains have a few unique extracellular proteins that are
not found in other sequenced LAB, and may encode
unique functions that are related to their environmental
niche. Quite a few of the proteins of unknown function
are predicted to be lipid-anchored and therefore may
represent substrate-binding proteins of uncharacterized
transporters.

Specific enzyme families
LAB possess a variety of extracellular hydrolytic enzymes
and transglycosylases which presumably relate to interac-
tions with their environment, e.g. for degradation of
growth substrate polymers. These enzymes have been

Figure 5 Domain structure variation of enzymes within a family. Examples of an enzyme family (N-acetyl-glucosaminidase) with variations in
the type and number of cell-envelope binding domains.
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clustered and sub-divided into protein families (LaCOGs)
based on specific domain compositions (Table 3, Addi-
tional file 4, sheet S2). For instance, the subtilisin-like
serine proteases (Pfam PF00082), known to be important
for growth on protein substrates [86-89], were clustered
into 2 LaCOGs: the first family (LacOG02153) is com-
posed of 7 proteins containing a protease-associated PA
domain (Pfam PF02225) inserted in the catalytic domain
which forms a lid structure that covers the active site,
whereas the other family (LaCOG90024) was only found
in L. casei and L. acidophilus, and contains subtilisin-like
serine proteases without the PA domain. Putative trans-
glycosylases, also referred to as aggregation-promoting
factors [59,90-92], are divided into three subfamilies
(LaCOG01580, LaCOG02932, LaCOG90005), and have a
highly conserved C-terminal domain [71]. Furthermore,
there are several families of hydrolases of unknown func-
tion (Table 3). The extracellular alpha/beta hydrolases
with a DUF915 domain (Pfam PF06028) are subdivided
into four families, two of which are highly populated
(LaCOG01137 and LaCOG01138, with 46 and 30 mem-
bers, respectively) and found in nearly all LAB, suggest-
ing that they have an essential, but as yet unknown,
function.

Specific binding-protein families
Many extracellular proteins contain known domains for
binding to macromolecular substrates. In addition to
domains for binding to the cell wall of the producing cell
(e.g. LysM, SH3), several other domains are found which
are related to binding to host macromolecules (e.g.
domains annotated as mucus-binding, chitin-binding,
collagen-binding, fibronectin-binding, carbohydrate-
binding, etc) (Table 3). Some of these annotations derive
from in vitro binding studies and may not reflect in vivo
functions. In LAB, mucus-binding domains (MUB,
MucBP) are found in many proteins and are thought to
play a role in binding to the host GI-tract mucus layer
[57,93,94]. An enormous variety is found in the size of
these mucus-binding proteins and in the number of
mucus-binding domains. We have made a preliminary
separation into 7 different subfamilies of mucus-binding
proteins based on protein size, sequence homology,
domain composition and phylogeny (Table 3). The three
largest subfamilies are (1) LaCOG00885 containing 11
members from different LAB but not from L. acidophilus
group members, (2) LaCOG01470 with 28 members,
found in many LAB, and (3) LaCOG03211 which
includes 10 proteins. The proteins of LaCOG00885 con-
tain solely the MucBP domains as defined by Pfam
(PF00746), while the proteins of the other two LaCOGs
possess multiple copies of the larger MUB domains as
defined by Boekhorst et al. [71] (see also Figure 2 in

[95]). Many mucus-binding proteins of L. acidophilus
group members contain an N-terminal [Y/F]
SIRKxxxGxxS-containing signal peptide (PF04650) which
was earlier reported as a typical characteristic of the L.
acidophilus MUB proteins [94,96], and may relate to a
specific function in sorting or folding [97,98]. Further-
more, it is striking that many large genes encoding
mucus-binding proteins are pseudogenes (e.g. in
LaCOG01470, LaCOG03211 and LaCOG99309). While it
is unlikely that these are all due to sequencing errors, it is
not clear yet whether these are truly pseudogenes, or pos-
sibly may encode functional proteins after transcription
with strand-slipping [5,71].

Conclusions
Lactic Acid Bacteria (LAB) occur naturally in many dif-
ferent fermentation environments such as plant, meat,
dairy and cereal. Overall similarities have been identified
among the genomes of many LAB species [61,99-105].
However, bio-diversity has also been reported fre-
quently, showing that subtle variations in presence or
absence of proteins and functional domain composition
might lead to important traits during bacterial adapta-
tion to their living environments [106-113]. Our com-
parative research on extracellular and surface-associated
protein families has provided a more solid basis for this
hypothesis. Universal families have been identified
which are apparently essential for survival of all LAB,
but also species-specific protein families. Besides the
clustered proteins with known functions, many families
of hypothetical proteins and unique proteins (ORFans
and proteins with only distant homologs in non-LAB)
were found.
Protein clustering supports niche-dependent features

of specific subgroups of LAB (e.g. the L. acidophilus
group) and could aid in linking bacterial phenotypes to
genotypes. The distinct sub-families of the different
LaCOGs have provided clues for adaptation of the bac-
terial cells to their living environment, such as the GI-
tract. The result of this study can be used as leads for
experimental work on the molecular evolution, diversity,
function and adaptation of bacteria to specific
environments.
Our clustering methods and database structure were

designed in a way that allows adoption to other groups
of bacteria than LAB. The analysis results are stored in
a queryable database which provides vivid browsing
functions for users, and will be updated regularly to
guarantee the continuation of the service to the biol-
ogy community. Our clustering information into
families could definitely help in checking the quality of
newly sequenced genomes and for genome (re-)
annotation.

Zhou et al. BMC Genomics 2010, 11:651
http://www.biomedcentral.com/1471-2164/11/651

Page 10 of 16



Table 3 Examples of specific enzyme and binding-protein sub-families

Product LaCOG Functional domain Distribution Special features

Specific enzyme families

Subtilisin-like
serine
protease

LaCOG02153 Subtilase family L. casei, L. delbrueckii bulgaricus,
L. johnsonii, L. lactis, S. thermophilus

PA domain (PF02225) inserted in the
subtilase family domain

LaCOG90024 Subtilase family L. acidophilus, L. casei no PA insert domain

Trans-
glycosylase

LaCOG01094 Transglycosylase-like domain, mainly in L.plantarum,
L.lactis, S.thermophilus

different domains for PG binding

LaCOG01589 aggregation promoting factor
related surface protein

not in L.acidophilus group PG bound by LysM domain; highly
conserved C-terminal domain ending in
GWY

LaCOG02932 aggregation promoting factor
related surface protein

only in L.delbrueckii bulgaricus,
L.plantarum, L.acidophilus group

highly conserved C-terminal domain
ending in WY

LaCOG90005 aggregation promoting factor
related surface protein

only in L.acidophilus group highly conserved C-terminal domain
ending in GWY

Dextran
sucrase

LaCOG90016 glycosyl hydrolase family 70 only in Leuconostoc, L. reuteri,
O. oeni

Cell-surface hydrolases

alpha/beta
hydrolase

LaCOG01137 alpha/beta hydrolase of
unknown function (DUF915)

ubiquitous

LaCOG01138 alpha/beta hydrolase (DUF915) Ubiquitous

LacOG01920 alpha/beta hydrolase (DUF915) only in L. delbrueckii bulgaricus,
L.plantarum , L.casei

LaCOG02785 alpha/beta hydrolase (DUF915) only in L.plantarum , L.casei , L.sakei

lipase/Acyl-
hydrolase

LaCOG00342 GDSL-like Lipase/Acylhydrolase not in L.acidophilus group with GDSL-like motif

general cell
surface
hydrolase

LacOG02019 cell surface hydrolase
membrane-bound (putative)

only in L.delbrueckii bulgaricus,
L.plantarum,L.casei , L.fermentum

LaCOG01618 cell-surface hydrolase; only in L.plantarum , L.delbrueckii
bulgaricus, P.pentosaceus

Binding proteins

mannose-
specific
adhesion

LaCOG01741 MUB domain, Gram positive
anchor

only in L.plantarum, L.delbrueckii
bulgaricus, P.pentosaceus, L.acidophilus
group

collagen-
binding
protein

LaCOG00092 Collagen binding domain, Gram
positive anchor

not in L.acidophilus group

mucus-
binding
protein

LaCOG00885 MucBP domain (Classical), Gram
positive anchor

not in L.acidophilus group Leucine Rich Repeat, PT repeat

LaCOG01470 MUB domain, Gram positive
anchor

many pseudogenes, most L.acidophilus
group proteins have YSIRK-type signal
peptide

LacOG02280 MUB domain, Gram positive
anchor

only in L.acidophilus group very large, YSIRK-type signal peptide

LaCOG03211 MUB domain, Gram positive
anchor

5 of 10 are pseudogenes; YSIRK SP in L.
acidophilus group members

LacOG99309 MUB domain, Gram positive
anchor

only in L.acidophilus group all pseudogenes; YSIRK type signal peptide

chitin-binding
protein

LaCOG01300 Chitin binding domain E.faecalis, L.plantarum, L.sakei, L.lactis maybe related to niche

adherence
protein

LaCOG01366 von Willebrand factor type A
domain, Cna protein B-type
domain

only in L.lactis, E.faecalis, L.citreum,
L.casei
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Methods
Genome sequences and bioinformatics tools used in this
research
The genome sequences of 26 selected representative lac-
tic acid bacteria, including the protein functional anno-
tation and the gene contexts, were obtained from the
NCBI bacterial genome database (version 15 Aug., 2008)
[114].
BlastP (default cutoff values of E < 1, low-complexity

filter disabled) [55] and Inparanoid [115] were used for
sequence homology and orthology searches, respectively.
Protein subcellular location (SCL) was predicted by
LocateP [38]. Multiple sequence alignments were con-
structed using Muscle [116]. Motif searches were per-
formed using MEME and MAST [117]. Protein domains
(version Dec. 2008) [118] originating from the Pfam
database [119-121] and additional HMMs reported in
other studies [54,71,96,122-124] were searched using
HMMER [125] with the respective cut-off of each
model. The domain functions were obtained from the
GO database [126] using the PFAM2GO dataset [126].
The LAB-Secretome database was created in MySQL

and the database interface was written in PHP (ver-
sion5.2.7). Visualization of the protein domain composi-
tion was made using scalable vector graphics (SVG).

Protein clustering into orthology groups (LaCOGs)
First, the 22,191 proteins in 3195 LaCOGs generated by
Makarova et.al [1] from 12 LAB genomes were used as
the basis for protein clustering. All protein sequences
from 14 newly sequenced LAB genomes were searched
against the Makarova LaCOG set using BlastP. The pro-
teins that have high homology to the existing LaCOGs
were then selected using a revised criterion based on
the well-known COG extension rule “uniform top 3”
[127]: if all the top 3 (in case of LaCOG size of 2, the
top 2 hits were taken) BlastP hits of a query protein
belong to the same LaCOG (LaCOG size bigger than or
equals to 2), then the query protein is added to this
LaCOG.
Since the above-mentioned extension was purely

based on the homologs of proteins that were already
included in the LaCOGs by Makarova et al., the specific
proteins from newly sequenced species, e.g. L. reuteri,
were not added due to the absence of the “seeding
sequences” for BlastP. In order to cluster all proteins
that originated from the newly sequenced genomes, a
complete all-to-all Inparanoid [115] search was per-
formed in a parallel fashion with the proteins encoded
in the 14 new genomes to identify orthologous proteins.
Cut-off settings of bit score 50 and sequence overlap of
50% were used. The proteins with all-to-all bidirec-
tional-best-hit (BBH) relationship [128,129] were clus-
tered into groups, meaning that in any such group, each

member is the BBH of another member. This stringent
criterion generates new cores of orthologous proteins.
Using the core ortholog clusters and the extended

LaCOGs made in step one, the proteins that were not
previously included in any clusters, including those pro-
teins from Makarova LaCOGs containing only 1 mem-
ber, were Blasted as queries. In this step, the revised
criterion “uniform top 3” was used and new LaCOGs
were made.
The newly made LaCOGs were merged with the

extended Makarova LaCOGs, and the newly made ones
were assigned coding numbers starting with “9” in their
names, e.g. LaCOG90001, to distinguish them from the
extended Makarova LaCOGs.

LaCOG quality control
In order to check the quality of the merged LaCOGs, an
iterative BlastP search was performed using the clus-
tered proteins as queries against all the proteins that
were not included in any constructed LaCOGs, using
the criteria of 1E-3 and query-hit protein length ratio of
0.6, which has been tested by Boekhorst et. al. [130] for
distant homolog identification. This iterative search
found that only 13 non-clustered proteins (mostly
hypothetical proteins) had a distant homolog in 11 dif-
ferent LaCOGs, indicating that our clustering methods
have extensively included most of the proteins into pos-
sible homologous clusters.

ORFans and proteins with only non-LAB distant homologs
The LAB proteins that could not be clustered into
LaCOGs by the previously described procedures were
then collected and Blasted against all completely
sequences non-LAB bacterial genomes (both Gram- and
Gram+ species). The same criterion of distant homolog
identification [130] was utilized. Proteins that had no
homologs in any other species were named “ORFans”.

Secretome LaCOG extraction
The clustering information of merged LaCOGs, proteins
that have only distant homologs in non-LAB species
and the ORFans was then combined with the SCL pre-
diction made by LocateP (Table 1). Initially, only the
LaCOGs that had at least half of the members with a
predicted secretome SCL corresponding to (1) lipid-
anchored; (2) N-/C-terminally anchored; (3) secreted by
Tat- or Sec- pathway; (4) secreted via non-classical
pathways, or (5) cell-wall anchored were identified as
the secretome LaCOGs. Later, all other LaCOGs were
manually inspected, and a few families were identified
with a mixture of secretome and intracellular proteins;
only the secretome proteins were added to the database.
The same classification was applied to the secretome
ORFans and proteins that have only distant homologs in
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non-LAB species. The resulting clusters of secretome
proteins, the “secretome”, can be further extended by
similar processes when new (LAB) genome sequences
become available.
Proteins that are exported by unknown mechanisms

and so-called “moon-lighting” proteins (known intracel-
lular function, but often also found on the outside of
the cell) [131] were not considered as their extracellular
SCL cannot be predicted.

Manual curation
In order to obtain as accurate as possible prediction of
secretome proteins and their classification into LaCOGs,
we performed a throughout manual inspection on all
the secretome proteins, including the ORFans and the
ones included in LaCOGs. All proteins were double
checked for the ORF-calling quality by the criteria com-
bining protein length, possible alternative start (end)
codon, multiple sequence alignments, protein domain
composition and SCL prediction consistency.
Incorrectly chosen start codons in the original annota-

tions were corrected based on sequence alignment with
protein family members, position of putative ribosome-
binding sites, and known features of signal peptides. Pseu-
dogenes were initially identified when BLASTP analysis of
the encoded proteins showed that they belong to extracel-
lular protein families in LaCOGs, but that they repre-
sented only a fragment of the protein. By analysis of the
coding region of these pseudogenes with their adjacent
nucleotide sequences we could generally identify frame-
shifts, such that the missing protein part(s) were found to
be encoded in a different reading frame. In these cases, the
entire opening-reading frames were translated into protein
fragments, regardless of the absence of start codons, and
these protein fragments were concatenated to form new
protein sequences that share high similarity to other
known full-length proteins. In a few cases, ORFans were
also identified as pseudogenes when they lacked a signal
peptide, but otherwise contained protein domains typical
of extracellular proteins.
Generally, we expected the ORFans to be real genes

that represent unique functionality to the specific LAB
in which they occur. However, because the average size
of these hypothetical ORFs was below 100 amino acids,
it is possible that some small ORFans could as well be
wrongly predicted ORFs or pseudogenes. Proteins smal-
ler than 80 amino acids containing only a Sec-type
N-terminal signal sequence were removed from the set
of predicted extracellular proteins, since their C-term-
inal part is generally too small to represent an extracel-
lular domain. Moreover, many of such small proteins
with a single predicted TM helix are now increasingly
considered as small integral membrane proteins [132].

Additional material

Additional file 1: The overview of LAB-Secretome. Sheet S1: an
overview of secretomes included in this research; sheet S2: the presence
and absence patterns of the LaCOGs in 26 LAB genomes; sheet S3: the
ubiquitous LaCOGs; sheet S4: the niche-specific LaCOGs; sheet S5: the
species-specific LaCOGs; sheet S6: the ORFans; S7: the proteins with only
distant homologs.

Additional file 2: False-positive SCL predictions. The false-positive SCL
predictions that were corrected using domain composition and homolog
information of LaCOGs. Sheet S1: the intracellular proteins that had been
wrongly predicted to be extracellular; sheet S2: the N-terminally
anchored LaCOGs with C-terminal inside topology.

Additional file 3: The extracellular pseudogenes. The secretome
pseudogenes. The pseudogenes with wrongly annotated start/end
codons were corrected and concatenated with corresponding gene
neighbors. The resulting proteins seem to have homologs in various
LaCOGs. The concatenated protein sequences are listed in the last
column, with an “x” showing the conjunction site of each sequence.

Additional file 4: Interesting cases of extracellular protein families.
The distribution of binding protein families: sheet S1: Nlpc-P60 families;
sheet S2: Cell surface hydrolase; sheet S3: Binding proteins.
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