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Abstract

Background: Developing effective strategies to reveal modular structures in protein interaction networks is crucial
for better understanding of molecular mechanisms of underlying biological processes. In this paper, we propose a
new density-based algorithm (ADHOC) for clustering vertices of a protein interaction network using a novel
subgraph density measurement.

Results: By statistically evaluating several independent criteria, we found that ADHOC could significantly improve
the outcome as compared with five previously reported density-dependent methods. We further applied ADHOC
to investigate the hierarchical and overlapping modular structure in the yeast PPI network. Our method could
effectively detect both protein modules and the overlaps between them, and thus greatly promote the precise
prediction of protein functions. Moreover, by further assaying the intermodule layer of the yeast PPI network, we
classified hubs into two types, module hubs and inter-module hubs. Each type presents distinct characteristics both
in network topology and biological functions, which could conduce to the better understanding of relationship
between network architecture and biological implications.

Conclusions: Our proposed algorithm based on the novel subgraph density measurement makes it possible to
more precisely detect hierarchical and overlapping modular structures in protein interaction networks. In addition,
our method also shows a strong robustness against the noise in network, which is quite critical for analyzing such
a high noise network.

Background
Proteins, as the important players of cell machinery,
often cooperate with other functional correlates to form
protein complexes or functional modules when perform-
ing certain biological activities. Therefore, revealing
modular structures in biological networks would help us
to develop more effective protein function prediction
algorithms and get a better understanding of molecular
mechanisms of biological processes [1]. Recent progress
in the proteomics technologies has enabled scientists to
identify protein interactions on a genomic scale [2,3].

Such data can be generally modeled as a graph in which
vertices represent proteins and edges represent interac-
tions between them. Hence, it is not surprising that a
variety of graph-theory approaches had been applied to
analysis of protein-protein interaction (PPI) networks.
So far, these analyses have revealed a number of distinc-
tive topological properties, including power-law degree
distribution, small world and high clustering coefficients
[4]. However, uncovering the modular structures, as one
of the key points, remains a non-trivial task due to sev-
eral handicaps.
First, there is only very limited overlapping among

existing high-throughput PPI datasets, which indicates
that many of the detected interactions might be false
positives [5]. These non-negligible uncertainties of pro-
tein interaction data lead to huge challenges to classical
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graph partitioning/clustering methods, despite their
remarkable achievements in other fields. The specific
topological characteristic of PPI network is another
important cause [4]. As a scale-free network, PPI net-
work’s node connectivity distribution follows a power
law, with a few nodes of highly connection and most
others of low degree. Consequently, the results of tradi-
tional module detection methods usually failed into a
dilemma – finding either a handful of giant clusters or a
great number of tiny cliques. Furthermore, the fact that
PPI network is always organized into a complicated
hierarchical and overlapping modular structure makes it
even harder to develop a competent method, as to accu-
rately extract nested modules with possible overlaps [4].
Recently, a number of network clustering algorithms

introduced by different research groups in diverse fields,
have been applied to identify functional modules from
complex PPI networks. Considering the special role of
hubs in a scale-free network, Cho and Zhang restruc-
tured a complex interactome network into a hub-
oriented hierarchical tree based on the path strength
model, and then identified structural hubs and func-
tional modules on the basis of hub confidence scores
[6]. Using gene expression data as an additional input to
assess the quality of interactions, Chin et al. developed a
novel hub-attachment based agglomerative clustering
method to detect functional modules from confidence-
scored protein interactions and expression profiles [7].
In contrast to the traditional concept of a module as a
group of cohesively interacting proteins, Pinkert et al.
presented an alternative module finding approach of
decomposing a network into functional roles, which
based on a self-consistent definition independent of any
prior knowledge of functional modules [8].
Density-based clustering algorithms, which search for

highly-connected regions within a network, have been
proved to be fairly effective in identifying meaningful
clusters from datasets with high-level noise [9]. For
detecting functional modules in PPI networks, a num-
ber of density-based clustering algorithms have been
recently proposed. These methods often vary in the
means used to assess the density of the subgraphs. The
most stringent criterion is used by Maximal Clique
algorithm, which identify fully-connected subgraphs, k-
cliques, in the network [10]. In comparison, other
algorithms exploited the relatively more comprehensive
criteria: MCODE applied the network partitioning
based on the density of k-cores [11]; CFinder inter-
preted network modules as unions of all adjacent k-cli-
ques [12]; DPClus identified subgraphs that satisfied
certain cluster density and connectivity properties [13].
Although there were some progress, how to properly
assess the density of the subgraphs is not quite settled
yet.

In this paper, we put forward an effective and efficient
network clustering algorithm named ADHOC (A Density-
based Hierarchical and Overlapping Clustering method)
based on a novel subgraph density measurement. By statis-
tically evaluating several independent criteria, we found
that our method could significantly improve the outcome
as compared with previously reported density-based meth-
ods. Next, we applied ADHOC to investigate the hierarch-
ical and overlapping modular structure in the yeast PPI
network. As shown in the results, our method can effec-
tively detect both protein modules and the overlaps
between them, which would greatly promote the precise
prediction of protein functions. Moreover, by further
assaying the intermodule layer of the yeast PPI network,
we classified two types of protein hubs, module hubs and
inter-module hubs. Each group of hubs presented distinct
characteristics both in network topology and biological
functions, which could assist us to better understanding of
the relationship between network architecture and biologi-
cal implications.

Methods
The principle of ADHOC method
Since PPI network is a very noisy environment, here we
constructed our clustering method ground on the idea of
density-based clustering. As a popular metric of graph
theory, the clustering coefficient – a real number ranging
from 0.0 to 1.0, is a reasonable measurement that can
reflect the local-density of a node’s neighborhood. How-
ever, as the connectivities of different nodes in PPI net-
work vary significantly, it is not rational to use a fixed
threshold of the clustering coefficient, which determines
whether a node’s neighborhood is a density region. For a
node of degree 2, the value of its clustering coefficient
equals to 1.0, which means the node and its neighbors
form a triangle, is fairly common in PPI network. On the
other hand, to detect a node of degree 50 with the clus-
tering coefficient equals to 1.0 seems impossible. Hence
different from traditional density-based clustering
metods, by adding node degree as an important para-
meter into our model, we proposed a novel subgraph
density measurement approach (Formula 1) which would
assign different thresholds to nodes with different
degrees according to the presetting density levels.
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In this model, the clustering coefficient threshold,
MinCC, for a given node is decided by two parameters:
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first is its degree d, second is the size k of the clique
with which it compared. When a node’s clustering coef-
ficient value is no less than its MinCC, we reckon that
this node’s neighborhood is a density region which is at
least as dense as the k-clique it compared with. The
MinCC is computed by comparing the p-value of
detecting no less than C edges in the node’s neighbor-
hood by chance alone, given by the cumulative probabil-
ity of binomial distribution, with the p-value of finding a
k-clique in the PPI network by chance. Notably, as the
PPI networks present a trait of clustering, that is, two
vertices that are both neighbors of the same third vertex
have a heightened probability of also being neighbors of
one another, the probability p of detecting an edge by
chance in the Formula 1 is defined as the global cluster-
ing coefficient. In addition, although the range of the
clique size k is usually positive integers, in Formula 1
we can extend the range of k to any positive real num-
bers larger than one, which would be useful to precisely
detect density regions in PPI networks.
By using the above model, for a given k, all the nodes

in the PPI network can be classified as four types. First
is “density node” whose clustering coefficient value is no
less than the threshold given by MinCC. The density
region of one density node is defined as its immediately
connected neighbors, except those without any con-
nected edges to any other neighbors. Second is “border
node” which is not a density node but still in the density
region of a density node. A border node could be in the
density regions of different density nodes at the same
time. Third is “affiliated node”, a node is an affiliated
node to one cluster if all its edges are connected to the
nodes in this cluster. All the remaining nodes are classi-
fied as “interspersed node”, which is most likely to be
the noise in the network, or the intermediate that con-
nect clusters with each other. Based on the node classifi-
cation, the core clustering method basically consists of
following steps (the detailed flowchart of the overall
algorithm is illustrated in Figure 1): 1) for a given k,
classify all nodes to four types; 2) for any two density
nodes, if they are directly connected, they are put into
the same cluster; 3) border nodes are put into the same
clusters as their directly connected density nodes; 4) all
the affiliated nodes will be placed to the clusters which
they are affiliated with; 5) all the interspersed nodes are
grouped to inter-module layer which don’t fall into any
clusters.
As a demonstration, the result from the analysis of a

simple network was presented in Figure 2. Given k = 3,
this simple network, composed of 21 nodes and 36
edges in total, was sorted into 3 clusters, with five
remaining nodes marked as interspersed nodes. It is
worth noting that, in the clustering process, different
clusters could be overlapped because both border nodes

and affiliated nodes can be sorted into multiple clusters
simultaneously, such as node G and H in Figure 2.

Data sources
The yeast (Saccharomyces cerevisiae) protein interaction
dataset that we used is the core interaction data from
the DIP database (dip.doe-mbi.ucla.edu, date 2007-10-
07). This dataset contains 2779 distinct proteins and
6212 filtered reliable interactions (self-interactions were
discarded).
The Gene Ontology (GO) data are obtained from the

SGD database (www.yeastgenome.org, the GO-Slim
data, date 2008-06-07), which contained 12,628 cellular
component terms, 8,199 molecular function terms and
13,356 biological process terms.
The lethality and the phenotype data for the yeast

protein interaction dataset are obtained from the MIPS
database (mips.helmholtz-muenchen.de, date 2006-05-
18). The lethality dataset lists whether yeast strains are
viable or not when the specific genes are knockout. The
phenotype dataset is a list of phenotypes observed as the
consequences of gene knockouts.

Global clustering coefficient
The global clustering coefficient calculates the number
of closed triplets (or 3 x triangles) proportional to the
total number of connected triples (both open and
closed). This measure was designed to give an overall
indication of the clustering in the whole network.

GCC = ×3  number of  triangles in the network

number of  connecteed triples of  vertices
 (Formula 2) (2)

Local clustering coefficient
The local clustering coefficient of a vertex in a graph
quantifies how close its neighbors are to being a clique.
For a vertex v with degree kv, the local clustering coeffi-
cient is defined as |E|/(kv(kv-1)/2), where |E| is the
number of edges between the vertex’s neighbors and
kv(kv-1)/2 is the theoretical maximum number of edges
possible.

P-value of GO
The extent to which the clusters are associated with a
specific GO term is evaluated using a p-value based on
the hypergeometric distribution. Here N, n and M are
the sizes of the whole network, a cluster and proteins
which annotated with the specific GO term in the net-
work respectively and m is the number of proteins
annotated with the specific GO term in the cluster. In
this paper, all p-values were corrected with Bonferroni
correction for multiple hypothesis testing. Because the
p-values are frequently small numbers with positive
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values between 0 and 1, the negative logarithms (to base
10, denoted -log p) are used.
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P-value of lethality
The p-value that a group of proteins would be enriched
with lethal proteins by chance alone is given by the
cumulative probability of binomial distribution as
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Figure 1 Flowchart of the proposed algorithm. For a given density level k, all nodes are classified into four types, and then clustered into
different modules or inter-module layer according to their types.
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Here n is the size of the protein group, k is the num-
ber of lethal proteins in the group, and p is the prob-
ability that a protein be lethal.

Vertex between ness
Vertex betweenness, first proposed in social network
research, has been studied in the past as a measure of
the centrality and influence of nodes in networks. The
betweenness centrality of a vertex i is defined as

B i
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    Formula 5 (5)

Here δs,t is the number of geodesies linking nodes s
and t, and δs,t (i) is the number of geodesies linking
nodes s and t that contain i.

Results
Evaluation of ADHOC: comparative assessment and
robustness analysis
To demonstrate the strength of the ADHOC approach,
we compared it with other five clustering algorithms
which are also based on the idea of density region
detection, including Maximal Clique, DPClus, IPCA,
MCODE and Cfinder [10-14]. For those algorithms
based on k-clique finding, such as Maximal Clique or
Cfinder, k is typically suggested to set to 4 [10,12]. Cor-
respondingly, in ADHOC, the density level parameter k
was assigned to 3, since it is used to measure the density
of a node’s neighborhood. For other three clustering
algorithms, we used their default parameter settings:
DPClus CPin = 0.5, Din = 0.9; IPCA Tin = 0.9, SP < 3;
MCODE VWP = 0.1, Fluff = 0. The comparison results

for the core interaction data from the DIP database are
summarized in Table 1. The performance was measured
by the node discard rate and the enrichment of the
Gene Ontology categories (molecular functions, biologi-
cal process, cellular component). The -log p-values in
Table 1 are the average -log p-values of all detected
clusters by each method.
Table 1 shows that, compared with the other five

methods, ADHOC has the least portion of proteins
which are discarded to create clusters. On average,
ADHOC collects 300 more proteins into the clusters
than other five methods. Moreover, by the enrichment
analysis of Gene Ontology categories, those clusters
obtained by ADHOC showed a dominant superiority
on all the categories over five others. Therein, the clus-
ters on molecular functions category, have p-values

Figure 2 A simple demonstration of ADHOC method. The four type’s nodes are marked by different colors. The identified three clusters are
circled by dashed lines.

Table 1 Comparison of ADHOC to Competing Clustering
Methods for DIP Yeast PPI Dataset

Method Cluster
Number

Cluster
Size

Discard
(%)

GO (-log
P-value)

MF BP CC

ADHOC 50 20.56 68.05 5.18 7.44 6.38

Maximal
Clique

376 4.55 80.06 3.43 4.02 2.67

IPCA 253 4.64 80.39 3.61 4.09 2.89

DPClus 90 5.27 84.49 3.91 4.50 3.44

MCODE 29 23.76 75.21 4.20 5.23 4.89

CFinder 84 7.46 80.06 4.63 6.03 4.66

Cluster Number: the number of clusters identified by each method; Cluster
Size: the average number of proteins in each cluster; Discard (%): the
percentage of proteins not assigned to any cluster; GO: the average -log
p-values (adjusted) of all detected clusters for Gene Ontology (molecular
functions (MF), biological process (BP), and cellular component (CC)).
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that are approximately 4-fold, 10-fold, 20-fold, 30-fold
and 60-fold lower than CFinder, MCODE, DPClus,
IPCA and Maximal Clique method, respectively. On
biological process category, the p-values of the clusters
identified by ADHOC are approximately 25-fold, 150-
fold, 800-fold, 2000-fold and 2500-fold lower than
CFinder, MCODE, DPClus, IPCA and Maximal Clique
method, respectively. While on cellular component
category, the clusters detected by ADHOC possess p-
values that are approximately 50-fold, 30-fold, 800-
fold, 3000-fold and 5000-fold lower than CFinder,
MCODE, DPClus, IPCA and Maximal Clique method,
respectively.
As mentioned above, clustering algorithms for PPI

network should be insensitive to noise due to the fact
that PPI network often contains a huge amount of
noise. We therefore examined the robustness of
ADHOC to noises in the PPI network. The performance
of ADHOC was evaluated by adding 5% ~ 25% random
interactions to unconnected protein pairs in the PPI
network. For each noise percentile, we generated 100
noise-added networks and then re-analysed. Table 2
summarizes the number of clusters detected by
ADHOC and the corresponding average -log p-values
for the Gene Ontology categories. The performance of
ADHOC was found to be very robust to the addition of
random interactions, even if the ratio of noise reached
to 25%. The slight decreasing in the average number of
detected clusters could be explained by the increased
network connectivity.

The effect of k on clustering
As for density level parameter k, we can easily prove
that, in the case of k2 > k1 > 0, any cluster obtained
when k = k2 must be subordinate to a cluster of the
ones when k = k1. Thus, changing the parameter k is
like adjusting the resolution of a zoom lens: increasing k
makes the detected density region smaller but also more
cohesive. Therefore, we can obtain the hierarchical and
overlapping modular structure of PPI network by recur-
sively using a set of given k values (k1, k2, …, kn) that
increase gradually.

To finely investigate the effect of k value on network
clustering, we set k ranging from 3 to 8 with a step of
0.1 and examined the impact of different k value on
protein discard rate and Gene Ontology enrichment. As
shown in Figure 3, the protein discard rate fluctuates in
line with k value: as k = 3, about 68% nodes were dis-
carded; as k = 5, 88% nodes were discarded; while k = 8,
almost 98% nodes were discarded. On the other hand,
the increase of k value has a relative complicated effect
on Gene Ontology enrichment. For molecular function
and biological process categories, both -log P-values
rose along with k value: when k = 3, their -log P-values
are 5.18 and 7.44 respectively; as k value further rose
from 5 to 8, the -log P-values of the two simultaneously
increased from 6.69 to 11.23, and 9.28 to 11.74, respec-
tively. However, for cellular component category, its -log
P-values showed the tendency of ascend first and then
descent with the increase of k value: as k first rose from
3 to 3.5, its -log P-values increased from 6.38 to 7.47;
but as k further increased to 5, the -log P-value failed to
5.02. Therefore, based on an overall consideration of the
effects that different k values put on protein discard rate
and Gene Ontology enrichment, we suggest that using
such a value of k between 3 and 5 is reasonable in typi-
cal PPI network analysis. For the optimal step-size, now
that both protein discard rate and Gene Ontology
enrichment have a relative smooth change against k
value, we thought that setting step-size to 0.5 would be
a rational selection.

The hierarchical and overlapping modular structure of
the yeast PPI network
To investigate the hierarchical and overlapping modular
structure in the yeast PPI network, we applied ADHOC
to the core data of yeast PPI network using a set of k
values (k = 3, 3.5, 5). By representing the modules
obtained with different k values by nodes of different
colors, and the overlapping between the modules by
edges linking the nodes, we can naturally depict the
complex modular structure of the yeast PPI network as
a graph, as shown in Figure 4A. In this graph, the area
of nodes and the width of edges are proportional to the

Table 2 Robustness Analysis of ADHOC

Noise Cluster Number GO MF (-log P-value) GO BP (-log P-value) GO CC (-log P-value)

0% 50 5.18 7.44 6.38

5% 44.15 ± 2.28 5.19 ± 0.19 7.34 ± 0.31 6.52 ± 0.35

10% 42.49 ± 2.50 5.13 ± 0.28 7.26 ± 0.33 6.50 ± 0.35

15% 39.94 ± 2.69 5.20 ± 0.28 7.31 ± 0.44 6.51 ± 0.49

20% 37.43 ± 3.40 5.28 ± 0.48 7.54 ± 0.62 6.66 ± 0.53

25% 35.13 ± 2.98 5.29 ± 0.42 7.47 ± 0.54 6.59 ± 0.54

Noise column represents the percentile of random noise added into DIP Yeast PPI dataset. For each noise percentile, we generated 100 random networks. The
numbers in each cell indicate the values of Mean and Standard Variance.
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size of the corresponding modules and to the size of the
overlaps, respectively. When k = 3, the network could
be clustered to 50 modules varying different size from 4
to 253. When more stringent criteria (k = 3.5, 5) were
used, some modules were further divided to smaller
ones, and therefore formed a hierarchical structure.
These modules and especially the overlapping between
them which are not easily revealed through conventional
approaches, are believed to be biologically meaningful
and ready to be deeply analyzed by further biological
experiments. Among them, we here presented two inter-
esting examples (Figure 4B and Figure 4C).
The subgraph which enlarged in Figure 4B is a 21-

member cluster detected when k = 3. According to gene
function annotations from SGD database, most mem-
bers in the cluster are peroxisomal membrane proteins
which function in peroxisomal matrix protein import
[15,16], such as Pex2p and Pexl0p. In addition, there are
also some function related proteins which allocated to
peroxisome, such as Poxlp and Potlp which function in
fatty acid metabolism. When k = 3.5, the cluster is
further divided to two overlapping sub-clusters which is
consistent with the known facts from SGD database that
the peroxisomal import machinery are composed of two
subcomplexes. The first one is the docking subcomplex,
which comprises Pexl4p, Pexl7p and Pexl3p. And the
second one is the translocation subcomplex, which con-
tains Pex2p, Pexl0p and Pexl2p. Moreover, the proteins
which located in the overlapping region of these two
sub-clusters also have important functions: Pex3p and
Pexl9p are identified as proteins required for the proper
localization and stability of peroxisomal membrane pro-
teins; Pexl lp and Pexl5p are required for peroxisome
biogenesis.
It is generally believed that inter-overlapping modules

in the network should have functional relevance to

some extent. However, we have found this kind of over-
lapping between modules is sometimes caused by the
fact that some of its shared members are proteins with
multiple functions. Figure 4C shows a 41-node cluster
detected when k = 3. GO annotations from SGD has
shown that members in the cluster are mainly involved
in two different biological process categories – “protein
modification” and “transcription”. When k changes to 5,
this cluster has been further divided into two parts. Dif-
ferent from the results in Figure 4B, these two sub-
clusters neither are the subunits of some complex, nor
have functional relevance. Therein, Shglp, Sdclp, Swdlp,
Swd2p, Swd3p, Spplp, Bre2p, and Setlp make up the
conserved COMPASS complex, which catalyzes methy-
lation of histone H3 [17]. While other proteins, such as
PAP1, YSH1, SSU72 and CFT1, compose CPF complex,
which is a multisubunit complex that involved in RNAP
II transcription termination [18]. These two complexes
of different functions are connected by their shared pro-
tein Swd2p, which has dual functions in RNA polymer-
ase II transcription termination and lysine 4 methylation
of histone H3 [19].
Besides these cases in line with the known findings,

there remain a lot of function unknown proteins in our
modules. These modules that are obtained by clustering
often correspond to some complexes and pathways, and
enrich one or more functions in GO analysis. Therefore,
the hierarchical and overlapping modular structure may
promote the function prediction of unknown proteins in
these modules. According to the results of GO enrich-
ment analysis, we predicted the GO biological process
of unknown proteins in various modules, as shown in
Table 3. When a very stringent threshold (-log p-value
> 10) was used, we predicted 58 proteins functions,
which mainly focused on “transcription”, “protein cata-
bolic process” and “ribosome biogenesis and assembly”.

Figure 3 The effect of k on clustering. The impact of different k value (ranging from 3 to 8 with a step of 0.1) on protein discard rate and
Gene Ontology enrichment.
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Two types of hubs: module hubs and inter-module hubs
Different from other clustering methods, such as hier-
archical clustering and k-means, the density clustering
methods do not cluster all the nodes in PPI network.
For those nodes that have been discarded in the density
clustering, they are generally regarded as the noise in
the network. Since these nodes are numerous in the net-
work and many of them are network hubs, it might not
be appropriate to just annotate all these nodes as noise
and discard them. We speculate that these nodes
spreading among the modules are likely to exercise dif-
ferent functions as compared with those within the
modules. In order to reduce the impact of noise on our
analysis, here we merely analyzed the hubs in PPI net-
work. Yeast PPI network contains 261 hubs (degree >

10) in total. According to their location in the modules
(when k = 3), these hubs can be divided into two cate-
gories: module hubs (192 nodes) and inter-module hubs
(69 nodes). We then compared the topological charac-
teristics and biological functions of these two types of
hubs respectively.
According to the topological characteristics of these

two types of hubs, neither the degree distribution (Fig-
ure 5A) nor the betweeness value distribution (Figure
5B) has significant differences (Kolmogorov-Smirnov
test, p-value > 0.05). However, if we only consider the
interactions between hub nodes in each group (Figure
5C), the average number of the interactions between
module hubs (6.54 ± 3.86) is obviously much greater
than that between inter-module hubs (2.06 ± 1.66),

Figure 4 The modular structure of the yeast PPI network. A) The hierarchical and overlapping modular structure of the yeast PPI network. B)
The module of peroxisomal membrane proteins. C) The COMPASS complex and the CPF complex.
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indicating that module hubs are more prone to interact
between themselves. The clustering coefficient distribu-
tions of these two groups (Figure 5D) also show the
similar tendency. The average clustering coefficient of
the module hubs (0.20 ± 0.15) is obviously much larger
than the clustering coefficient of the inter-module hubs
(0.07 ± 0.06), which means that the neighbours of the
module hubs are more prone to interact with
themselves.
Moreover, the GO enrichment analyses show that

these two sets of hubs are markedly different in biolo-
gical processes, molecular functions and cellular locali-
zations (Table 4). In the biological process, module
hubs significantly centralize on “Protein catabolic pro-
cess”, “RNA metabolic process” and “Nuclear organiza-
tion and biogenesis” respectively, while inter-module
hubs on “signal transduction”, “anatomical structure
morphogenesis” and “cell budding”. On the molecular
function, the top three functions of module hubs prin-
cipally focus on “RNA binding”, “peptidase activity”

and “structural molecule activity”, while inter-module
hubs on “protein kinase activity”, “signal transducer
activity” and “DNA binding”. In the cell location, mod-
ule hubs are primarily at “nucleus”, “endomembrane
system” and “golgi apparatus”, while inter-module hubs
at “cell cortex”, “site of polarized growth” and “cytos-
keleton”. In addition, the significant functional differ-
ence of two hubs is also reflected on their fatal (Table
5). Based on Yeast lethal gene data in MIPS database,
we separately calculated the p-values of enriched lethal
genes in all interspersed nodes, all module nodes, all
hubs, inter-module hubs and module hubs. Compared
with common nodes, the nodes within the hubs signifi-
cantly enrich lethal genes (-log p-value = 7.09). How-
ever, when considering inter-module hubs and module
hubs separately, lethal gene only enriches in the mod-
ule hubs (-log p-value = 10.26), with no any accumula-
tion in the inter-module hubs (-log p-value = 0.10),
demonstrating the great contrast between fatal of two
hubs.

Table 3 Prediction for uncharacterized proteins (ordered by predicted functions)

Protein P-value Predicted Function Protein P-value Predicted Function

Q12156 12.28 cytoskeleton organization and biogenesis P16387 19.64 transcription

Q05911 14.20 nuclear organization and biogenesis P16547 19.64 transcription

P01097 19.56 precursor metabolites and energy generation P25659 19.64 transcription

O13563 25.25 protein catabolic process P36139 19.64 transcription

P36003 25.25 protein catabolic process P38301 19.64 transcription

P50086 25.25 protein catabolic process P38352 19.64 transcription

P53196 25.25 protein catabolic process P38717 19.64 transcription

Q06665 25.25 protein catabolic process P38915 19.64 transcription

Q05778 25.25 protein catabolic process P39113 19.64 transcription

P39713 19.31 protein catabolic process P39533 19.64 transcription

P42942 19.31 protein catabolic process P40560 19.64 transcription

P53243 19.31 protein catabolic process P46954 19.64 transcription

P53743 19.31 protein catabolic process P47005 19.64 transcription

P53851 19.31 protein catabolic process P47120 19.64 transcription

Q03935 19.31 protein catabolic process P53116 19.64 transcription

Q06512 19.31 protein catabolic process P53878 19.64 transcription

Q08018 19.31 protein catabolic process Q03899 19.64 transcription

P53724 14.63 protein catabolic process Q04847 19.64 transcription

P40462 14.08 ribosome biogenesis and assembly Q05947 19.64 transcription

P43584 14.08 ribosome biogenesis and assembly Q06479 19.64 transcription

P47019 14.08 ribosome biogenesis and assembly Q06640 19.64 transcription

P53163 14.08 ribosome biogenesis and assembly Q07844 19.64 transcription

Q02608 14.08 ribosome biogenesis and assembly Q08923 19.64 transcription

Q03162 14.08 ribosome biogenesis and assembly Q12395 19.64 transcription

P38254 13.03 RNA metabolic process Q12443 19.64 transcription

P38768 13.03 RNA metabolic process P38182 23.45 vesicle-mediated transport

P53094 13.03 RNA metabolic process Q12125 23.45 vesicle-mediated transport

P53212 13.03 RNA metabolic process Q04562 20.50 vesicle-mediated transport

P53952 13.03 RNA metabolic process Q12327 20.50 vesicle-mediated transport

The Swiss-Prot ID of proteins is listed in the Protein column, corresponding P-value (-log p-value > 10) is listed in the P-value column and predicted function for
each protein is listed in the Predicted function column.
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Discussion and conclusions
Till now, a number of different assessment strategies,
such as k-core, k-plex, k-block and n-clan, have been
proposed to assess the density of highly connected
regions. However, as the node connectivity distribution
of PPI network follows a power law, generating clusters

merely based on a fixed threshold of n or k is not
rational. In this paper, by adding node degree as an
important parameter, we developed a novel subgraph
density measurement model which would assign differ-
ent thresholds to nodes with different degrees according
to the presetting density level parameter k. For

Figure 5 The topological characteristics of module hubs and inter-module hubs. A) the degree distribution, B) the betweeness distribution,
C) the interactions between hub nodes, D) the clustering coefficient distribution.

Table 4 GO annotation (Top3) for module hubs and inter-module hubs

GO Module Hubs Inter-module Hubs

BP Protein catabolic process 7.64 Signal transduction 4.24

RNA metabolic process 5.86 Anatomical structure morphogenesis 3.20

Nuclear organization and biogenesis 3.95 Cell budding 3.08

MF RNA binding 4.12 Protein kinase activity 3.26

Peptidase activity 4.10 Signal transducer activity 2.33

Structural molecule activity 1.48 DNA binding 1.45

CC Nucleus 7.29 Cell cortex 1.69

Endomembrane system 3.78 Site of polarized growth 1.46

Golgi apparatus 2.71 Cytoskeleton 1.32

The numbers indicate the corresponding -log P-values.
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ADHOC, the parameter setting is easy to use. As
described above, for most PPI network, setting k in the
range of 3~5 and step-size to 0.5 will meet the most
requirements. When a small k is used in clustering,
more proteins will be included into the modules, which
in turn means more function-unknown proteins might
be assigned to the functions of modules. Whereas, the
average size of extracted modules using a small k is
likely to be somewhat large, as a result more function
terms might be enriched in each module by GO analy-
sis. On the other hand, when using a big k in clustering,
more proteins will be discarded so as to engender some
smaller but more cohesive modules, which means less
and more reliable novel protein function annotations.
Therefore, for those clustering results based on
ADHOC, we should integrate the relavent GO annota-
tion of modules to further determine the function for
those modules and their relationships with substructure.
With the progress of high throughput experimental

techniques (e.g. yeast-two-hybrid), large-scale sets of
protein interaction data are now publicly available for
further bioinformatics studies. Based on the idea that
proteins of similar functions tend to congregate into
same modules, we can predict the functions of unknown
proteins with high confidence according to extracted
modular structures from PPI network. However, the
functional analysis just using PPI has a limitation in
accuracy because of its high-level noise of false positive
and false negative interactions. Thus, how to construct a
high reliable protein function prediction framework
integrated with heterogeneous datasets (e.g. gene expres-
sion data, semantic knowledge) has been a challenge in
the post-genomic era [7,20,21]. Moreover, exploring
modular structures from protein interaction data can
also enable us towards a better understanding of topolo-
gical structures and the organizing principles of biologi-
cal networks. For example, based on whether or not the
hubs are co-expressed with their neighbors, Han et al.
originally proposed a binary hub classification – ‘party
hubs’ and ‘date hubs’, and suggested that party hubs are
local coordinators whereas date hubs are global connec-
tors in the network [22]. Recently, by virtue of network

motifs, Jin et al. further presented the concepts of ‘motif
party hubs’ and ‘motif date hubs’, and showed that a
network motif should be considered as an essential
function unit in organizing modules of biological net-
works [23].
Previous cluster analysis on PPI network are mostly

focused on prediction and analysis of network modules,
but for those proteins that do not belong to any module,
there was no much detailed study. In this work, by com-
parison of the topological characteristics and biological
functions between module hubs and inter-module hubs,
we speculate that inter-module hubs are more likely to
play important roles in response to external signal sti-
mulation and in coordinating the joint effect of many
modules. Notablly, our prediction is in good agreement
with the founding in breast cancer by Taylor et al., that
is “Signaling domains were found more often in inter-
modular hub proteins “[24]. More interestingly, we
found that there is significant divergence of fatality
between inter-module hubs and module hubs. It is gen-
erally believed that the connections of a node in PPI
network are closely related to its biological importance.
Hence, hubs are more inclined to lethal gene [25]. How-
ever, some recent study found that this correlation
might be worth exploring. For example, Zhang et al.
suggested that the fatal tendency of hubs probably has
no relationship with their impact on overall network
topological features [26]. In this study, our results pre-
sent a new possibility for this issue. We suggest that the
definition of the existing hub is just a pure and simple
topological concept. Hence, the interior of hubs should
perform further division, while hubs in the different
groups execute distinct important functions within bio-
logical networks.
For such a high noisy PPI network, density-based clus-

tering method seems a very suitable choice to seek mod-
ule structure. However, how to determine the module’s
density, as well as the density threshold, has no explicit
standards. In order to solve this problem, in this paper,
we developed a network clustering method (ADHOC)
based on a novel density model. Using ADHOC, a PPI
network could be divided into a hierarchical and over-
lapping modular structure. As compared with the exist-
ing density-dependent clustering methods by several
independent criteria, our method has a markedly
improved performance in search of module. In addition,
our method also shows a strong robustness against the
noise in PPI network, which is quite critical for analyz-
ing such a high noise network. More importantly, our
model parameter, size k of the clique that is used to
measure the density level can use decimal, suggesting
that our approach can more precisely detect the module
structures in PPI network. We have no doubt that there
is still a room for improvement. Indeed, the current

Table 5 The enrichment of lethal genes in different
groups

Type Lethal Viable Unknown Lethal
%

-log
P-value

All Hubs 119 131 11 45.59 7.09

Module Hubs 101 89 2 52.60 10.26

Inter-module
Hubs

18 42 9 26.09 0.10

Module Nodes 210 397 89 30.17 0.33

Interspersed
Nodes

386 1109 326 21.20 0.00
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method is still far from perfect. Thus, the in-depth
works, such as extending the model for analysis of
directed and weighted networks with the integration of
other high throughput datasets, are required for
ADHOC.
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