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Abstract

Background: A key problem in systems biology is estimating dynamical models of gene regulatory networks.
Traditionally, this has been done using regression or other ad-hoc methods when the model is linear. More
detailed, realistic modeling studies usually employ nonlinear dynamical models, which lead to computationally
difficult parameter estimation problems. Functional data analysis methods, however, offer a means to simplify
fitting by transforming the problem from one of matching modeled and observed dynamics to one of matching
modeled and observed time derivatives–a regression problem, albeit a nonlinear one.

Results: We formulate a functional data analysis approach for estimating the parameters of nonlinear dynamical
models and evaluate this approach on data from two real systems, the gap gene system of Drosophila
melanogaster and the synthetic IRMA network, which was created expressly as a test case for genetic network
inference. We also evaluate the approach on simulated data sets generated by the GeneNetWeaver program, the
basis for the annual DREAM reverse engineering challenge. We assess the accuracy with which the correct
regulatory relationships within the networks are extracted, and consider alternative methods of regularization for
the purpose of overfitting avoidance. We also show that the computational efficiency of the functional data
analysis approach, and the decomposability of the resulting regression problem, allow us to explicitly enumerate
and evaluate all possible regulator combinations for every gene. This gives deeper insight into the the relevance of
different regulators or regulator combinations, and lets one check for alternative regulatory explanations.

Conclusions: Functional data analysis is a powerful approach for estimating detailed nonlinear models of gene
expression dynamics, allowing efficient and accurate estimation of regulatory architecture.

Background
A key problem in systems biology is estimating dynami-
cal models of gene regulatory networks. The mathemati-
cal modeling of expression dynamics, combined with
model parameter estimation, has been crucial to unra-
veling complex regulatory programs [1], to recognizing
the robustness of the regulatory architecture of the seg-
ment polarity genes to variations in initial conditions
and parametric variation [2-4], to studying mechanisms
of robustness and evolution of the control of the cell
cycle in yeast [5,6], to identifying surprising shifts in the

expression domains of the gap genes and the regulatory
interactions responsible [7,8], and to numerous other
studies (e.g., [9-16]).
Methods for estimating dynamical models depend on

the form of the model and of the data available. We
focus on the problem of estimating differential equation
models of gene network dynamics based on time series
data. Assuming one notion of expression is associated to
each gene–for example, mRNA or protein expression
level, but not both–then a generic ordinary differential
equation (ODE) model for N genes can be formulated as
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where x is the vector of expression levels of the N
genes, and f produces a vector of time derivatives of
expression depending on the current expression levels
and on some adjustable parameters θ. These para-
meters typically encode such features as kinetic rates
for the production and decay of gene products, and
regulatory influences between the genes. The regula-
tory architecture of the system–that is, which genes’
expression derivatives depend on which other genes’
expression–may be made explicit in the function f (e.
g., [2]), or it may be implicit in the parameters (e.g.,
[7,8]), in which case optimizing the parameters impli-
citly determines network architecture. Extensions of
our work to modeling both mRNA and protein levels
of expression, for example, are straightforward, as
would be extensions to functions f that depend on
time or to delay differential equations, where the deri-
vatives depend on the state of the system in the past.
We will also assume that the expression data is col-
lected from the wild type network, though initial con-
ditions may vary. Knock-out or over-expression data
has also proven useful in genetic network inference,
both in theory [17] and in practice [18]. However,
wild-type data is far more common and easier to gen-
erate than genetic perturbation data.
To introduce the dynamics estimation approach we

investigate, suppose for simplicity that we have access to
a single time series y(t0),y(t1),…,y(tT), where each vector
contains possibly-noisy observed expression values for
all N of the genes. Suppose further that we have chosen
the form of our model, f(x, θ). Most often, parameters
of an ODE model are estimated by minimizing the
squared error between modeled and observed expression
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where x(ti) denotes the solution to the ODE (Eq. 1)
with parameters θ. The initial conditions are often taken
from the observed data, x(t0) = y(t0), or they may be
part of the parameters θ. Even when the ODE model is
linear, so that x x A for some matrix A, this optimiza-
tion is not trivial. The solution to such an ODE is given
by the matrix exponential x(t) = eAtx(t0), so that the
dependence of the error on the parameters (A) is not
straightforward. Still, linear differential equation models
have been fit efficiently to expression data by various
means, most prominently by recasting the problem into
other more convenient forms [9,19,20]. When f is non-
linear, as is typically the case when trying to make more
detailed models of network dynamics, then solving the
minimization (Eq. 2) is all the more difficult.

There is another major approach to fitting ODE mod-
els, however, via functional data analysis (FDA) [21].
The fundamental idea of FDA is to transform a data ser-
ies (e.g., the time series y(ti)) into a continuous function
(ŷ(t)). This transformation often involves “denoising” the
data, using smoothing splines or some other basis func-
tion approximation. Various estimation problems can
then be solved in terms of these functions. FDA
approaches have made some inroads in the literature on
gene expression analysis. It has particularly appeared in
papers on dimensionality reduction, clustering or classi-
fication for microarray expression time-series data (e.g.,
[22-24]). More relevantly to the present paper, several
works have proposed estimating linear dynamical mod-
els from (microarray) expression data [25,26]. As will be
explained in greater detail below, this approach to dyna-
mical modeling allows the estimation problem to be
reduced to one of regression, which carries both statisti-
cal and computational advantages.
There are several approaches to using FDA ideas in

estimating differential equations [21,27]. For the general
problem of estimating differential equation parameters
with nonlinear (or linear) dynamics function f, the most
direct approach is to create the smooth of the expres-
sion series ŷ(t) and then to differentiate that to produce
̂y t( ) . The model parameters can then be fit so that
they recreate the estimated derivates as accurately as
possible, rather than recreating the observed trajectory
as accurately as possible.
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This error criterion is different from Equation 2. We
will call that one trajectory-based error, and Equation 3
the derivated-based error. The FDA approach thus
changes the problem being solved, rather than being an
alternative method for solving the traditional formula-
tion of ODE fitting. The derivative-based error has sev-
eral major computational advantages that allow it to be
optimized much more efficiently. First, evaluating the
derivatived-based error for any particular parameter set
θ is more efficient than for trajectory-based error. It
does not require computation of a solution to the ODE
(Eq. 1), but only evaluating the dynamics function f
along the estimated trajectory ŷ(t). Depending on how ŷ
(t) is represented, its derivative, ̂y t( ) , may be efficiently
calculable as well. A second major advantage is that for
typical models, the parameters θ can be partitioned into
subsets θg that are specific to each gene g’s dynamics. In
this case, the derivative-based error decomposes into a
sum of terms for each gene.
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Here, ̂y tg ( ) denotes the element of the vector ̂y t( )
corresponding to gene g, and similarly fg denotes the
element of f pertaining to gene g. Thus, if there are N
genes and, say, K free parameters per gene, the fitting
problem is reduced from a single nonlinear N × K-
dimensional problem to a set of N independent
K-dimensional optimization problems. Such a reduction
in dimensionality is typically very favorable when solving
nonlinear optimization problems. Finally, although the
derivative-based error criterion is still a nonlinear opti-
mization problem for arbitrary dynamics functions f,
informally, the optimization tends to be “less nonlinear”
than for the trajectory-based error. In part, this is
because the error involves only the evaluation of the
dynamics function rather than solutions to the dynamics
equation. Typically, f is not taken to be anything more
complicated than a generalized linear model [28], so
that minimizing derivated-based error is a generalized-
linear least squares regression problem–a type of pro-
blem routinely solved in statistical analyses.
Despite the potential advantages of the FDA approach,

we believe it has not been seriously evaluated on the
problem of estimating nonlinear models of gene expres-
sion dynamics. In particular, neither its efficiency nor its
ability to correctly estimate regulatory network architec-
ture have been evaluated. Here, we formulate and test
FDA approaches on data from two different real net-
works, the gap gene system of Drosophila melanogaster
[7,8] and the synthetic IRMA network [29], and on
simulated data generated by the GeneNetWeaver pro-
gram [30]. We show that the FDA approach is extre-
mely efficient at fitting nonlinear dynamical models of
these data sets. In fact, it is so efficient that we can
explicitly enumerate and test all possible regulatory
architectures, which, to our knowledge, has never been
achievable before for this type of modeling. These enu-
merations clarify the key regulatory factors, as well as
interactions between factors, that explain the observed
expression dynamics. We also assess the accuracy with
which regulatory relationships are correctly extracted
from the data, and compare it to other state-of-the-art
fitting approaches. In general, the approach seems as
successful as any other at determining which genes reg-
ulate which, and is very successful at discriminating the
types of regulatory interactions–activation or repression.

Results and discussion
Systems and data
We apply FDA methods for fitting differential equation
models of data from two real gene networks and simu-
lated data from a set of in silico systems. Here we briefly
describe these systems and the expression data upon
which our fits are based.
The trunk gap gene system of Drosophila melanogaster
The trunk gap gene system in Drosophila is part of the
segmentation network, which is responsible for estab-
lishing patterns of gene activity early in the development
of the embryo. These patterns mark off different
regions, or segments, along the anterior-posterior axis of
the embryo. There are four trunk gap genes: hunchback
(Hb), Krüppel (Kr), giant (Gt) and knirps (Kni). It is
known from extensive genetic studies that their activities
are due to regulation amongst themselves, as well as
input from at least three other genes: bicoid (Bcd), cau-
dal (Cad) and tailless (Tll). While there remain some
disagreements about details of these regulatory relation-
ships, a broad consensus network model is presented in
Figure 1A. All regulatory interactions between the trunk
gap genes are repressive, while the factors Bcd and Cad
activate different sets of genes. Tll activates Hb but
represses the other trunk gap genes.
Reinitz and colleagues have made detailed measure-

ments of the protein expression of these seven genes
during development of the embryo [31] by confocal
imaging of fluorescent antibody-labelled preparations.
We use a data set that includes measurements at 8 dif-
ferent times spanning approximately one hour of actual
time, and covering the trunk region of the embryo at a
resolution of 1% of embryo length. This includes
7 genes × 8 times × 58 space points = 3248 total expres-
sion measurements. The data for the Hb gene are
shown in Figure 1B.
A synthetic gene network in yeast
Cantone et al.[29] reported on the construction and
mRNA expression measurement of a synthetic gene net-
work created in yeast called IRMA (for in vivo bench-
marking of reverse-engineering and modeling
approaches). The network was constructed from five
genes: SWI5, CBF1, GAL4, GAL80 and ASH1. Each
gene was given a known and well-characterized promo-
ter responsive to one or more of the other genes in the
network, as shown in Figure 1C. In their paper, Cantone
et al. describe GAL80 as repressing GAL4, but this is
via their natural protein interaction properties. At the
mRNA level, GAL80 does not affect GAL4, and so the
effect of GAL80 is seen only at the target of GAL4 pro-
tein, which is the promoter of SWI5. Hence, our canoni-
cal model has GAL80 repressing SWI5. The endogenous
transcription factors were deleted from the organism, to
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limit the impact of external factors. The dependence of
GAL80/GAL4 binding on galactose is used as an on/off
switch for the network. In the presence of galactose, the
SWI5 gene is activated to subsequently trigger expres-
sion in the rest of the network. We use five different
time-series that they generated by switching the network
on using galactose and measuring the mRNA levels
every 20 min over a five hour interval by quantitative
real-time RT-PCR (see Figure 1D).

Test problems generated by GeneNetWeaver
GeneNetWeaver [30] can be used to generate in silico
datasets of the expression dynamics of gene networks,
and has been the basis for part of the DREAM network
reverse engineering challenge for several years running
[32]. The tool allows one to generate data from esti-
mated yeast or E. coli networks, or subnetworks
thereof. The program generates a kinetic model of
gene expression, and can output time-series or steady

Figure 1 Networks and data used in our computational experiments. (A) A consensus model of regulatory interactions in the gap gene system
of Drosophila. (B) Protein expression data for the Hb gene, as a function of anterior-posterior position along the embryo’s trunk (measured in %
embryo length) and time (minutes, starting at cleavage cycle 13). (C) Regulatory interactions in the synthetic IRMA network. (D) Five different
expression trajectories for GAL4 mRNA in the IRMA network. (E) An example in silico network constructed by the GeneNetWeaver program. (F)
Sample expression time series for gene G1 in that network.
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state data for wild-type and genetic perturbation con-
ditions. We used GeneNetWeaver to generate four in
silico networks, two of which are sparsely connected
like the IRMA network, which we denote S1 and S2
(see Figure 1E for an example), and two of which are
more densely connected like the gap gene network,
which we denote D1 and D2. We generated 20 wild-
type expression time series for each network as the
basis for model estimation (see Figure 1F).

Unconstrained model-fitting by FDA
We smoothed and transformed the time series into con-
tinuous functions of time using the cubic spline func-
tions built into the Matlab programming language (see
Methods for details). For each of the data sets, this
results in a set of functions ŷi(t), where the superscript i
indicates it is the ith such time series–one of 58 for the
Drosophila data, corresponding to each space point, one
of 5 for the Cantone data, and one of 20 for each Gene-
Net Weaver network. With the cubic spline representa-
tion, the temporal derivatives can be directly obtained
from the spline coefficients, so that ̂y i t( ) is readily
computed.
We modeled the gene expression dynamics by differ-

ential equations of the form

x f x h xg g gg g g

g

N

g g= +
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−′ ′
′=
∑R T

1

λ (5)

where Rg is the maximum rate of production of gene

g’s protein or mRNA, f z
z

z
( ) =

+
+

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

1
2 1

1
2

is a sig-

moidal function ranging between zero and one, Tgg′ is
the regulatory weight describing the effect of gene g′ on
the production of g’s protein or mRNA, hg is a bias
term, and lg is the decay rate.
For each gene g, fitting such an equation to the

smoothed data by the FDA approach amounts to finding
parameters that minimize the error function
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where i ranges over the trajectories in the data set and
t is integrated over the duration of the trajectories. This
optimization problem was sufficiently tractable to be
solved by the simplex-based search procedure fmincon
in Matlab, using repeated runs from different initial
conditions, as described in the Methods section. This
error function contains no regularization to encourage
“simple” explanations of the data and/or to prevent

overfitting. So, we also tried adding an L1 penalty to the
error function

E E c Tgg

g

1 0= + ′
′

∑ , (7)

where E0 is the original error function of Equation 6
and c is a parameter determining the relative import of
fitting the data accurately and using “small” weights.
The L1 penalty is often used in an attempt to eliminate
excess parameters in regression problems. If one is only
concerned about prediction accuracy, and if one has sta-
tistically independent data points, then cross-validation
can be used to choose a value of c that appropriately
trades off model complexity and model accuracy on the
training data. In our case, the data come from time ser-
ies, so derivative estimates at different times are cer-
tainly not statistically independent. Nor is our primary
concern the accuracy of the regression model. This is
only a conduit to determining regulatory architecture.
Thus, we experimented with a range of c values, as
described in more detail below. Regulatory weights that
remain nonzero for large values of c are the most
important for explaining derivatives, and we give these
the highest “confidence”.
For the IRMA and GeneNetWeaver data sets, we fit

models without autoregulatory links, as these systems
do not include autoregulation. For the gap gene system,
however, where autoregulation is believed to occur, we
allowed autoregulatory links in the model. Three of the
Drosophila genes and some of the genes in the GeneNet
Weaver networks do not have any regulatory inputs–at
least, not among the genes considered. We did not
model these genes, restricting our modeling efforts (and
accuracy assessments) to those genes that are regulated.
Results on the Drosophila data
Figure 2A shows the network architecture estimated by
minimizing the E0 error. Only three true links are
missed: repression of Kr and Gt by Hb, the latter of
which is a comparatively weak effect [8], and activation
of Hb by Tll (for which the weight was just below
threshold). The model posits five false positive links that
are not part of the gold standard (Figure 1A). Figure 2B
gives some statistics summarizing the accuracy of the
reconstructed regulatory architecture, and comparing to
two previous fits obtained using different methods on
the same data. Jaeger et al.[7,8] used a long-running
simulated annealing (SA) method to optimize a trajec-
tory-based notion of goodness-of-fit, whereas Perkins et
al.[33] used a hybrid approach that combined derivative
estimation and fitting, similar to functional data analysis,
with trajectory-based optimization. Both previous
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Figure 2 Results of unregularized and L1-regularized fitting without constraint on regulatory architecture. (A) The estimated regulatory
architecture for the gap gene network. Dashed black links are false positives that are not in the gold standard model. Dashed red are missing
links that are in the gold standard. (B) Statistics regarding the accuracy of regulatory architecture, as estimated by the simulated annealing (SA)
approach of Jaeger et al.[7,8], the hybrid optimization approach of Perkins et al.[33], and the functional data analysis (FDA) approach tested in
this work. CF is the fraction of relationships correctly identified as –, 0 or +; PPV is positive predictive value; Sens is sensitivity; and CSF is the
fraction of nonzero links in both the gold standard and the estimated architecture that have the same sign (+ or –). (C) The effects of L1-
regularization on total correct links (Corr), true positives (TP; interpreted as links shared by the gold standard and the model, regardless of sign)
and true negatives (TN; interpreted as links absent in both the gold standard and the model). (D-F) The same information for the fits to the
IRMA data. In panel E, TSNI refers to the best-performing approach as tested by Cantone et al.[29]. (G-J) Estimated architectures for the GeneNet
Weaver networks S1, S2, D1 and D2 respectively. (K) Summary statistics for the accuracy of FDA reconstruction of the regulatory archictectures.
(L) The L1-regularized performance of the FDA approach on the sparse networks S1 (solid lines) and S2 (dashed lines).
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approaches were considered to generate highly accurate
fits, both in terms of squared error and estimated regu-
latory architecture. Panel B shows that all three
approaches get very similar numbers of links correct,
where correctness is interpreted as matching the gold
standard in terms of negative interaction, no interaction,
or positive interaction. All three approaches also have
very similar positive predictive value and sensitivity. All
methods performed perfectly on what we call the cor-
rect sign fraction (CSF), which is the fraction of nonzero
links in both the gold standard and estimated models
that have matching sign. In other words, none of the
links in the models produced by these methods are acti-
vating when the real relationship is repressing, or vice
versa. Thus, all three fitting approaches appear to have
very similar success in extracting regulatory relation-
ships from the data. The FDA approach achieves this
performance with drastically improved computational
efficiency compared to either of the other approaches.
The simulated annealing approach used by Jaeger et al.
took on the order of months of computation time for
their complete study, while the approach of Perkins et
al. took on the order of tens of hours. The FDA fitting
takes tens of minutes. Although general improvements
in computing speed may be the cause of some of this
improvement, the FDA approach is clearly faster than
previous approaches to nonlinear model fitting. Pilot
tests suggest that it could readily be sped up by another
factor of 10 or so simply by using fewer repeats of the
search procedure (see Methods) with little loss in
quality.
The gap gene network is densely connected, with 22

of the 28 possible links present in the gold standard
model. Adding regularization to the optimization criter-
ion risks eliminating true positives. Nevertheless, we
tried optimizing the L1-regularized error function E1 for
regularization constant c ranging from 0 to 10 in incre-
ments of 0.1. The results are summarized in Figure 2C.
As one would hope, increasing c increases the number
of true negatives from 1 (at c = 0) to 4 (at c = 10). At
the same time, however, the number of true positives,
and total correct links, drops drastically. The positive
predictive value does not improve with c, as both true
positives as well as false positives are dropped from the
model (data not shown).
Results on the IRMA data
Figure 2D shows the network obtained by optimization of
the E0 criterion for the IRMA data. The IRMA network is
sparse compared to the gap gene network, having only
seven links among the five genes. The optimization cor-
rectly identifies six of those links, including their correct
sign. It misses only the activation of GAL4 by CBF1, per-
haps because the model also has the true regulators of
CBF1 connected to GAL4-a case of mistaking direct

versus indirect regulation. Without regularization, how-
ever, there are many false positive links in the estimated
regulatory architecture. Figure 2E compares the perfor-
mance of the E0 optimization against the TSNI algo-
rithm, which fits a linear differential equation model that
is limited to at most two inputs per gene. This algorithm
performed the best of several alternatives tested by Can-
tone et al.[29]. The TSNI algorithm detected four of the
seven true links in the network, attributing the correct
sign to three of those links. Its overall fraction of correct
links is much higher than that for the FDA fit, perhaps in
part because the limitation to two inputs per gene
ensures many true negatives–links absent in both the
gold standard and the estimated model. (In the next sec-
tion, we will see how FDA performs when limited to two
inputs per gene.) Because of the large number of false
positives in the FDA fit, it also has significantly lower
PPV than TSNI. However, the FDA fit enjoys greater sen-
sitivity and correct sign fraction.
Because the unregularized fit includes a large number

of false positives, we hoped that adding the L1-regulari-
zation would improve the accuracy of the estimated net-
work architecture. Figure 2F shows the results for
regularization constant c ranging between 0 and 10.
Regularization was partly successful. For c ranging from
roughly 3 to 5, one of the true positives was lost, but
five false positives were also trimmed away, approxi-
mately halving their number. This still left seven false
positives, however, which could only be eliminated by
losing most of the true positives. From both our experi-
ence and the results of Cantone et al.[29], the IRMA
dataset appears much more challenging than the gap
gene data, perhaps due to the much smaller number of
time series (only 5, compared to 58) or to noise in the
data (the gap gene data incorporates significant smooth-
ing and averaging across embryos, to eliminate observa-
tion noise and other sources of variability).
Results on the GeneNetWeaver data
Broadly speaking, our results on the two sparse Gene-
NetWeaver networks mimicked our results on IRMA,
and our results on the two dense GeneNetWeaver net-
works mimicked our results on the gap gene network.
Figure 2G-J show the estimated network structures. For
the sparse networks all (S2) or nearly all (S1) true links
are detected and all are correctly signed. However, there
are significant numbers of false positives–albeit less than
in the IRMA fit. Conversely, the estimates for the dense
networks include no (D1) or few (D2) false positives,
but miss out identifying some true links. One particu-
larly interesting case is gene G1 in network D1. This
gene has five regulators, all of which act positively, and
only two of which are identified by the FDA fit. The
other regulators are difficult to detect because the gene
is nearly always being activated, and so intuitively it
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appears almost as if it is unregulated–it is rare to
observe the gene in a state that reveals anything about
its regulation. The basic trends in true and false posi-
tives are reflected in the summary statistics shown in
Figure 2K. PPV is moderate for the sparse network and
high for the dense networks, while sensitivity is the
opposite. One difference in comparision with the gap
gene and IRMA results is that FDA obtains higher frac-
tions of correctly signed links (activation, repression or
no effect) on the sparse networks than on the dense net-
works. In all cases performance is significantly better
than chance, which would only be right 1/3 of the time.
For the two sparse networks, where false positives

were a concern, we evaluated the L1-regularization
approach to improving accuracy. The results are shown
in Figure 2L. For both networks, regularization was able
to eliminate the majority of the false positives, with little
loss in true positives. For S1, the number of correct
links (Corr) reached as high as 33 out of 36 links for
regularization constant c around 4 or 5. For S2, the
number of correct links was as high as 24 out of 30.

Explicit enumeration of possible network structures
As mentioned above, the FDA approach to model fitting
is computationally efficient. Part of its speed is due sim-
ply to the greater ease of evaluating the derivative-based
error (Eq. 3) as opposed to the more traditional trajec-
tory-based error (Eq. 2). We tested this in Matlab, com-
paring our implementation of the derivative-based error
against a trajectory-based error function that uses the
built-in ode45 function to solve the dynamics equation.
Over a range of testing conditions, we found that the
derivative-based error could be computed 300 ±40 times
faster than trajectory-based error.
One of the advantages of the speed with which the

FDA fits can be done is that we do not need to limit
ourselves to unconstrained network architectures. We
can explicitly test alternative architectures and, in fact,
we are able to enumerate them all if the number of
genes in the network is not too large. For the gap gene
network, where all seven of the measured genes can act
as input to any of the gap genes, there are 27 = 128 pos-
sible input combinations for any gene. Because each
gene’s model is fit independently, we can test all possi-
ble regulatory architectures with a total of 4 × 27 = 512
fits. This begins to be a significant computation, but on
a 32-core computing cluster, it amounted to an over-
night job. By enumerating all possible inputs for every
gene, we are able to explicitly assess which regulators or
combinations of regulators are most important for
explaining each gene’s observed expression. Enumera-
tion also gives us another way to regularize the fit, by
limiting the number of inputs per gene.

We performed enumerations for all six networks. The
results are summarized in Figure 3. Panels A through C
show the scores of all possible input combinations for
several example genes. Panel A, for instance, shows the
scores of the different input combinations in explaining
the Hb gene in the gap gene network. At the top of
each column of points, we list the regulator whose addi-
tion constitutes the lowest-error input set for the given
number of regulatory inputs. For example, the single
best factor for explaining Hb’s dynamics is Hb itself–
which is correct, as Hb autoactivation is well established
[8]. If two regulators are allowed, then the best combi-
nation is Hb and Tll, that latter of which helps to acti-
vate the posterior Hb expression domain. With three
regulators, repression from Kr is added to the mix, by
which point most of the variability in the data that can
be explained by the model is explained. The fourth reg-
ulator to be added is Cad, which is incorrect, but barely
improves quality of fit. If five regulators are allowed,
then the optimal combination does not include Cad, but
rather two other factors, Bcd and Gt. We found that in
our gap gene fits, the single best regulator was always
the gene itself. In some cases, this may be right. But in
other cases is it likely wrong, and arises from confusing
correlation with causation: expression of a gene requires
regulatory activation, thus expression indicates activa-
tion, even though it does not cause it. This phenomenon
did not occur in the IRMA and GeneNetWeaver fits, as
autoregulation was disallowed in those cases. Figure 3B
shows the scores of different input combinations for the
SWI5 gene in the IRMA network. The first two regula-
tors identified, GAL4 and GAL80 are the true and only
regulators. However, the plot shows that adding regula-
tion by CBF1 to these two significantly reduces the
error even further, even though it is not a true regulator.
This kind of error profile was more characteristic of the
IRMA genes (data not shown). Figure 3C shows the
errors of input combinations for the G1 gene in the S1
network, which was typical for the GeneNetWeaver net-
works. Usually, the first one or two regulators explained
nearly all of the explicable variability in the data–in this
case, with one true positive link and one false positive
link.
Figure 3D-I give summary statistics for the accuracy of

the regulatory networks when limited to the best single-
input, two-input, etc. models of each gene. By necessity,
the fraction of correct links (CF) is low for the dense
networks when only one or a few inputs are allowed,
but increases as more inputs are allowed. The reverse
happened for the IRMA network, where limiting to one
or two inputs gave much better CF and PPV scores,
though still not quite as high as achieved by TSNI.
Interestingly, for the sparse networks S1 and S2, CF did
not vary significantly with the number of regulators
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allowed. When extra regulators were allowed, the opti-
mization could often drive superfluous weights to near
zero, so that they fell below our significance threshold
and were counted as zero links.
Figure 4 shows another way of displaying the relative

errors of different combinations of regulatory inputs. In
this case, the plot is for Hb, and we consider only com-
binations without Hb autoregulation. The chart shows
that, without Hb as an option, the single best regulator
for Hb is Bcd (the red circle), which is known to be the
primary activator of Hb’s primary expression domain
towards the anterior of the trunk. The second best sin-
gle regulator is Tll, which, as mentioned above, is
responsible for Hb’s secondary, posterior expression
domain. The best two-regulator combination is Bcd
with Tll, though Bcd with Gt is nearly as good, and so
on. In fact, Bcd is an important regulator nearly

regardless of what other regulators are present in the
model, as witnessed by the fact that all the circles lack-
ing Bcd (red) are much smaller than the circles with a
Bcd component. While it is beyond the scope of this
paper to go through detailed analyses of different genes,
we believe that this sort of combinatorial analysis and
display is extremely useful in assessing the relative
importance of different candidate regulatory inputs and
their combinations. Thus, we conclude that the speed
and accuracy of model fitting by FDA, and the subse-
quent analyses it enables, strongly recommend it as a
tool for genetic network inference.

Conclusions
Our computational studies show that functional data
analysis is a powerful approach to estimating nonlinear
models of gene expression dynamics, and in particular,

Figure 3 Results of enumerating all possible regulatory architectures. (A) For Hb in the gap gene network, the E0 error of each possible input set
is plotted on the y-axis, with the size of the input set on the x-axis. (B) A similar plot for SWI5 in the IRMA network, and (C) for gene G1 in the
sparse network S1 generated by the GeneNetWeaver software. (D-I) Statistics on regulatory network accuracy using the best input combination
of each size (colors dark blue through dark red indicate zero inputs through all possible inputs). For definitions of CF, PPV, Sens and CSF, see
text or Figure 2 caption.
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to estimating the regulatory relationships between genes.
The accuracy of FDA was comparable to state of the art
approaches on both the gap gene [7,8] and IRMA [29]
data sets, which have previously been analyzed by a
number of methods, and it performed well on synthetic
data sets generated by the GeneNetWeaver program
[30]. The FDA approach is computationally efficient
because it transforms the estimation problem into a
decomposable multiple regression problem. This effi-
ciency enables in-depth analysis of the influences of dif-
ferent factors, as well as explicit exploration of all
possible regulatory input combinations.
As with any estimation problem, overfitting-avoidance

is an important consideration. We explored L1-regulari-
zation as well as explicitly limiting the number of regu-
lators allowed for each gene.
L1-regularization was partly successful on the sparse

IRMA network, and much more successful on the
sparse GeneNetWeaver networks. L1-regularization
requires a constant, c, which determines the relative
importance of accuracy of fit to the data versus model
complexity (in the sense of summed absolute values of
the regulatory weights). Testing a range of values for c
allows us to identify links that are most important for

accounting for the data. Large c means regulatory
weights are highly penalized. Weights that remain signif-
icantly different from zero at large c are the best predic-
tors, and thus represent the links in which we have the
most confidence. Although there is no standard proce-
dure for choosing a “best” value of c for this sort of data
and fitting problem, empirically a value around c = 4 or
c = 5 resulted in the highest accuracy of network recon-
struction. That a common value worked for all networks
is, no doubt, partly due to the similar scales of the
expression data (after normalization) and the similar
numbers of candidate regulators per gene. Still, it is sur-
prising that common values of c emerged despite quite
different numbers of time series for each network and
different densities of regulatory links in the networks.
Explicitly evaluating all possible combinations of regu-

lators allows one to see which combinations are the best
predictors. In particular, this allows one to identify the
best 1-input model of each gene, the best 2-input model,
and so on. So, it provides another means for determining
which candidate regulators are most important. At the
same time, it reveals whether there are alternative solu-
tions of nearly equal quality, and generally gives a more
in depth view of the contributions of different regulators,

Figure 4 A visual depiction of the scores of different input combinations for the Hb gene in the gap gene network, omitting autoregulation.
The graph structure depicts the partial ordering of all possible input combinations, with the no-inputs case at the bottom and all possible
inputs at the top. The colors within the circles indicate the genes participating in the combination, as laid out in the key at the upper right. The
size of each circle is inversely related to the error obtained by using that combination, so that small circles indicate high error and large circles
indicate the smallest error.
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especially when used in conjunction with visualizations
methods, as shown in the Results section.
The approach that we have described for using FDA to

estimate nonlinear differential equation models of gene
expression dynamics can be extended in various ways.
One important extension would be to accommodate
genetic perturbation data, such as knock-outs, knock-
downs or overexpression conditions. In the case of a
complete knock-out, this is readily handled by hard-wir-
ing expression of the knocked-out gene to zero in the
model and otherwise fitting the data as usual. However,
for partial knockdowns or overexpressions of unknown
or time-varying magnitudes, more sophisticated proce-
dures are needed. Another relevant extension would be
to allow for delays in the differential equations. Cantone
et al., for example, suggest that delays may be relevant to
modeling their system [29]. For known delays, the FDA
framework extends trivially to accommodate delay differ-
ential equations, but when delays are unknown, more ela-
borate extensions are needed [21]. Finally, another
natural generalization to explore would be to Bayesian
parameter estimation frameworks. Because FDA reduces
the parameter estimation problem to one of nonlinear
regression, standard methods for approximate computa-
tion of posteriors over parameters in nonlinear regression
could be applied [34]. Alternatively, if one is interested in
Markov-chain Monte Carlo [35] or reversible-jump Mar-
kov-chain Monte Carlo [36] approaches to Bayesian para-
meter and/or network structure estimation for genetic
networks, then the efficiency of evaluating the data likeli-
hood under an FDA model, and the decomposition of
the problem into separate genes, should be of great
advantage.

Methods
Data smoothing
To obtain the temporal derivatives of the time series
data, it is necessary to obtain a functional representation
of the data. We constructed continuous-time series by
interpolating the data with cubic splines, as implemen-
ted in the Matlab Spline Toolbox. This toolbox also
includes a function to compute the derivatives from the
spline. Cubic splines are not wholly defined by the data,
but also depend on assumptions at or near the bound-
aries–in our case, the start of the time series and the
end of the time series. The default approach taken by
the Matlab’s spline function is to use the “not-a-knot”
assumption, which states that the third derivative of the
spline function should be continuous at the second knot
point and the next-to-last knot point [37]. Matlab offers
other approaches for completing cubic splines. In pilot
studies, we tried the default (not-a-knot) approach, nat-
ural cubic splines (which have second derivatives equal
to zero at the endpoints; Matlab calls this the

“variational” approach), and Matlab’s “complete”
approach (which sets first derivatives at the endpoints
based on an estimate from the function values at the
nearest four knots). We found that these different meth-
ods for completing the cubic splines had only small
effects on the interpolated curves and negligible effects
on parameter estimates for our models. So, throughout
this paper we used the default not-a-knot approach.
For the IRMA and GeneNetWeaver data sets, we also

experimented with smoothing the data first, using the
smooth function of Matlab, but this did not affect
results significantly. For the Drosophila data, we
smoothed/simplified the data by eliminating certain
time and space points before interpolating with cubic
splines. The space and time points that we eliminated
were selected by an evolutionary strategy that sought to
minimize a criterion that combined the squared error
between the original data and the cubic-splined interpo-
lation at the same point and a penalty for small fluctua-
tions in the derivative.

Fitting details
Minimization of the E0 or E1 criteria was done by the
Matlab function fmincon. For each optimization, we did
1000 runs from different randomized starting condi-
tions, initializing parameters uniformly within their
allowed intervals. For Drosophila the expression data
ranged between 0 and 255, regulatory weights were con-
strained to [–0.1, 0.1], production rates to [0, 25], and
decay rates to [0,10]. The bias term was fixed at –3.5,
following previous work [8]. For the IRMA and Gene-
NetWeaver networks, the expression data was multiplied
by 100, so that it fell in the range [0, 100]. Weights were
constrained to [–0.2,0.2], production terms to [0, 25],
decay terms to [0,10] and bias terms to [–25, 25]. Of
the 1000 runs, the one resulting in the lowest error was
reported as the solution. (Typically many runs found
solutions with nearly the same weights and nearly the
same error. We never observed two clearly distinct solu-
tions of equal or near equal quality.) Weights less than
0.006 in magnitude were considered zero, and were
otherwise considered positive or negative, depending on
their sign. For the enumerations, we used the same fit-
ting procedure except that links that were not part of
the optimization were contrained to be zero.

GeneNetWeaver
For the GeneNetWeaver [30] experiments, we used the
program 30 times to generate networks of seven genes.
From these, we chose the two sparse networks and the
two dense networks to generate data. The data were
produced according to the rules of the DREAM5 con-
test, except without noise. Numerous papers have
addressed the removal of noise from this data as part of
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inference (e.g., [32,38]). The program generates time
series by applying a perturbation from the steady state
for a period of time T, and then removing the perturba-
tion and letting the network relax back towards the
steady state for an equal period of time. We used the
second half of the time series, as it describes the wild-
type (unperturbed) behavior of the network.

List of abbreviations used
ODE = Ordinary differential equation
FDA = Functional data analysis
CSF = Correct sign fraction
PPV = Positive predictive value
IRMA = A synthetic gene network created in yeast, and reported by
Cantone et al.[29]
TSNI = A fitting algorithm identified as the best-performing among several
alternatives investigated by Cantone et al.[29] on the IRMA data
DREAM = An annual contest on reverse engineering
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