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Abstract

Background: Alfalfa, [Medicago sativa (L) satival, a widely-grown perennial forage has potential for development as
a cellulosic ethanol feedstock. However, the genomics of alfalfa, a non-model species, is still in its infancy. The
recent advent of RNA-Seq, a massively parallel sequencing method for transcriptome analysis, provides an
opportunity to expand the identification of alfalfa genes and polymorphisms, and conduct in-depth transcript
profiling.

Results: Cell walls in stems of alfalfa genotype 708 have higher cellulose and lower lignin concentrations
compared to cell walls in stems of genotype 773. Using the lllumina GA-Il platform, a total of 198,861,304
expression sequence tags (ESTs, 76 bp in length) were generated from cDNA libraries derived from elongating
stem (ES) and post-elongation stem (PES) internodes of 708 and 773. In addition, 341,984 ESTs were generated
from ES and PES internodes of genotype 773 using the GS FLX Titanium platform. The first alfalfa (Medicago sativa)
gene index (MSGI 1.0) was assembled using the Sanger ESTs available from GenBank, the GS FLX Titanium EST
sequences, and the de novo assembled lllumina sequences. MSGI 1.0 contains 124,025 unique sequences including
22,729 tentative consensus sequences (TCs), 22,315 singletons and 78,981 pseudo-singletons. We identified a total
of 1,294 simple sequence repeats (SSR) among the sequences in MSGI 1.0. In addition, a total of 10,826 single
nucleotide polymorphisms (SNPs) were predicted between the two genotypes. Out of 55 SNPs randomly selected
for experimental validation, 47 (85%) were polymorphic between the two genotypes. We also identified numerous
allelic variations within each genotype. Digital gene expression analysis identified numerous candidate genes that
may play a role in stem development as well as candidate genes that may contribute to the differences in cell wall
composition in stems of the two genotypes.

Conclusions: Our results demonstrate that RNA-Seq can be successfully used for gene identification,
polymorphism detection and transcript profiling in alfalfa, a non-model, allogamous, autotetraploid species. The
alfalfa gene index assembled in this study, and the SNPs, SSRs and candidate genes identified can be used to
improve alfalfa as a forage crop and cellulosic feedstock.
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Background

The advent of next generation high-throughput sequen-
cing has revolutionized the analysis of genomes and
transcriptomes [1-5]. When applied to the transcrip-
tome, this methodology is referred to as RNA-Seq (RNA
sequencing). RNA-Seq has been used for gene annota-
tion, expression analysis and SNP discovery [6,7]. This
methodology has also proven useful for discovery of
novel transcripts (coding and non-coding) and identifi-
cation of alternative splice variants [5,8]. It is expected
that RNA-Seq methodologies will supersede microarrays
for transcript profiling because of higher sensitivity,
base-pair resolution and the larger range of expression
values that can be detected [3,5,9]. Furthermore, in con-
trast to microarrays, RNA-Seq does not require prior
knowledge of gene sequences. However, RNA-Seq pre-
sents bioinformatic challenges because of the required
assembly of millions of short sequence reads that are
generated by the methodology.

RNA-Seq has been successfully used for annotation,
transcript profiling and/or SNP discovery in a number of
plant species. For model plant species with sequenced
genomes, sequence reads can be mapped to the reference
genome. The model species where RNA-Seq analysis has
been applied include Arabidopsis [10,11], soybean
[12,13], rice [14], maize [15] and Medicago truncatula
[16]. There are also examples of the application of RNA-
Seq to non-model plant species that lack a reference gen-
ome. In the absence of a reference genome, de novo
assembly of sequence reads into contigs is required.
RNA-Seq has been used for transcript profiling in Euca-
lyptus grandis [17], grape (Vitis vinifera L.) [18], Califor-
nia poppy (Eschschlozia califonica) [11], avocado (Persea
americana) [11], Pachycladon enysii [19] and Artemisia
annua [20). In Eucalyptus grandis and rape (Brassica
napus), RNA-Seq was used for SNP discovery [17,21].

Alfalfa is the most widely cultivated forage legume in
the world and the fourth most widely grown crop in the
US [22,23]. In addition to its value as a livestock feed,
alfalfa also has potential as a cellulosic ethanol feedstock
[24,25]. Alfalfa is an allogamous autotetraploid with
complex polysomic inheritance [26-28]. Slow progress
has been made in improving the agronomic traits of this
species using traditional breeding approaches based on
phenotypic selection. For the most part, genomic
approaches for crop improvement (e.g., molecular
breeding) have not been applied to this legume because
of limited genomic resources. As of February 2010,
there were 12,371 alfalfa ESTs available in the public
database. A few SSRs have been detected but SNPs have
not yet been identified [28-30]. Recently, we reported on
the results of transcript profiling and single feature poly-
morphism (SFP) detection in alfalfa using the Medicago
GeneChip as a cross-species platform [25,31]. The
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Medicago GeneChip contains probe sets designed for
the model plant, Medicago truncatula, a diploid relative
of alfalfa. Using a method based on probe affinity differ-
ences and affinity shape power, we identified over
10,000s SFPs in the stem internodes of alfalfa genotypes
252 and 1283 that differed in cellulose and lignin con-
centrations in cell walls [31]. In a subsequent study
using the Medicago GeneChip for transcript profiling of
alfalfa genotypes 252 and 1283, interspecies variable
regions and SFPs were masked prior to data analysis
resulting in a 2-fold increase in the number of differen-
tially expressed genes detected in stem internodes of the
two genotypes [25]. Although the research of Yang et al.
[25,31] significantly advanced alfalfa genomics, the use
of a cross-species platform for microarray analysis limits
the sensitivity and specificity of transcriptome analysis
and polymorphism detection.

The stem tissue of alfalfa is important in determining
the value of this forage as a livestock feed and cellulosic
feedstock. Increasing the cellulose and decreasing the
lignin content in cell walls in stems would improve
alfalfa for both uses. In this study, we applied RNA-Seq
to gene identification, polymorphism detection and tran-
script profiling of two alfalfa clonal lines (708, 773) that
differ in cell wall composition in stems. The results
were used to assemble the first gene atlas for alfalfa
(MSGI 1.0). Our research also provides the first report
of high-throughput SNP detection and digital gene
expression analysis in the alfalfa transcriptome.

Results and discussion

Cell wall composition of stems of genotypes 708 and 773
The alfalfa genotypes 708 and 773 used in this study were
selected for divergent cell wall composition in stems
under field conditions (see Methods for details). Cell wall
composition of greenhouse grown stems used for RNA
sampling in the current study is shown in Table 1. Cell
wall concentration in stems of the two clones did not dif-
fer. In contrast, cellulose content (defined as glucose) in
the stems of genotype 708 was 5.2% greater compared to
genotype 773 (p < 0.05) (Table 1). In addition, galactose
and mannose concentrations were 14.2% (p < 0.05) and
8.5% (p < 0.01) greater, respectively, in stems of genotype
708 compared to genotype 773 (Table 1). Klason lignin
concentration in the cell wall was 8.0% greater in stems
of 773 compared to stems of 708 (p < 0.05) (Table 1).
These genotypes consistently displayed differences in cell
wall cellulose and lignin content in stems when plants
were grown under different field environments (Figure 1)
and in the greenhouse (Table 1).

RNA-Seq using the Illlumina GA-Il platform
For RNA-Seq analysis, we developed a total of four
c¢DNA libraries derived from elongating stem (ES) and
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Table 1 Comparison of cell wall components in stems of
genotypes 708 and 773 on a cell wall basis

Component  Genotype 708 Genotype 773 SEM  p-value
———————— g kg cell wall

Klason lignin 162 175 2 p < 005

Glucose 443 421 2 p < 005
Xylose 137 149 3 NS
Arabinose 39 39 1 NS

Galactose 32 28 1 p < 005

Mannose 33.1 30.5 0.1 p < 0.01
Rhamnose 1.5 114 04 NS
Fucose 301 3.1 0.03 NS
Uronic acids 139 142 6 NS

Values are least square means based on an analysis of variance with three
biological replicates for each clone arranged in a randomized complete block
design (see Methods for details). SEM = Standard error of mean, NS = Non-
significant (p > 0.05).

post-elongation stem (PES) internodes of alfalfa genotypes
708 and 773 (see Methods for details). In alfalfa stems,
genes associated with primary cell wall development are
preferentially expressed in ES internodes while genes asso-
ciated with secondary xylem development are enriched in
PES internodes [25]. For sequencing by synthesis using the
[lumina GA-II platform, cDNA libraries 708ES, 708PES
and 773ES were run on two lanes per library while the
773PES library was run on one lane. A total of
234,908,899 EST reads were generated by a single run of
76 cycles. After filtering low quality reads, a total of
198,861,304 reads (76-bp in size) were selected for further
analysis (see Methods for details). The Illumina reads
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Figure 1 Regression analyses of cellulose and Klason lignin
concentrations in stems of two alfalfa genotypes. The stems of
genotype 708 were consistently higher in cellulose and lower in
Klason lignin compared to stems of genotype 773 across twelve
environmental indexes (field environments). The high r* values for
all regression lines suggest that genotypic differences in stem
cellulose and Klason lignin concentrations were environmentally
stable.
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generated in this study are available at the NCBI SRA
browser (accession number GSE26757; http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE26757.

de novo assembly of short RNA-Seq reads without a
known reference is a challenging task especially for
alfalfa, an allogamous autotetraploid with complex poly-
somic inheritance. In this study, we used the Velvet algo-
rithm [32] for de novo assembly of the 198,861,304
[llumina reads (76 bp) into a total of 132,153 unique
sequences with an average length of 284 bp (Additional
file 1). The Velvet algorithm has also been used success-
fully for de novo transcriptome assembly in previous stu-
dies [33,34]. The Velvet algorithm was originally
developed for de novo assembly of genome sequences
where the coverage is expected to be homogeneous
throughout the genome. However, the coverage of tran-
scripts is highly heterogeneous due to difference in gene
expression. Previous studies showed that de novo assem-
bly using the Velvet program with longer k-mers results
in a more contiguous transcript assembly but lower tran-
script diversity compared to shorter k-mers [32,33].
Although several recent studies introduced new algo-
rithms and methodologies developed for de novo tran-
scriptome assembly [35-38], a consensus standard
protocol has not yet emerged for de novo transcriptome
assembly. In this study, we optimized our Velvet de novo
transcriptome assembly to favor transcript contiguity
with high specificity as opposed to increased transcript
diversity (see Methods for details). To complement the
limitation of the high k-mer that we selected for the Vel-
vet assembly in this study (lower diversity and probably
biased toward highly expressed genes), we generated
additional ESTs using the GS FLX Titanium platform.

RNA-Seq using the GS FLX Titanium platform

We generated a total of 341,984 additional ESTs (average
length 243 bp, minimum length 40 bp, maximum length
792 bp) using the GS FLX Titanium platform http://
www.454.com. The additional EST sequences were gen-
erated from the cDNA libraries derived from ES (124,533
ESTs, average length 230 bp) and PES (217,451 ESTs,
average length 256 bp) internodes of the genotype 773.
The additional ESTs obtained using the GS FLX Tita-
nium platform increased the diversity of transcripts dis-
covered and hence provided broader coverage of the
alfalfa transcriptome than would have been achieved
based on the de novo assembly of the Illumina reads
alone. The additional ESTs are also available at the NCBI
SRA browser (accession number GSE26757; http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE26757.

Alfalfa Gene Index 1.0 (MSGI 1.0)
We used the Gene Index Assembly protocol [39,40]
for reference transcriptome assembly in alfalfa. This
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protocol has been used for over a decade to build uni-
gene assemblies for numerous species of animals, plants
and microorganisms http://compbio.dfci.harvard.edu/tgi/
plant.html. However, no gene index is currently avail-
able for alfalfa. In this study, the first alfalfa (Medicago
sativa) gene index (MSGI 1.0) was built by combining
the de novo assembled Illumina reads using the Velvet
program (132,153 sequences), the 341,984 ESTs
obtained using the GS FLX Titanium platform, and
12,371 Sanger ESTs for alfalfa available in the public
database http://www.ncbi.nlm.nih.gov following the
Gene Index Assembly protocol previously described
[39,40].

MSGI 1.0 contains a total of 124,025 unique
sequences including 22,729 tentative consensus
sequences (TCs), 22,315 singletons and 78,981 pseudo-
singletons (Additional file 2). Pseudo-singletons refer to
the de novo assembled Illumina sequences that were not
assembled into contigs during the Gene Index Assembly
process. The average length of the unique sequences in
MSGI 1.0 is 384 bp. Unique sequence lengths ranged
from 100 to 6,956 bp with more than 10,000 sequences
larger than 800 bp. The total base count of the
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sequences in MSGI 1.0 is 47,628,953 bp. The newly
built alfalfa gene index increases the number of alfalfa
sequences publicly available by about 10-fold.

Gene annotation and functional classification

We assigned putative functions for the unique
sequences in MSGI 1.0 by conducting BlastX searches
against the non-redundant (NR) protein database (e-
value cutoff of 1e-10) (Additional file 3). Putative func-
tions could be assigned for about 83% of the sequences.
We also assigned gene ontology (GO) functional classes
and MapMan functional classifications [41] to the
unique sequences in MSGI 1.0 (Additional file 3) (see
Methods for details). To examine whether bias occurs
among the functional classes represented in MSGI 1.0,
we compared the percentages of each GO functional
class and pathway in MSGI 1.0 with the percentages
found in the M. (Medicago) truncatula Gene Index
(MTGI 9.0), the M. truncatula coding sequences (Mt3.0
cds) and the Arabidopsis coding sequences (At cds)
(Figure 2). Although most of the sequences in MSGI 1.0
were derived from stem tissues, similar levels of repre-
sentation of most functional classes were found in
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Figure 2 Comparison of percentage distribution of gene ontology and pathway classifications using four reference databases. The
percentage distributions of gene ontology (GO) classes and pathways are shown for the following reference databases: (1) the Medicago sativa
Gene Index (MSGI 1.0) assembled in this study, (2) the Medicago truncatula Gene Index (MTGI 9.0), (3) the M. truncatula coding sequences (Mt3.0
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MSGI 1.0 and the other databases (MTGI 9.0, Mt3.0
cds, and At cds). These results suggest that MSGI 1.0
can serve as a reference sequence database for genomic
analysis in alfalfa.

SSR detection

We detected simple sequence repeats (SSRs) among
sequences in MSGI 1.0 using the MISA program [42]
(see Methods for details). A total of 1,294 SSRs were
identified among 1,245 sequences which represents
about 1.7% of the total unique sequences in MSGI 1.0
(Additional file 4). The estimated frequency of SSRs
among the expressed sequences was one SSR per 37 kb.
SSR detection frequency is dependent on the SSR detec-
tion parameter [43]. The SSR frequency measured in
this study is significantly lower than that detected in
other species (one SSR per 11 kb) where the same SSR
detection parameter was used [40]. The significantly
reduced SSR detection frequency found in MSGI 1.0
sequences may be due to the reduced detection effi-
ciency of short length sequences (384 bp on average for
MSGI1.0). Alternatively, the SSR frequency among
expressed sequences may be lower in alfalfa compared
to other species. SSRs with mono-, di-, tri-, tetra-,
penta- and hexanucleotide repeats composed about
5.4%, 30.4%, 47.2%, 10.6%, 3.9% and 2.5% of the SSRs in
MSGI 1.0, respectively. Using the default parameter of
the Primer3 program [44], we designed SSR primers
spanning a total of 664 SSRs (Additional file 4).

SNP detection

To identify SNPs between alfalfa genotypes 708 and 773,
[lumina EST reads from ES and PES internode libraries
were combined for each genotype. The combined ES
and PES reads for each genotype were independently
aligned to the MSGI 1.0 sequences using the Maq pro-
gram [45]. From the alignment output of each genotype,
we summarized the depth (frequency) of each nucleotide
(A, G, C, or T) at each base position in each reference
sequence. Next, to reduce the identification of false
positive SNPs, we filtered potential SNPs using a strin-
gent nucleotide depth cutoff of 10 [e.g., at least 10 ade-
nines (A) in one genotype vs. at least 10 guanines (G) in
the other genotype] for each genotype (see Methods for
details). Using this protocol, we identified 10,826 SNPs
between genotypes 708 and 773 in 7,282 sequences in
MSGI 1.0 (Additional file 5). About 74% of these
sequences contained a single SNP while about 2.3% con-
tained 5 or more SNPs.

To validate the SNPs that were predicted using the
RNA-Seq data generated in this study, we randomly
selected 55 SNPs. Genomic DNAs purified from geno-
types 708 and 773 were genotyped by MALDI-TOF
mass spectrometry using the iPLEX Gold spectrometry
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system http://www.sequenom.com. Out of 55 SNPs
tested, 47 (85%) were polymorphic between the two
genotypes (Additional file 6). In addition to genotypes
708 and 773, we also genotyped 51 additional alfalfa (M.
sativa) genotypes selected from different populations of
M. sativa ssp. sativa or M. sativa ssp. falcata. The 47
validated SNPs between 708 and 773 also showed poly-
morphism among the other Medicago genotypes tested
(Additional file 6). This suggests that the SNPs predicted
in this study can also be used for genotyping in other
alfalfa genotypes.

In a previous study that described single-feature poly-
morphism (SFP) discovery in alfalfa using the Medicago
GeneChip as a cross-species platform [31], we proposed
candidate gene-based association mapping for selecting
alfalfa germplasm with modified cell wall composition in
stems. In this study, SNPs were also identified in genes
with various functional classes including numerous cell
wall-related genes (Figure 3A). For example, SNPs were
identified in 14 genes involved in cellulose biosynthesis
including 11 cellulose synthase and three COBRA genes
[46] (Figure 3A). In addition, SNPs were identified in 21
lignin pathway genes, 20 genes involved in cell wall pre-
cursor pathways (Figure 3A) and in numerous regulatory
genes including various transcription factor families, sig-
nalling genes and hormone genes (Figure 3B).

To detect functional classes over- or under-repre-
sented among the SNP-harboring genes, we performed
Fisher’s exact test with Bonferroni correction (z-value
cutoff = 1) as previously described [31] (Additional file
7). The functional classes over-represented among SNP-
harboring genes included photosynthesis, cell wall,
amino acid metabolism, stress response (biotic and abio-
tic), nodulin-like, protein synthesis and WRKY tran-
scription factor classes (Additional file 7). The SNPs
developed in this study can be used for either candidate
gene-based or whole genome scanning association map-
ping studies to identify SNPs associated with cell wall
traits in alfalfa stems. With further development, the
SNPs identified in this study may prove to be useful in
molecular breeding programs focused on improving
alfalfa as a forage crop and biomass feedstock via mar-
ker-assisted selection.

In this study, we also identified allelic variations
(SNPs) within genotypes. Using a minimum SNP depth
cutoff of 10, we detected 287,555 and 168,966 allelic
variations (SNPs) within genotypes 708 and 773, respec-
tively (Additional files 8 and 9). These SNPs within gen-
otype were detected in 55,320 and 33,406 sequences for
genotypes 708 and 773, respectively. Detection of allelic
variations (SNPs) within genotypes is equally important
as detecting SNPs between genotypes for understanding
phenotypic differences (e.g. cell wall composition) and
for future applications such as marker-assisted selection.
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Comparison of MSGI 1.0 and Mt3.0 cds as reference
sequences for digital transcript profiling

The alfalfa gene index (MSGI 1.0) developed in this
study provides a reference sequence database that can
be used for digital gene expression analysis in alfalfa.
However, another option for RNA-Seq analysis in alfalfa
is to use Mt3.0 cds as a reference sequence because M.
truncatula and alfalfa share significant coding sequence
homology [25]. Furthermore, sequences in Mt3.0 cds are
full-length sequences (predicted gene models) with bet-
ter coverage than sequences in MSGI 1.0 where the
majority are partial sequences. As an initial step to eval-
uate the utility of MSGI 1.0 and Mt3.0 cds as reference
sequences for transcript profiling of alfalfa, the Illumina
EST reads generated in this study were mapped to
MSGI 1.0 and Mt3.0 cds sequences using the bowtie
program [47] (see Methods for details). On average,
about 70% of the EST reads in each library (708 ES, 773
ES, 708 PES, and 773 PES) could be mapped to the
MSGI 1.0 sequences. In contrast, only about 30% of the
EST reads could be mapped to the Mt3.0 cds sequences
(data not shown). We measured the raw digital expres-
sion counts for each gene by quantifying the number of
EST reads that were mapped to each reference
sequence. The raw digital gene expression counts were
normalized using the RPKM (reads/Kb/Million) method
[1,48] to correct the digital gene expression counts for
bias caused by reference sequence size and total EST
numbers per library (see Methods for details).

Further evaluation of MSGI 1.0 and Mt3.0 cds as
reference sequence databases for alfalfa was conducted
by comparing RNA-Seq data with the previously gener-
ated GeneChip data for the same stem tissues but in dif-
ferent alfalfa genotypes [25] (see Methods for details).
The RNA-Seq data generated using MSGI 1.0 or Mt3.0
cds showed a linear relationship with GeneChip data
with similar Pearson correlation coefficients (R = 0.89
and R = 0.87, respectively) (Figure 4A and 4B). A total
of 1,254 genes were commonly-selected between RNA-
Seq and GeneChip data when MSGI 1.0 was used as
reference sequences (Figure 4A). However, when Mt3.0
cds was used as reference sequences, the number of
genes commonly-selected between RNA-Seq and Gene-
Chip data decreased to 337 reflecting a significant
decrease in detection sensitivity (Figure 4B). This is not
surprising because, as described above, only about 30%
of the EST reads could be mapped to the Mt3.0 cds
while about 70% of the EST reads could be mapped to
the MSGI 1.0 (data not shown).

As a final evaluation of MSGI 1.0 and Mt3.0 cds as
reference sequences for digital gene expression analysis
in alfalfa, we compared the digital gene expression data
generated using MSGI 1.0 and Mt3.0 cds sequences
with real -time quantitative RT-PCR (qRT-PCR) data
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obtained from 97 genes (63 randomly selected, 34 cell
wall genes) (Additional file 10) (see Methods for details).
Previous studies showed a linear relationship between
AACt values from qRT-PCR and the log gene expres-
sion ratio obtained in microarray analysis [25,49,50]. We
plotted AACy values obtained from the qRT-PCR data
for randomly selected genes against Log,(708ES/773ES)
values from the RNA-Seq data with MSGI 1.0 or Mt3.0
cds as reference sequences. The results showed a linear
relationship between qRT-PCR data and the RNA-Seq
data using both reference sequences. However, using
MSGI 1.0 increased the Pearson correlation coefficient
(R) from 0.63 to 0.85 (Figure 4C). Next, we plotted
AACrt values obtained from the qRT-PCR data for
selected cell wall genes against Log,(708PES/773PES)
values from the RNA-Seq data. Using MSGI 1.0 as the
reference sequence database also increased the Pearson
correlation coefficient (R) for selected cell wall genes
from 0.45 to 0.76 (Figure 4D). On the basis of these
results, we chose to use MSGI 1.0 as reference
sequences for digital gene expression analysis of stems
of alfalfa genotypes 708 and 773.

Transcript profiling of stems of alfalfa genotypes 708 and
773

For transcript profiling of stems of alfalfa genotypes 708
and 773, we analyzed the RPKM-normalized digital gene
expression counts for each sequence in MSGI 1.0 for
c¢DNA libraries derived from ES and PES internodes of
each genotype (Additional file 11). Among the 124,025
sequences in MSGI 1.0, about 94.7% were transcription-
ally active (RPKM > 0) in at least one library while
about 5.3% (6,629 sequences) were silent in all four
libraries examined (RPKM = 0 in all 4 libraries) (Addi-
tional file 11).

Among the transcriptionally-active genes in each
library, we identified the top 500 most abundant tran-
scripts (Additional file 12). The Fisher’s exact test with
Bonferroni correction (z-value cutoff = 1) revealed that
genes belonging to photosynthesis, amino acid metabo-
lism and transport classes were significantly over-repre-
sented among the most abundantly expressed transcripts
in all 4 libraries which suggests roles as housekeeping
genes in alfalfa stems (Additional file 13). We also identi-
fied functional classes over-represented among the most
abundant genes expressed in a genotype- or tissue-speci-
fic manner suggesting their role in determining genotype
or tissue identity (Additional file 13). Interestingly, genes
involved in lignin biosynthesis were significantly over-
represented among the most abundant genes. The lignin
genes over-represented in one or more libraries include
CCoAOMT (caffeoyl-CoA O-methyltransferase), CCR1
(cinnamoyl-CoA reductasel) and COMT (caffeic acid O-
methyltransferase) genes (Additional file 13). On the
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other hand, the transcription factor family class was sig-
nificantly under-represented among the most abundant
transcripts in three libraries (Additional file 13). Table 2
shows the top 10 most abundant protein-coding tran-
scripts identified in each alfalfa stem internode library.
Interestingly, a putative COMT gene (MSGI1_1270) was
among the top 10 most abundant protein-coding tran-
scripts and it was up-regulated in 773 (high lignin geno-
type) in both ES and PES internodes compared to 708
(low lignin genotype). The promoters of these highly
expressed genes, including strong constitutive and tissue-
specific promoters, may be useful for transgenic studies
in alfalfa.

We also identified putative housekeeping genes (HKGs)
that showed little variation in expression but were
expressed at relatively high levels. To identify HKGs, we

first selected genes with an average RPKM-normalized
transcript count greater than 10. Next, we selected the
top 300 genes with the lowest coefficient of variation
(CV = standard deviation/mean) (Additional file 14)
[13]. These HKGs may be useful as reference genes in
qRT-PCR or other experiments to normalize gene
expression levels across different conditions [51].

Identification of differentially expressed genes

We used a MA-plot-based method with a random sam-
pling model in a DEGSeq program [52] to identify genes
differentially expressed between stems of alfalfa geno-
types 708 and 773. A total of 3,838 and 4,428 genes
were differentially expressed between ES and PES tissues
of genotypes 708 and 773, respectively (p < 0.001, FDR
< 0.025, > 2-fold difference) (Additional files 15 and 16).
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Table 2 Top 10 most abundant protein-coding transcripts identified in each alfalfa stem internodes library

Unique_ID Libraries Putative Functions
708_ES 708_PES 773_ES 773_PES
RPKM-normalized expression counts

MSGI1_2417 6068 (1) 6754 (1) 3271 (2) 6034 (1) Leucine-rich repeat family protein
MSGI1_8746 4812 (2) 4697 (3) 3850 (1) 3586 (2) Chlorophyll a/b binding protein
MSGI1_523 4213 (3) 5428 (2) 2719 (6) 3552 (3) Beta ketoacyl CoA synthase
MSGI1_18145 3859 (4) 979 2555 (8) 3400 (4) Rubisco small chain
MSGI1_27309 748 2453 (7) 1317 3336 (5) Metallothionein
MSGI1_11989 2315 (6) 2574 (5) 1171 2387 (6) Uncharacterized protein
MSGI1_6529 265 328 2393 (9) 2350 (7) Glycine rich protein
MSGIT_1166 1458 1486 901 2182 (8) AAA ATPase
MSGI1_62398 160 225 1267 2168 (9) Stress (ABA)-inducible protein
MSGIT_21335 2012 (8) 2465 (6) 1275 2155 (10) Cytochrome P450-like
MSGI1_8707 2762 (5) 2632 (4) 1854 1833 Chlorophyll a/b binding protein
MSGI1_4749 1425 1682 (10) 1298 1693 Polyubiquitin
MSGI1_5229 2287 (7) 2140 (8) 1507 1561 Chlorophyll a/b binding protein
MSGI1_1270 744 969 3145 (3) 1470 Caffeic acid O-methyltransferase
MSGI1_1415 1723 (9) 1215 764 1468 Elongation factor 1-alpha
MSGI1_36219 1633 1777 (9) 723 1256 Uncharacterized protein
MSGI1_5153 1705 (10) 1531 1058 1090 Chlorophyll a/b binding protein
MSGI1_29285 324 513 2861 (4) 1035 Stress (ABA)-inducible protein
MSGI1_13276 86 77 2750 (5) 423 Cold acclimation responsive protein
MSGI1_7576 274 114 2357 (10) 284 Cold-acclimation-specific protein (CAS)
MSGI1_96533 11 5 2580 (7) 16 Cold acclimation-specific protein CAS)

T Top 10 most abundant protein-coding transcripts selected from each library are highlighted in bold. Numbers enclosed in parenthesis represent rank based on

transcript frequency for the top 10 most abundant protein-coding transcripts in each library.

Among the genes that were differentially expressed
between ES and PES internodes, 849 genes were
detected in internodes of both genotypes. In addition, a
total of 8,883 and 4,799 genes were differentially
expressed between genotypes 708 and 773 within ES
and PES internodes, respectively (p < 0.001, FDR <
0.025, > 2-fold difference) (Additional files 17 and 18).
Of the genes that were differentially expressed between
the two genotypes, 2,422 were detected in both ES and
PES internodes. Among the 13,797 differentially
expressed genes identified in four pair-wise comparisons
of ES and PES internodes of the two genotypes, about
85% were ubiquitously expressed in all four libraries
(RPKM-normalized transcript count > 0 in all 4
libraries), about 5.5% were expressed in three libraries,
about 9.6% were expressed in two libraries, and 16
genes were expressed in only one library (Additional file
19). These results suggest that stem tissue internodes in
alfalfa may be characterized on the basis of differential
expression of ubiquitous genes or tissue/genotype-speci-
fic expression of selected genes as shown in previous
studies with other species [12,13,40]. SNPs were
detected in 700 differentially expressed genes. Interest-
ingly, about 14% of these SNP-harboring differentially
expressed genes were cell wall-related genes.

To illustrate the differential expression of genes
detected in the stem internodes of 708 and 773, we gen-
erated a heatmap of RPKM-normalized transcript counts
for the top 200 most differentially expressed genes in
each pair-wise comparison (Figure 5, Additional file 20).
Groups I and III in Figure 5 contain genes that were dif-
ferentially expressed in a tissue-specific manner which
suggests their role in alfalfa stem development. For
example, one expansin and four pectin esterase genes
included in group I were up-regulated in ES compared
to PES internodes in both genotypes. These genes are
involved in cell wall loosening and cell elongation
[53,54]. On the other hand, a putative alfalfa cellulose
synthase gene, IRREGULAR XYLEM 3 (IRX3), included
in group III (Figure 5) was up-regulated in PES inter-
nodes compared to ES in both genotypes. Several pre-
vious studies demonstrated xylem specific expression of
IRX3 and its role in secondary cell wall development in
Arabidopsis [55-57]. Groups II and 1V in Figure 5 con-
tain genes differentially expressed in a genotype-specific
manner suggesting possible roles in the genotypic varia-
tion between stems of 708 and 773. For example, two
extensin genes and a cellulose synthase gene (CESA4)
included in group II were up-regulated in genotype 708
compared to 773 in both ES and PES internodes. These
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Figure 5 Hierarchical clustering analysis of the top 200 most
differentially expressed genes selected from pair-wise
comparisons. Pair-wise comparisons of gene expression were made
between stem tissues (ES, PES) in alfalfa genotypes 708 and 773.
The RPKM-normalized expression counts for each gene in each
library are represented by intensity of the red color on a 0 to 45
scale. Dark red (scale intensity 45) indicates genes with RPKM-
normalized expression counts > 45. See Methods for details. Groups
I'and Ill, genes differentially expressed in a tissue-specific manner;
Groups Il and IV, genes differentially expressed in a genotype-
specific manner; and Group V, genes differentially expressed in both
a genotype- and tissue-specific manner. A complete list of the
genes, RPKM-normalized expression counts, and corresponding
MapMan functional categories are provided in Additional file 20.

genes may be responsible for the higher cellulose con-
tent in stem internodes of genotype 708 compared to
773. Group V in Figure 5 contains genes differentially
expressed in both a genotype- and tissue-specific
manner.

Lignin content in alfalfa stems affects the quality of
alfalfa as a forage crop and biomass feedstock. Lignin is
indigestible and reduces cell wall digestibility in
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ruminants [58-60]. In addition, the pre-treatment pro-
cess to remove lignin is one the most costly steps of cel-
lulosic ethanol production [61-64]. Over multiple
environments, alfalfa genotype 773 consistently showed
higher cell wall lignin content in stems compared to
genotype 708 (Figure 1) suggesting differences in the
genetics of lignin biosynthesis. In an effort to identify
key genes responsible for differences in cell wall proper-
ties in stems of genotypes 708 and 773, we identified lig-
nin (phenylpropanoid) pathway genes among the 13,797
genes detected (Additional file 21). Next, we generated a
heatmap of gene expression ratios for each selected lig-
nin pathway gene for each pair-wise comparison (see
Methods for details). The heatmaps generated were
inserted into the lignin biosynthetic pathway (Figure 6).
As expected, numerous lignin pathway genes were up-
regulated in PES compared to ES internodes (Figure 6,
Additional file 21). We also identified lignin genes dif-
ferentially expressed between the two alfalfa genotypes.
For example, several CAD and COMT genes were up-
regulated in 773 compared to 708 especially in ES inter-
nodes (Figure 6, Additional file 21). These genes may
contribute to difference in lignin content in cell walls of
stems of genotypes 708 and 773.

A previous study [25] and the current study both sug-
gest significant genotypic variation for gene expression
in alfalfa stem internodes. To identify genes involved in
general stem development (ES vs. PES internodes) inde-
pendent of genotypic variation in gene expression, we
selected a subset of alfalfa genes differentially expressed
between ES and PES internodes in both genotype 708
and genotype 773 (p < 0.001, FDR < 0.025, > 2-fold dif-
ference). A total of 594 genes were identified by further
selecting genes with similar differential expression pat-
terns in both genotypes [Log,(PES/ES) = 1 or < -1 in
both genotypes] (Additional file 22). Among these
genes, about 19% were cell wall-related genes. These
genes included 5 cellulose synthase genes (a putative
IRX3, two CesA8s, and two COBRAs) and six lignin
pathway genes (three 4CLs and three F5Hs) that were
up-regulated in PES compared to ES internodes in both
genotypes (Additional file 22). In Arabidopsis, IRX3,
CesA8 (IRX1) and COBRA genes are involved in cellu-
lose biosynthesis during secondary cell wall development
[46,55-57,65,66]. The gene families that were signifi-
cantly over-represented among genes up-regulated in
PES compared to ES internodes in both genotypes (Fish-
er’s exact test with Bonfferoni correction with z-value
cutoff of 1) included arabinogalactan protein (AGP),
arginosuccinate synthase, metal handling, and transpor-
ter (sucrose, amino acids, and phosphate) families
(Additional file 23). The gene families significantly over-
represented among genes up-regulated in ES compared
to PES internodes in both genotypes included invertase,
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pectin esterase, simple phenol, gibberellin-responsive,
cold-responsive, lipid transfer protein (LTP), and GDSL-
motif lipase families (Additional file 23). Cell wall family
genes were over-represented among genes up-regulated
in both ES and PES Internodes.

Assimilated photosynthetic carbon is translocated pri-
marily as sucrose in higher plants [67]. Membrane-
bound, energy dependent, H*-symporting sucrose trans-
porters (SUC or SUT proteins) play an essential role in
sucrose uptake in sink tissues and sucrose release in
source tissues [67]. In this study, members of the
sucrose transporter gene family were over-represented
among genes up-regulated in PES compared to ES inter-
nodes in both genotypes (Additional file 23). Previous
studies showed that the expression of sucrose transpor-
ter genes was developmentally regulated in plants
[68-73]. For example, sucrose transporter genes were
up-regulated during secondary cell wall synthesis in
developing cotton fibers [73]. In this study, we identified

five putative sucrose transporters (MsSUCs) that were
up-regulated in PES compared to ES internodes in both
genotypes (Additional file 22, Additional file 24). As
stem development progresses from ES to PES, sink
strength may also increase due to secondary cell wall
formation in secondary xylem. The up-regulation of
MsSUCs in PES internodes may be in response to
increased demand for sucrose and UDP-glucose to sup-
port cellulose synthesis during secondary cell wall for-
mation. Consistent with this explanation is our finding
that three sucrose synthase (MsSuSy) genes were up-
regulated in PES compared to ES internodes in both
genotypes. Sucrose synthase provides the UDP-glucose
needed for cellulose synthesis [74,75]. In addition to
their roles in providing sucrose and UDP-glucose for
cellulose synthesis in secondary cell walls, MsSUCs and
MsSuSy genes, respectively, may play important roles in
modulating sugar sensing and signal transduction path-
ways during stem development in alfalfa [76].


http://www.genome.jp/kegg/pathway/map/map00940.html
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In addition to the SUC transporter gene family, we
also found that the phosphate (Pi) transporter gene
family was over-represented among genes up-regulated
in PES compared to ES internodes in both genotypes
(Additional file 23). We identified six putative PHOS-
PHATEI (PHOI) genes up-regulated in PES compared
to ES internodes in both genotypes (Additional file 22,
Additional file 24). In Arabidopsis root epidermal and
cortical cells, PHOL is involved in Pi loading into the
xylem [77,78]. A recessive mutation in PHOI in Arabi-
dopsis resulted in reduced Pi loading into xylem [77,78].
PHOLI is expressed predominantly in roots and up-regu-
lated under conditions of Pi starvation [78-80]. A recent
study in Arabidopsis showed that the expression of
PHO1I was modulated by WRKY6 and WRKY42 tran-
scription factors in response to low Pi [81]. Up-regula-
tion of PHOI genes in PES may be needed to meet the
requirements of Pi uptake and redistribution during cel-
lulose synthesis in secondary cell walls. For example, the
fructose released by SuSy (sucrose -> UDP-glucose +
fructose) needs to be phosphorylated to be recycled by
sucrose phosphate synthase (SPS).

The plant hormone auxin is a key regulator of plant
growth and development [82]. In addition to its role in
cell wall loosening and cell elongation [82], auxin also
regulates vascular tissue differentiation and patterning in
plants [82-85], secondary xylem development in trees
[86,87], and fiber development in cotton [88]. Indole-3-
acetic acid (IAA), the major auxin species, is made in
the shoot apex and transported to the root apex [82].
Directional auxin transport is mainly controlled by the
coordinated action of auxin influx (AUX1) and efflux
(PIN) carrier complexes [82]. AUXI, an amino acid per-
mease-like membrane protein, was originally identified
after screening for auxin resistant mutants [89]. In Ara-
bidopsis, AUX1 was preferentially expressed in xylem
compared to phloem and nonvascular tissues of the
root-hypocotyl [90]. Arabidopsis AUXI mutants showed
a reduction in lateral root formation [91] but enhanced
root generation in shoot regeneration media [92]. In
addition, disruption of polar auxin transport in Arabi-
dopsis resulted in ectopic vascular differentiation in
leaves [93]. Polarized auxin transport is essential for
providing directional and positional signals for various
developmental processes such as apical dominance,
organ development, tropic growth, embryogenesis and
vascular development [82-85,94-98]. In this study, the
amino acid transporter gene families, which include
AUXI genes, were over-represented among genes up-
regulated in PES compared to ES internodes in both
genotypes (Additional file 23). A total of 5 putative
AUXI genes were up-regulated in PES (Additional file
22, Additional file 24).The up-regulation of AUXI in
PES internodes of alfalfa and the resultant increase in
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auxin uptake may play an important role in the forma-
tion of secondary xylem. A recent study in trees sug-
gested that the radial auxin concentration gradient in
cell types of secondary xylem modulates the expression
of a small number of key genes that regulate secondary
xylem development [87].

In addition to transporter family genes that were dif-
ferentially expressed between ES and PES internodes of
both genotypes, we also identified transporter family
genes that were differentially expressed between geno-
types. For example, several sugar (glucose, hexose, and
sucrose) transporters and AUXI genes were up-regu-
lated in 708 compared to 773 in both ES and PES inter-
nodes (Additional file 24, Additional file 25). These
transporters may play a role in the higher cellulose and
sugar (galactose and mannose) content in stem inter-
nodes of genotype 708 compared to 773 (Table 1). We
also identified numerous transporter families that were
up-regulated in both ES and PES internodes of 773
compared to 708. Among these up-regulated transporter
families were the multi-drug toxic efflux carrier (MATE)
and ATP-binding cassette (ABC) transporter families
(Additional file 24, Additional file 25). Recent studies
suggest that monolignols synthesized in the cytoplasm
are transported across the plasma membrane into the
cell wall matrix where they are polymerized into lignin
[99,100]. However, little is known about the transport
mechanism. Previous studies have suggested that mono-
lignol transport across the plasma membrane may
involve passive diffusion [101] or may be mediated by
membrane-bound transporters [102]. Genes in the
MATE transporter family may be good candidates for
monolignol transporters because they are involved in
transport of proanthocyanidin precursors across the
tonoplast in Arabidopsis and M. truncatula [103,104]. A
role for ABC transporters in monolignol transport
across the plasma membrane has been postulated
because of their known role in transporting various sec-
ondary metabolites in plants [99,100,105,106]. Addi-
tional research will be required to determine whether
the up-regulation of the MATE efflux carrier and ABC
transporter families in stems of 773 (high-lignin) com-
pared to 708 (low lignin) (Additional file 24, Additional
file 25) contributes to the higher lignin content in cell
walls of 773 (Table 1). The up-regulated MATE efflux
carrier and ABC transport genes that we identified pro-
vide a list of candidate genes that will be useful in future
research to evaluate the involvement of these gene
families in monolignol transport.

Conclusion

This study represents the first application of RNA-Seq
technology for genomic studies in alfalfa. Our results
demonstrate that RNA-Seq can be successfully used for
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gene identification, polymorphism detection and tran-
script profiling in alfalfa. Using RNA-Seq has several
advantages over other technologies, especially for non-
model species with few genomic resources such as
alfalfa. Unlike hybridization-based technologies such as
microarrays, RNA-Seq does not require pre-existing
sequence information and, as shown in this study, RNA-
Seq can integrate multiple tasks in a single pipeline sav-
ing time and money. The integrated approach used in
this study can be applied to other non-model species.
The newly built alfalfa gene index (MSGI 1.0), and the
SNPs, SSRs and candidate genes identified in this study
will be a valuable resource for advancing genetic/geno-
mic research in alfalfa and eventually for improving
alfalfa as a forage crop and cellulosic ethanol feedstock.

Methods

Plant materials and cell wall analysis

Alfalfa [Medicago sativa (L) subsp. sativa] genotypes 708
and 773 were selected from a population (UMN 3097)
created by mixing seeds from six commercial alfalfa culti-
vars (5312, Rushmore, Magnagraze, Wintergreen, Wind-
star and WL 325HQ) as previously described [25]. The
alfalfa clonal lines 708 and 773 were propagated from
cuttings and grown in the greenhouse. The greenhouse
experiments consisted of three replicates arranged in a
randomized complete block design. For each replicate,
there were eight plants of each clone in individual pots.
For cell wall analysis, stem internodes tissues were har-
vested at full bloom and plant material for analysis was
composited within each replicate (2 blocks x 3 reps = 6
data points per genotype). Cell wall analysis was per-
formed in duplicate as previously described [25]. An ana-
lysis of variance was done to test if the means (g kg™ cell
wall) for cell wall components of the two genotypes were
equal (Table 1). For RNA-Seq, ES and PES internodes
were harvested as previously described [25].

RNA extraction, cDNA library preparation and sequencing
Total RNA was purified from three replicates of elongat-
ing and post-elongation stem internodes of genotypes
708 and 773 using the CTAB based protocol previously
described [40]. Contaminating genomic DNA was
removed from each RNA sample using the DNA-free™
kit following the manufacturer’s recommendations
http://www.ambion.com. An equal amount of total RNA
was pooled from each replicate for each stem tissue
sample. RNA samples were quantified using Quant-iT™
RiboGreen®™ RNA Reagent http://www.invitrogen.com
and the RNA integrity was checked with RNA6000
Nano Assay using the Agilent 2100 Bioanalyzer™ (Agi-
lent Technologies, Palo Alto, CA). cDNA library prepara-
tion and sequencing reactions were conducted in the
Biomedical Genomics Center, University of Minnesota.
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[lumina library prep, clustering and sequencing reagents
were used throughout the process following the manu-
facturer’s recommendations http://www.illumina.com.
Briefly, mRNAs were purified using poly-T oligo-attached
magnetic beads and then fragmented. The first and the
second strand cDNAs were synthesized and end repaired.
Adaptors were ligated after adenylation at the 3’-ends.
After gel purification, cDNA templates were enriched by
PCR. cDNA libraries were validated using a High Sensi-
tivity Chip on the Agilent2100 Bioanalyzer™ (Agilent
Technologies, Palo Alto, CA). The cDNA library was
quantified using PicoGreen Assay and by qPCR. The
samples were clustered on a flow cell using the ¢cBOT.
After clustering, the samples were loaded on the Illumina
GA-II machine. The samples were sequenced using a sin-
gle read with 76 cycles. Initial base calling and quality fil-
tering of the Illumina GA-II image data were performed
using the default parameters of the Illumina GA Pipeline
GERALD stage http://www.illumina.com. Additional fil-
tering for homopolymers and read size (< 75 bp) was per-
formed using custom written code.

For RNA-Seq using the GS FLX Titanium platform
http://www.454.com, mRNA was reverse transcribed
with SuperScript III reverse transcriptase http://www.
invitrogen.com using dT15VN2 primer. cDNA was
synthesized using E. coli DNA Ligase, E. coli DNA poly-
merase I and E coli RNaseH. cDNA was then fragmen-
ted by sonication. The cDNA was then used for 454
sstDNA preparation in the “GS20 DNA Library Prepara-
tion” step2 http://www.454.com. The rest of the library
preparation and the 454 sequencing procedures were
performed following the manufacturer’s recommenda-
tions http://www.454.com. Standard post-run and bioin-
formatics processing on the 454 platform to determine
reads that passed various quality filters were also per-
formed following the manufacturer’s recommendations
http://www.454.com.

de novo transcriptome assembly

The Velvet algorithm [32] was used for de novo assembly
of the 198,861,304 Illumina reads (76 bp). During the de
novo assembly using the Velvet program, short EST reads
were first hashed based on a predefined hash length in
base pairs (k-mer length). Next, the contigs were built
based on a series of overlapping k-mers using de Brujin
graphs [32]. In general, longer k-mers increase transcript
contiguity (longer transcript length) and specificity (less
spurious overlaps) but decrease diversity (smaller number
of contigs) compared to shorter k-mers [32]. To optimize
our Velvet assembly toward higher transcript contiguity
and specificity, we tested a series of k-mers (31, 37, 41,
47,51, 57, 61, 63, 65) for de novo assembly of short EST
reads (Additional file 26). We used the median contig
length (N50) generated for each k-mer as an indicator of
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the transcript contiguity of de novo assembly. As k-mer
values increased from 31 to 61, N50 values increased to a
value of 289 reflecting increased efficiency of de novo
assembly. The N50 values declined significantly at k-mer
values above 61 (Additional file 26). On the basis of these
results, we used a k-mer value of 61 for de novo assembly
of alfalfa EST reads.

Alfalfa Gene Index assembly

The alfalfa gene index (MSGI 1.0) was built following
the Gene Index Assembly protocol previously described
[39,40]. The gene ontology (GO) functional classes and
pathways for each sequence in MSGI 1.0 were assigned
based on Arabidopsis GO SLIM and pathway annotation
ftp://ftp.arabidopsis.org/home/tair/Ontologies/. For GO
characterization, the unique sequences in MSGI 1.0
were compared with the Arabidopsis proteome using
the BlastX program with e-value cutoff of 1e-10. Top
protein matches from Arabidopsis sequences were
assigned to each of the MSGI 1.0 sequences. The Map-
Man gene functional classification system [41] was
assigned to each sequence in MSGI 1.0 following the
method previously described [31]. The functional class
over-representation analysis was performed using Page-
Man [107] as previously described [25,31].

Polymorphism detection

The MISA program [42] was used to detect simple
sequence repeats (SSRs) among sequences in MSGI 1.0.
The minimum number of nucleotide repeats specified
during SSR analysis was 20, 10, 7, 5, 5, and 5 for mono-,
di-, tri-, tetra-, penta-, and hexanucleotide repeats,
respectively. The maximum number of bases interrupt-
ing 2 SSRs in a compound microsatellite was set at 100
bp. The primers spanning each SSR were designed using
the default parameter of the Primer3 program [44].

For SNP detection, the Illumina GA-II reads were
mapped to the sequences in MSGI 1.0 using the Maq
program [45]. Next, the coverage and nucleotide differ-
ences were extracted using the pileup command of the
Magq program. The pileup output was further compiled
for genotypes 708 and 773 with custom written script
using filtering based on coverage and quality scores.
Custom written script was used for additional sorting
and filtering of the pileup output based on a nucleotide
depth cutoff of 10 for each SNP.

Digital gene expression analysis

For digital gene expression analysis, the raw digital gene
expression counts were measured by quantifying the num-
ber of lllumina GA-II reads that were mapped to the refer-
ence sequences (MSGI 1.0 or Mt3.0 cds) using the bowtie
program [47]. The best-match option with a maximum of
3 nucleotide mismatches was used (-v 3 —best). The raw
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digital gene expression counts were normalized using the
RPKM (reads/Kb/Million) method [1,48]. Custom written
scripts were used to summarize the bowtie output from
the raw digital expression counts and the RPKM-normal-
ized expression counts. To identify differentially expressed
genes, an expression profile matrix was built representing
the digital gene expression count for each gene in each
library, then imported into the DEGSeq program [52]. A
DEGSeq program that utilized a MA-plot-based method
with random sampling model was used to identify differ-
entially expressed genes in each pair-wise comparison (p <
0.001, FDR < 0.025, > 2-fold difference). Heatmaps based
on hierarchical cluster analysis [108] of RPKM-normalized
expression counts (Figure 5, Additional file 25) and
expression ratios (Figure 6) were generated using MultiEx-
periment Viewer http://www.tm4.org/mev/.

In a previous study, we generated GeneChip data for
ES and PES internodes of alfalfa genotypes 252 and
1283 [25]http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE13602. To compare the digital gene expression
data generated using MSGI 1.0 and Mt3.0 cds sequences
with the previously generated GeneChip data [25], we
first compared two Medicago reference sequences
(MSGI 1.0 and Mt3.0 cds) with Medicago GeneChip
probe set consensus sequences using the Blastn program
(e-value cutoff of 1e-10). Top sequence matches from
the Medicago GeneChip probe sets were assigned to
each RNA-Seq reference sequence. Next, we selected
from GeneChip data and RNA-Seq data a subset of
genes involved in general stem development indepen-
dent of genotypic variation in gene expression (Log,
(PES/ES) = 1 or < -1 in both genotypes). Genes that
were commonly selected between RNA-Seq and Gene-
Chip data were identified based on sequence homology.
Log,(PES/ES) values from the RNA-Seq data generated
using MSGI 1.0 and Mt3.0 cds as reference sequences
were compared with Log,(PES/ES) values from the Gen-
eChip data (Figure 4A, 4B).

To compare the digital gene expression data generated
using MSGI 1.0 and Mt3.0 cds sequences with the qRT-
PCR data, we first compared two Medicago reference
sequences (MSGI 1.0 and Mt3.0 cds) using the the
Blastn program (e-value cutoff of le-10). Top sequence
matches from the Mt3.0 cds were assigned to each
MSGI 1.0 sequence. Primers for qRT-PCR were
designed based on the MSGI 1.0 sequences (Additional
file 10). Log ratio values from the RNA-Seq data gener-
ated using MSGI and Mt3.0 cds as reference sequences
were compared with AACy values obtained from the
qRT-PCR data (Figure 4C, 4D).

SNP genotyping
The SNP genotyping was conducted in the Biomedical
Genomics Center, University of Minnesota. Briefly, a
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total of 55 SNPs predicted between genotypes 708 and
773 were randomly selected for validation by MALDI-
TOF mass spectrometry using the iPLEX Gold spectro-
metry system http://www.sequenom.com. Genomic
DNAs were purified from young leaves of genotypes 708
and 773 using DNeasy Plant Mini Kit http://www.qia-
gen.com. The multiplex assays were designed using
Mass-ARRAY Assay Design 3.0 software and primers
were obtained from IDT (Coralville, Iowa). Reactions
(PCR, shrimp alkaline phosphatase treatment followed
by extension) were performed according to iPLEX Gold
method http://www.sequenom.com. Mass ARRAY work-
station software (v. 3.3) was used to analyze the SNP
genotyping results.

Real-time quantitative RT-PCR (qRT-PCR)

A portion of the pooled total RNA used for the RNA-
Seq analysis was used to make cDNAs for qRT-PCR.
The first strand cDNA for each sample was made using
random hexamers and Tagman Reverse Transcription
Reagents (Applied Biosystems, CA) following the manu-
facturer’s recommendations. Gene specific primers
based on MSGI 1.0 sequences were subsequently
designed using Primer Express (Applied Biosystems,
CA) (Additional file 10). Samples and standards were
run in triplicate on each plate and repeated on two
plates using SYBR-Green PCR Master Mix (Applied Bio-
systems, CA) on a StepOnePlus™ Real-Time PCR Sys-
tem (Applied Biosystems, CA) following the
manufacturer’s recommendations. qRT-PCR was per-
formed in a 20 pl reaction containing 4 ul ddH,O, 10 pl
2x PCR mix, 1 pl forward primer (1 uM), 1 pl reverse
primer (1 uM), and 4 pl of template cDNA (5 ng/ul).
The PCR conditions were as follows: two minutes of
pre-incubation at 50°C, 10 minutes of pre-denaturation
at 94 °C, 40 cycles of 15 seconds at 95 °C and one min
at 60 °C, followed by steps for dissociation curve genera-
tion (30 seconds at 95 °C, 60 seconds at 60 °C and 30
seconds at 95 °C). The StepOnePlus software (Applied
Biosystems, CA) was used for data collection and analy-
sis. Dissociation curves for each amplicon were carefully
examined to confirm lack of multiple amplicons at dif-
ferent melting temperatures (Tms). Relative transcript
levels for each sample were obtained using the “com-
parative Ct method” [109] using the Ct value of the
18S rRNA for each sample as a normaliser.

Additional material

Additional file 1: de novo assembly of alfalfa lllumina GA-Il EST
reads. A fasta file containing a total of 132,153 unique sequences
generated after de novo assembly of Illumina GA-Il EST reads derived
from 4 cDNA libraries developed in this study. The Velvet program [32]
with k-mer 61 was used for de novo assembly.
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Additional file 2: Alfalfa Gene Index 1.0 (MSGI 1.0). A fasta file
containing Alfalfa Gene Index 1.0 (MSGI 1.0) sequences. MSGI 1.0
contains a total of 124,025 unique sequences including 22,729 tentative
consensus sequences (TCs), 22,315 singletons and 78981 pseudo-
singletons. The average length of the unique sequences in MSGI 1.0 is
384 bp (100 bp minimum and 6,956 bp maximum) with more than
10,000 sequences larger than 800 bp. The total base count of the
sequences in MSGI 1.0 is 47,628,953 bp. Unfortunately, the current pipe
line of the DFCI gene index database http://compbio.dfci.harvard.edu/tgi/
is not suited for short reads (personal communication with a DFCI Gene
Index staff). The Gene Index Project team has indicated that it plans to
address this issue soon. When a gene index database is established for
alfalfa, MSGI1.0 will be uploaded to the DFCI gene index database.

Additional file 3: Functional classification and annotation of
sequences in the Alfalfa Gene Index 1.0 (MSGI 1.0). A table listing
Gene ontology (GO), pathway, MapMan functional classes and gene
annotation for sequences in the Alfalfa Gene Index 1.0 (MSGI 1.0).

Additional file 4: Simple sequence repeats (SSRs) detected in MSGI
1.0. A table listing SSR-containing sequence IDs, SSR types and position,
and primers spanning each SSR for the sequences in the Alfalfa Gene
Index 1.0 (MSGI 1.0).

Additional file 5: Single nucleotide polymorphisms (SNPs) predicted
between alfalfa genotypes 708 and 773. A table listing SNPs
predicted between alfalfa genotypes 708 and 773 including SNP-
containing sequence ID, SNP type, SNP position and depth in each
genotype.

Additional file 6: Validation of SNPs predicted between alfalfa
genotypes 708 and 773 using RNA-Seq data. A table showing SNP
validation results. A total of 55 SNPs were randomly selected to
genotype genomic DNAs purified from the genotypes 708 and 773 by
MALDI-TOF mass spectrometry using the iPLEX Gold spectrometry
system http://www.sequenom.com. In addition to genotypes 708 and
773, we also genotyped 51 additional alfalfa (M. sativa) genotypes
selected from different populations of M. sativa ssp. sativa or M. sativa
ssp. falcata.

Additional file 7: Functional classes over- or under-represented
among SNP-harboring genes. A figure showing the functional class
over-representation analysis conducted for SNP-harboring genes.
Functional classes that are over- or under-represented among SNP-
harboring genes were identified using the PageMan over-representation
analysis module. The z-vlaues for significant classes identified after
Fisher's exact test with Bonferroni correction (z-value cutoff of 1) were
false color coded using a scale of -5 to +5. The intensity of blue and red
indicate the degree of over- and under-representation of the
corresponding class, respectively.

Additional file 8: Allelic variations (SNPs) detected within genotype
708. A table listing a total of 287,555 allelic variations (SNPs) detected
within genotype 708 using minimum SNP depth cutoff of 10.

Additional file 9: Allelic variations (SNPs) detected within genotype
773. A table listing a total of 168,966 allelic variations (SNPs) detected
within genotype 773 using minimum SNP depth cutoff of 10.

Additional file 10: qRT-PCR validation of RNA-Seq data generated
by two reference sequences (MSGI 1.0 and Mt3.0 cds). A table
showing the source data used to generate Figure 4. The table contains
MSGI 1.0 and Mt3.0 cds IDs of genes used for qRT-PCR, gRT-PCR and
RNA-Seq data generated by two reference sequences (MSGI 1.0 and
Mt3.0 cds), and primers used for gRT-PCR.

Additional file 11: An expression profile matrix for each library
showing digital gene expression count of each gene in MSGI 1.0. A
table showing the digital gene expression counts of each gene in MSGI
1.0 for ES and PES internodes of alfalfa genotypes 708 and 773. The raw
expression counts generated by bowtie program were normalized using
the RPKM method [1,48].

Additional file 12: Top 500 most abundant transcripts in each
library. A table showing the RPKM-normalized digital gene expression
counts and MapMan functional classes for the top 500 most abundant
transcripts selected in each library.
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Additional file 13: Functional classes over- or under-represented
among the top 500 most abundant transcripts in each library. A
figure showing the results from functional class over-representation
analysis for the top 500 most abundant transcripts in ES and PES
internodes of alfalfa genotypes 708 and 773. For details, see the
description for additional file 7.

Additional file 14: 300 housekeeping genes selected. A table listing
300 housekeeping genes (HKGs) with relatively high levels of expression.
To identify these HKGs, we first selected genes with an average RPKM-
normalized transcript count greater than 10. Next, we selected the top
300 genes from the list with the lowest coefficient of variation (CV =
standard deviation/mean). The RPKM-normalized expression counts,
MapMan functional class and description for each HKG selected are also
presented in the table.

Additional file 15: Genes differentially expressed between ES and
PES internodes of alfalfa genotype 708 A table listing 3,838 genes
differentially expressed between ES and PES internodes of alfalfa
genotype 708 in MSGI 1.0. We used a MA-plot-based method with
random sampling model in a DEGSeq program to select these genes (p-
value < 0.001, FDR < 0.025, > 2-fold difference). RPKM-normalized
expression counts, log ratios, z-scores, p-values, and g-values for each
gene selected are also presented in the table.

Additional file 16: Genes differentially expressed between ES and
PES internodes of alfalfa genotype 773. A table listing 4,428 genes
differentially expressed between ES and PES internodes of alfalfa
genotype 708 in MSGI 1.0. For details, see the description for additional
file 11.

Additional file 17: Genes differentially expressed between alfalfa
genotypes 708 and 773 in ES internodes.A table listing 8,883 genes
differentially expressed between alfalfa genotypes 708 and 773 in ES
internodes in MSGI 1.0. For details, see the description for additional file
1.

Additional file 18: Genes differentially expressed between alfalfa
genotypes 708 and 773 in PES internodes. A table listing 4,799 genes
differentially expressed between alfalfa genotypes 708 and 773 in PES
internodes in MSGI 1.0. For details, see the description for additional file
11.

Additional file 19: Genes differentially expressed in ES and PES
internodes of alfalfa genotypes 708 and 773. A table listing 13,797
genes differentially expressed in ES and PES internodes of alfalfa
genotypes 708 and 773 in MSGI 1.0. Genes selected in additional files 15,
16, 17 and 18 were combined together to produce this table. The RPKM-
normalized expression counts, MapMan functional class and description
for each gene selected are also presented in the table.

Additional file 20: Top 200 most differentially expressed genes in
each pair-wise comparison. A table that lists 657 genes that were
generated after combining the top 200 most differentially expressed
genes selected in each pair-wise comparison of gene expression
between ES and PES internodes of genotypes 708 and 773. This table is
a data source for Figure 5. The RPKM-normalized expression counts,
MapMan functional class and description for each gene selected are also
presented in the table.

Additional file 21: Phenylpropanoid (lignin) pathway genes
differentially expressed in ES and PES internodes of alfalfa
genotypes 708 and 773. A table listing phenylpropanoid (lignin)
pathway genes differentially expressed in ES and PES internodes of alfalfa
genotypes 708 and 773 (p-value < 0.001, FDR,0.025, > 2-fold difference).
This table is a data source for Figure 6. The log ratios from each pair-
wise comparison, EC number, and enzyme ID for each gene selected are
also presented in the table.

Additional file 22: Candidate genes identified in 708 and 773 that
may be involved in general stem development independent of
genotypic variation in gene expression. A table listing 594 genes
potentially involved in general stem development independent of
genotypic variation in gene expression in alfalfa (Log2(PES/ES)=1 or <-1
in both genotypes 708 and 773). The RPKM-normalized expression
counts, log ratios, MapMan functional class and description for each
gene selected are also presented in the table.

Additional file 23: Functional classes over- or under-represented
among genes involved in general stem development independent
of genotypic variation in alfalfa. A figure showing the functional class
over-representation analysis for genes involved in general stem
development independent of genotypic variation in alfalfa (Log2(PES/
ES)>1 or <-1 in both genotypes 708 and 773). “Up in PES" and “Up in ES”
indicate genes up-regulated in PES and ES internodes in both genotypes,
respectively. For details, see the description for additional file 7.

Additional file 24: Putative transporter genes differentially
expressed in ES and PES internodes of alfalfa genotypes 708 and
773. A table listing 478 transporter genes in ES and PES internodes of
alfalfa genotypes 708 and 773 in MSGI 1.0. The RPKM-normalized
expression counts, log ratios from each pair-wise comparison, MapMan
functional class and description for each transporter gene selected are
also presented in the table.

Additional file 25: Hierarchical clustering analysis of selected
transporter genes differentially expressed between 708 and 773 in
both ES and PES internodes. A figure showing a heatmap for 42
transporter genes differentially expressed between 708 and 773 in both
ES and PES internodes (p < 0.001, FDR < 0.025, > 2-fold difference). The
RPKM-normalized expression counts for each gene in each library are
represented by the intensity of the red color on a 0 to 22 scale. Dark red
(scale intensity 22) indicates genes with RPKM-normalized expression
counts > 22. See Methods for details. A complete list of the transporter
genes selected, RPKM-normalized expression counts, and corresponding
MapMan functional categories are provided in Additional file 24.

Additional file 26: Optimization of de novo assembly of Illumina
GA-Il EST reads with a series of k-mers using the Velvet program
[32]. A figure showing the median sequence length of the contigs (y-
axis) for a series of k-mers (31, 37, 41, 47, 51, 57, 61, 63, 65) tested using
the Velvet program. k-mer 61 produced the longest median sequence
length.
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caffeoyl-CoA 3-O-methyltransferase; CCR1: cinnamoyl-CoA reductase 1; F5H:
ferulate 5-hydroxylase; COMT: caffeic acid O-methyltransferase; CAD:
cinnamyl-alcohol dehydrogenase; AGP: arabinogalactan protein; LTP: lipid
transfer protein; LHB1B1: Photosystem I light harvesting complex gene;
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Acknowledgements

This work was carried out in part using computing resources at the University
of Minnesota Supercomputing Institute for Advance Computational Research.
Funding for this research was provided by USDA-ARS CRIS Project 3640-
12210-001-00D. Mention of trade names or commercial products in this
publication is solely for the purpose of providing specific information and
does not imply recommendation or endorsement by the U.S. Department of
Agriculture. We thank Dr. David Garvin, Dr. Jamie O'Rourke, and Dr. Deborah
Samac for critical review of the manuscript.

Author details

'USDA-Agricultural Research Service, Plant Science Research Unit, St. Paul,
MN, 55108, USA. Supercomputing Institute for Advanced Computational
Research, University of Minnesota, Minneapolis, MN 55455, USA. *The J. Craig
Venter Institute, Rockville, MD 20892, USA. *Department of Agronomy and
Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA. *Center for
Human Immunology, Autoimmunity and Inflammation, National Institute of
Health, Bethesda, MD 20892, USA.


http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S13.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S14.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S15.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S16.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S17.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S18.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S19.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S20.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S21.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S22.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S23.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S24.TXT
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S25.PDF
http://www.biomedcentral.com/content/supplementary/1471-2164-12-199-S26.PDF

Yang et al. BMC Genomics 2011, 12:199
http://www.biomedcentral.com/1471-2164/12/199

Authors’ contributions

SY and ZT performed the computational analysis involved in the de novo
assembly, digital gene expression and SNP detection. CF performed the
computational analysis involved in MSGI 1.0 assembly and SSR detection. SY
and WX performed the computational analysis involved in the identification
of differentially expressed genes. SY performed the computational analysis
involved in the functional classification and over-representation analysis. SY
conducted the gRT-PCR. JL identified the genotypes used in the study. HJ
conducted the cell wall analysis of the alfalfa genotypes. All authors
contributed to the analysis of results and writing of the manuscript. All
authors read and approved the final manuscript.

Received: 5 November 2010 Accepted: 19 April 2011
Published: 19 April 2011

References

1.

Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B: Mapping and
quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 2008,
5(7):621-628.

Lister R, Gregory BD, Ecker JR: Next is now:new technologies for
sequencing of genomes, trancriptomes, and beyond. Curr Opin Plant Biol
2009, 12:107-118.

Marguerat S, Béhler J: RNA-seq: from technology to biology. Cell Mol Life
Sci 2010, 67:569-579.

Wilhelm BT, Landry J-R: RNA-Seg-quantitative measurement of expression
through massively parallel RNA-Sequencing. Methods 2009, 48:249-257.
Wang Z, Gerstein M, Snyder M: RNA-Seq: a revolutionary tool for
transcriptomics. Nat Rev Genet 2009, 10:57-63.

Bruno VM, Wang Z, Marjani SL, Euskirchen GM, Martin J, Sherlock G, Snyder M:
Comprehensive annotation of the trancriptome of the human fungal
pathogen Candida albicans using RNA-seq. Genome Res 2010, 20:1451-1458.
Rounsley SD, Last RL: Shotguns and SNPS: how fast and cheap
sequencing is revolutionizing plant biology. Plant J 2010, 61:922-927.
Howard BE, Heber S: Towards reliable isoform quantification using RNA-
SEQ data. BMC Bioinformatics 2010, 11(Suppl 3):56.

Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res 2008, 18:1509-1517.

Weber APM, Weber KL, Carr K, Wilkerson C, Ohlrogge JB: Sampling the
Arabidopsis transcriptome with massively parallel pryrosequencing. Plant
Physiol 2007, 144(1):32-42.

Wall PK, Leebens-Mack J, Chanderbali AS, Barakat A, Wolcott E, Liang H,
Landherr L, Tomsho LP, Hu Y, Carlson JE, Ma H, Schuster SC, Soltis DE,
Soltis PS, Altman N, dePamphilis CW: Comparison of next generation
sequencing technologies for transcriptome characterization. BMC
Genomics 2009, 10:347.

Libault M, Farmer A, Joshi T, Takahashi K, Langley RJ, Franklin LD, He J,

Xu D, May G, Stacey G: An integrated transcriptome atlas of the crop
model Glycine max, and its use in comparative analyses in plants. Plant J
2010, 10:1111.

Severin AJ, Woody JL, Bolon YT, Joseph B, Diers BW, Farmer AD,
Muehlbauer GJ, Nelson RT, Grant D, Specht JE, Graham MA, Cannon SB,
May GD, Vance CP, Shoemaker RC: RNA-Seq atlas of Glycine max: A guide
to the soybean transcriptome. BMC Plant Biology 2010, 10:160.

LuT, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Li W,
Huang X, Han B: Functional annotation of the rice transcriptome at
single-nucleotide resolution by RNA-seq. Genome Res 2010, 20:1238-1249.
Barbazuk WB, Emrich SJ, Chen HD, Li L, Schnable PS: SNP discovery via
454 transcriptome sequencing. Plant J 2007, 51(5):910-918.

Cheung F, Haas BJ, Goldberg SMD, May GD, Xiao Y, Town CD: Sequencing
Medicago truncatula expressed sequenced tags using 454 Life Sciences
technology. BMC Genomics 2006, 7:272.

Novaes E, Drost DR, Farmerie WG, Pappas GJ Jr, Grattapaglia D, Sederoff RR,
Kirst M: High-throughput gene and SNP discovery in Eucalyptus grandis,
an uncharacterized genome. BMC Genomics 2008, 9:312.

Bellin D, Ferrarini A, Chimento A, Kaiser O, Levenkova N, Bouffard P,
Delledonne M: Combining next-generation pyrosequencing with
microarray for large scale expression analysis in non-model species. BMC
Genomics 2009, 10:555.

20.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Page 17 of 19

Collins LJ, Biggs PJ, Voelckel C, Joly S: An approach to transcriptome
analysis of non-model organisms using short-read sequences. Genome
Informatics 2008, 21:3-14.

Wang W, Wang Y, Zhang Q, Qi Y, Guo D: Global characterization of
Artemisia annua glandular trichome transcriptome using 454
pyrosequencing. BMC Genomics 2009, 10:465.

Trick M, Long Y, Meng J, Bancroft I: Single nucleotide polymorphism (SNP)
discovery in the polyploidy Brassica napus using Solexa transcriptome
sequencing. Plant Biotech J 2009, 7:334-346.

Michaud R, Lehman WF, Rumbaugh MD: World Distribution and Historical
Development. In Alfalfa and alfalfa improvement - Agronomy Monograph
no. 29. Edited by: Hanson AA, Barnes DK, Hill RR Jr. Madison, WI: ASA-CSSA-
SSSA; 1988:25-91.

National Agricultural Statistics Service: 2009 [http://www.nass.usda.gov], On-
line resource.

Samac DA, Jung H-JG, Lamb JFS: Development of alfalfa (Medicago sativa
L.) as a feedstock for production of ethanol and other bioproducts. In
Alcoholic Fuels. Edited by: Minteer S. Boca Raton, FL: CRC Press; 2006:79-98.
Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung H-JG, VandenBosch KA,
Vance CP, Gronwald JW: Transcript profiling of two alfalfa genotypes with
contrasting cell wall composition in stems using a cross-species
platform: optimizing analysis by masking biased probes. BMC Genomics
2010, 11:323.

Rumbaugh MD, Caddel JL, Rowe E: Breeding and Quantitative Genetics.
Alfalfa and Alfalfa Improvement. ASA Monograph 29 Madison, WI: American
Society of Agronomy; 1988, 777-808.

Brummer EC, Sledge MK, Bouton JH, Kochert G: Molecular Marker Analyses
in Alfalfa and Related Species. In DNA-based markers in plants. Edited by:
Phillips RL, Vasil IK. The Netherlands: Kluwer Academic; 2001:169-180.

Julier B, Flajoulot S, Barre P, Cardinet G, Santoni S, Huguet T, Huyghe C:
Construction of two genetic linkage maps in cultivated tetraploid alfalfa
(Medicago sativa) using microsatellite and AFLP markers. BMC Plant Biol
2003, 39.

Diwan N, Bhagwat AA, Bauchan GB, Cregan PB: Simple sequence repeat
DNA markers in alfalfa and perennial and annual Medicago species.
Genome 1997, 40:887-895.

Sledge MK, Ray IM, Jiang G: An expressed sequence tag SSR map of
tetrapolid alfalfa (Medicago sativa L.). Theor Appl Genet 2005, 111:980-992.
Yang SS, Xu WW, Tesfaye M, Lamb JFS, Jung H-JG, Samac DA, Vance CP,
Gronwald JW: Single-feature polymorphism discovery in the
transcriptome of tetraploid alfalfa. Plant Genome 2009, 2:224-232.

Zerbino DR, Birney E: Velvet: algorithms for de novo short read assembly
using de Bruijn graphs. Genome Res 2008, 18:821-829.

Gibbons JG, Janson EM, Hittinger CT, Johnston M, Abbot P, Rokas A:
Benchmarking next-generation transcriptome sequencing for functional
and evolutionary genomics. Mol Biol Evol 2009, 26(12):2731-2744.

Mizrachi E, Hefer CA, Ranik M, Joubert F, Myburg AA: de novo assembled
expressed gene catalog of a fast-growing Eucalyptus tree produced by
lllumina MRNA-Seq. BMC Genomics 2010, 11:681.

Garg R, Patel RK, Tyagi AK, Jain M: de novo assembly of chickpea
transcriptome using short reads for gene discovery and marker
identification. DNA Research 2011.

Birol I, Jackman SD, Nielsen CB, Qian JQ, Varhol R, Stazyk G, Morin RD,
Zhao Y, Hirst M, Schein JE, et al: de novo transcriptome assembly with
ABYSS. Bioinformatics 2009, 25(21):2872-2877.

Surget-Groba Y, Montoya-Burgos JI: Optimization of de novo
transcriptome assembly from next-generation sequencing data. Genome
Research 2010, 20:1432-1440.

Qases:[http//www.ebiac.uk/~zerbino/oases], (Jan 31st, website last accessed).
Quackenbush J: Computational analysis of microarray data. Nat Rev Genet
2001, 2:418-427.

Yang SS, Cheung F, Lee JJ, Ha M, Wei NE, Sze SH, Stelly DM, Thaxton P,
Triplett B, Town CD, Chen ZJ: Accumulation of genome-specific
transcripts, transcription factors and phytohormonal regulators during
early stages of fiber cell development in allotetraploid cotton. Plant J
2006, 47:761-775.

Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kriiger P, Selbig J,

Miller LA, Rhee SY, Stitt M: MAPMAN: a user driven tool to display
genomics data sets onto diagrams of metabolic pathways and other
biological processes. Plant J 2004, 37:914-939.


http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18516045?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19157957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19157957?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19859660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19336255?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19015660?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20810668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20810668?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20409267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20409267?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20105306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20105306?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550803?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17351049?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19646272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19646272?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20687943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20687943?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20627892?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17662031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17662031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17062153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17062153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17062153?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18590545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18590545?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19930683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19425143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19425143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818120?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19818120?dopt=Abstract
http://www.nass.usda.gov
http://www.ncbi.nlm.nih.gov/pubmed/20497574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20497574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20497574?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14683527?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18464874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18464874?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16075206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16075206?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18349386?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19706727?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21122097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21122097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21122097?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19528083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19528083?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20693479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20693479?dopt=Abstract
http://www.ebi.ac.uk/~zerbino/oases
http://www.ncbi.nlm.nih.gov/pubmed/11389458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16889650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16889650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16889650?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14996223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14996223?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14996223?dopt=Abstract

Yang et al. BMC Genomics 2011, 12:199
http://www.biomedcentral.com/1471-2164/12/199

42.

43.

44,

45,

46.

47.

48.

49.

50.

51

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

Thiel T, Michalek W, Varshney RK, Graner A: Exploiting EST databases for
the development and characterization of gene-derived SSR-markers in
barley (Hordeum vulgare L.). Theor Appl Genet 2003, 106:411-422.

Ellis JR, Burke JM: EST-SSRs as a resource for population genetic analyses.
Heredity 2007, 99:125-132.

Rozen S, Skaletsky H: Primer3 on the www for general users and for
biologist programmers. In Bioinformatics Methods and Protocols: Methods in
Molecular Biology. Edited by: Krawetz S, Misener S. Totowa, NJ: Humana
Press; 2000:365-386.

Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and calling
variants using mapping quality scores. Genome Res 2008,
18(11):1851-1858.

Schnidelman G, Morikami A, Jung J, Baskin TI, Carpita NC, Derbyshire P,
McCann MC, Benfey PN: COBRA encodes a putative GPl-anchored
protein, which is polarly localized and necessary for oriented cell
expansion in Arabidopsis. Genes Dev 2001, 15(9):1115-1127.

Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human gemone.
Genome Biol 2009, 10:R25.

Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder M:
The transcriptional landscape of the yeast genome defined by RNA
sequencing. Science 2008, 320(5881):1344-1349.

Ji W, Zhou W, Gregg K, Yu N, Davis S, Davis S: A method for cross-species
gene expression analysis with high-density oligonucleotide arrays. Nuc/
Acids Res 2004, 32:¢93.

Yang SS, Valdés-Lopez O, Xu WW, Bucciarelli B, Gronwald JW, Hernandez G,
Vance CP: Transcript profiling of common bean (Phaseolus vulgaris L.)
using the GeneChip® Soybean Genome Array: optimizing analysis by
masking biased probes. BMC Plant Biol 2010, 10:85.

Czechowski T, Stitt M, Altmann T, Udvardi MK, Scheible WR: Genome-wide
identification and testing of superior reference genes for transcript
normalization in Arabidopsis. Plant Physiol 2005, 139(1):5-17.

Wang L, Feng Z, Wang X, Wang X, Zhang X: DEGseq: an R package for
identifying differentially expressed genes from RNA-seq data.
Bioinformatics 2010, 26:136-138.

Sampedro J, Cosgrove DJ: The expansin superfamily. Genome Biol 2005,
6:242.

Pelloux J, Rustérucci C, Mellerowicz EJ: New insights into pectin
methylesterase structure and function. Trends Plant Sci 2007, 12:267-277.
Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR: The irregular
xylem3 locus of Arabidopsis encodes a cellulose synthase required for
secondary cell wall synthesis. Plant Cell 1999, 11:769-779.

Zhong R, Morrison WH I, Freshour GD, Hahn MG, Ye ZH: Expression of a
mutant form of cellulose synthase AtCesA7 causes dominant negative
effect on cellulose biosynthesis. Plant Physiol 2003, 132:786-795.

Bosca S, Barton CJ, Taylor NG, Ryden P, Neumetzler L, Pauly M, Roberts K,
Seifert GJ: Interactions between MUR10/CesA7 dependent secondary
cellulose biosynthesis and primary cell wall structure. Plant Physiol 2006,
142:1353-1363.

Baucher M, Bernard-Vailhé MA, Chabbert B, Besle JM, Opsomer C, Van
Montagu M, Botterman J: Down-regulation of cinnamyl alcohol
dehydrogenase in transgenic alfalfa (Medicago sativa L.) and the effect
on lignin composition and digestibility. Plant Mol Biol 1999, 39:437-447.
Guo D, Chen F, Inoue K, Blount JW, Dixon RA: Down-regulation of caffeic
acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in
transgenic alfalfa (Medicago sativa L.): impacts on lignin structure and
implications for the biosynthesis of G and S lignin. Plant Cell 2001,
13:73-88.

Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA: Targeted
down-regulation of cytochrome P450 enzymes for forage quality
improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci USA 2005,
102:16573-16578.

Wooley R, Ruth M, Glassner D, Sheehan J: Process design and costing of
bioethanol technology: a tool for determining the status and direction
of research and development. Biotechnol Prog 1999, 15:794-803.

Wooley R, Ruth M, Sheehan J, Ibsen K, Majdeski H, Galvez A: Lignocellulosic
biomass to ethanol process design and economics utilizing co-current
dilute acid prehydrolysis and enzymatic hydrolysis: current and futuristic
scenarios. National Renewable Energy Laboratory, Golden CO, NREL/TP-
580-26157; 1999.

63.

64.

65.

66.

67.

68.

69.

70.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

Page 18 of 19

Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B,
Montague L, Slayton A, Lukas J: Lignocellulosic biomass to ethanol
process design and economics utilizing co-current dilute acid
prehydrolysis and enzymatic hydrolysis for corn stover. National
Renewable Energy Laboratory, Golden CO, NREL/TP-510-32438; 2002.

Yang B, Wyman CE: Pretreatment: the key to unlocking low cost
cellulosic ethanol. Biofuels Bioproducts & Biorefining 2008, 2:26-40.

Turner SR, Somerville CR: Collapsed xylem phenotype of Arabidopsis
identifies mutants deficient in cellulose deposition in the secondary cell
wall. Plant Cell 1997, 9:689-701.

Taylor NG, Laurie S, Turner SR: Multiple cellulose synthase catalytic
subunits are required for cellulose synthesis in Arabidopsis. Plant Cell
2000, 12:2529-2539.

Sauer N: Molecular physiology of higher plant sucrose transporters. FEBS
Lett 2007, 581:2309-2317.

Riesmeier JW, Hirner B, Frommer WB: Potato sucrose transporter
expression in minor veins indicates a role in phloem loading. Plant Cell
1993, 5:1591-1598.

Truernit E, Sauer N: The promoter of the Arabidopsis thaliana SUC2
sucrose-H+ symporter gene directs expression of beta-glucuronidase to
the phloem: evidence for phloem loading and unloading by SUC2.
Planta 1995, 196:564-570.

Stadler R, Truernit E, Gahrtz M, Sauer N: The AtSUC1 sucrose carrier may
represent the osmotic driving force for anther dehiscence and pollen
tube growth in Arabidopsis. Plant J 1999, 19:269-278.

Barth |, Meyer S, Sauer N: PmSUC3: characterization of a SUT2/SUC3-type
sucrose transporter from Plantago major. Plant Cell 2003, 15:1375-1385.
Meyer S, Lauterbach C, Niedermeier M, Barth |, Sjolund RD, Sauer N:
Wounding enhances expression of AtSUC3, a sucrose transporter from
Arabidopsis sieve elements and sink tissues. Plant Physiol 2004,
134:684-693.

Haigler CH, Singh B, Wang G, Zhang D: Genomics of cotton fiber
secondary wall deposition and cellulose biogenesis. In Genetics and
Genomics of Cotton. Plant Genetics and Genomics: Crops and Models 3.
Edited by: Paterson AH. New York, USA: Springer Science Business Media;
2009:385-417.

Somerville CR: Cellulose synthesis in higher plants. Annu Rev Cell Dev Biol
2006, 22:53-78.

Fujii S, Hayashi T, Mizuno K: Sucrose synthase is an integral component of
the cellulose synthesis machinery. Plant Cell Physiol 2010, 51:294-301.
Rolland F, Baena-Gonzalez E, Sheen J: Sugar sensing and signaling in
plants: conserved and novel mechanisms. Annu Rev Plant Biol 2006,
57:675-709.

Poirier Y, Thoma S, Somerville C, Schiefelbein J: Mutant of Arabidopsis
deficient in xylem loading of phosphate. Plant Physiol 1991, 97:1087-1093.
Hamburger D, Rezzonico E, MacDonald-Comber Petétot J, Somerville C,
Poirier Y: Identification and characterization of the Arabidopsis PHO1
gene involved in phosphate loading to the xylem. Plant Cell 2002,
14:889-902.

Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S,
Poirier Y: Members of the PHO1 gene family show limited functional
redundancy in phosphate transfer to the shoot, and are regulated by
phosphate deficiency via distinct pathways. Plant J 2007, 50:982-994.
Ribot C, Wang Y, Poirier Y: Expression analyses of three members of the
AtPHO1 family reveal differential interactions between signaling
pathways involved in phosphate deficiency and the responses to auxin,
cytokinin, and abscisic acid. Planta 2008, 227:1025-1036.

Chen YF, Li LQ, Xu Q, Kong YH, Wang H, Wu WH: The WRKY®6 transcription
factor modulates PHOSPHATE1 expression in response to low Pi stress
in Arabidopsis. Plant Cell 2009, 21:3554-3566.

Teale WD, Paponov IA, Palme K: Auxin in action: Signalling, transport and
the control of plant growth and development. Nat Rev Mol Cell Biol 2006,
7:847-859.

Ye ZH: Vascular tissue differentiation and pattern formation in plants.
Annu Rev Plant Biol 2002, 53:183-202.

De Smet |, Jirgens G: Patterning the axis in plants - auxin in control. Curr
Opin Genet Dev 2007, 17:337-343.

Lucas M, Godin C, Jay-Allemand C, Laplaze L: Auxin fluxes in the root apex
co-regulate gravitropism and lateral root initiation. J Exp Bot 2008,
59:55-66.


http://www.ncbi.nlm.nih.gov/pubmed/12589540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12589540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12589540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17519965?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18714091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18714091?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11331607?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19261174?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18451266?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15247326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15247326?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20459672?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16166256?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19855105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19855105?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16356276?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17499007?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10330464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10330464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10330464?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12805608?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17041031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17041031?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10092173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10092173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10092173?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11158530?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16263933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16263933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16263933?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10514249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10514249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10514249?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21324176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21324176?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9165747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9165747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9165747?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11148295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11148295?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17434165?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8312741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8312741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7647685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7647685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7647685?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10476074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10476074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10476074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12782730?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14739351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14739351?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16824006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20056592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20056592?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16669778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16669778?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16668493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16668493?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11971143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11971143?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17461783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17461783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17461783?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18094993?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19934380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19934380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19934380?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16990790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16990790?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12221972?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17627808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17720688?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17720688?dopt=Abstract

Yang et al. BMC Genomics 2011, 12:199
http://www.biomedcentral.com/1471-2164/12/199

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.

98.

104.

106.

107.

108.

Sundberg B, Uggla C, Tuominen H: Cambial growth and auxin gradients.
In Cell and Molecular Biology of Wood Formation. Edited by: Savidge R,
Barnett J, Napier R. Oxford, UK: BIOS Scientific Publishers; 2000:169-188.
Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-
Rechenmann C, Sandberg G, Bhalerao RP: Dissecting the molecular basis
of the regulation of wood formation by auxin in hybrid aspen. Plant Cell
2008, 20:843-855.

Kim HJ, Triplett BA: Cotton fiber growth in planta and in vitro. Models for
plant cell elongation and cell wall biogenesis. Plant Physiol 2001,
127:1361-1366.

Bennett MJ, Marchant A, Green HG, May ST, Ward SP, Millner PA, Walker AR,
Schulz B, Feldmann KA: Arabidopsis AUX1 gene: a permease-like regulator
of root gravitropism. Science 1996, 273:948-950.

Zhao C, Craig JC, Petzold HE, Dickerman AW, Beers EP: The xylem and
phloem transcriptomes from secondary tissues of the Arabidopsis root-
hypocotyl. Plant Physiol 2005, 138(2):803-818.

Marchant A, Bhalerao R, Casimiro |, EKI&f J, Casero PJ, Bennett M,

Sandberg G: AUX1 promotes lateral root formation by facilitating indole-
3-acetic acid distribution between sink and source tissues in the
Arabidopsis seedling. Plant Cell 2002, 14:589-597.

Kakani A, Li G, Peng Z: Role of AUX1 in the control of organ identity
during in vitro organogenesis and in mediating tissue-specific auxin and
cytokinin interaction in Arabidopsis. Planta 2009, 229:645-657.

Mattsson J, Sung ZR, Berleth T: Responses of plant vascular systems to
auxin transport inhibition. Development 1999, 126:2979-2991.

Klee H, Estelle M: Molecular genetic approaches to plant hormone
biology. Annu Rev Plant Physiol Plant Mol Biol 1991, 42:529-551.

Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C,
Bennett MJ: AUX1 regulates root gravitropism in Arabidopsis by
facilitating auxin uptake within root apical tissues. EAMBO J 1999,
18:2066-2073.

Benkové E, Michniewicz M, Sauer M, Teichmann T, Seifertové D, Jirgens G,
Friml J: Local, efflux-dependent auxin gradients as a common module
for plant organ formation. Cell 2003, 115:591-602.

Blancaflor EB, Masson PH: Plant gravitropism. Unraveling the ups and
downs of a complex process. Plant Physiol 2003, 133:1677-1690.

Blilou I, Xu J, Wildwater M, Willemsen V, Paponov |, Friml J, Heidstra R,

Aida M, Palme K, Scheres B: The PIN auxin efflux facilitator network
controls growth and patterning in Arabidopsis roots. Nature 2005,
433:39-44.

Li X, Chapple C: Understanding lignification: challenges beyond
monolignol biosynthesis. Plant Physiol 2010, 154:449-452.

. Bonawitz ND, Chapple C: The genetics of lignin biosynthesis: connecting

genotype to phenotype. Ann Rev Genet 2010, 44:337-363.

. Boija E, Johansson G: Interactions between model membranes and lignin-

related compounds studied by immobilized liposome chromatography.
Biochim Biophys Acta 2006, 1758:620-626.

. Kaneda M, Rensing KH, Wong JCT, Banno B, Mansfield SD, Samuels AL:

Tracking monolignols during wood development in lodgepole pine.
Plant Physiol 2008, 147:1750-1760.

. Marinova K, Pourcel L, Weber B, Schwarz M, Barron D, Routaboul JM,

Debeaujon |, Klein M: The Arabidopsis MATE transporter TT12 acts
as a vacuolar flavonoid/H+ -antiporter active in proanthocyanidin-
accumulating cells of the seed coat. Plant Cell 2007,
19(6):2023-2038.

Zhao J, Dixon RA: MATE transporters facilitate vacuolar uptake of
epicatechin 3'-O-glucoside for proanthocyanidin biosynthesis in
Medicago truncatula and Arabidopsis. Plant Cell 2009, 21:2323-2340.

. Yazaki K: ABC transporters involved in the transport of plant secondary

metabolites. FEBS Lett 2006, 580:1183-1191.

Rea PA: Plant ATP-binding cassette transporters. Annu Rev Plant Biol 2007,
58:347-375.

Usadel B, Nagel A, Steinhauser D, Gibon Y, Bldsing OF, Redestig H,
Sreenivasulu N, Krall L, Hannah MA, Poree F, Fernie AR, Stitt M: PageMan:
An interactive ontology tool to generate, display, and annotate
overview graphs for profiling experiments. BMC Bioinformatics 2006, 7:535.
Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display
of genome-wide expression patterns. Proc Natl Acad Sci USA 1998,
95:14863-14868.

. Schmittgen TD, Livak KJ: Analyzing real-time PCR data by the

comparative Cy method. Nat Protoc 2008, 3(6):1101-1108.

Page 19 of 19

doi:10.1186/1471-2164-12-199

Cite this article as: Yang et al: Using RNA-Seq for gene identification,
polymorphism detection and transcript profiling in two alfalfa
genotypes with divergent cell wall composition in stems. BMC Genomics
2011 12:199.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BioMed Central



http://www.ncbi.nlm.nih.gov/pubmed/18424614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18424614?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11743074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11743074?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8688077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/8688077?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923329?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11910006?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19052775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19052775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19052775?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10357941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10357941?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10205161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10205161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14651850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14651850?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14681531?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15635403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15635403?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20921161?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20809799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20809799?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16733046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16733046?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18550683?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17601828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17601828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17601828?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19684242?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16364309?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17263663?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17176458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17176458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17176458?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9843981?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18546601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18546601?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18546601?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Cell wall composition of stems of genotypes 708 and 773
	RNA-Seq using the Illumina GA-II platform
	RNA-Seq using the GS FLX Titanium platform
	Alfalfa Gene Index 1.0 (MSGI 1.0)
	Gene annotation and functional classification
	SSR detection
	SNP detection
	Comparison of MSGI 1.0 and Mt3.0 cds as reference sequences for digital transcript profiling
	Transcript profiling of stems of alfalfa genotypes 708 and 773
	Identification of differentially expressed genes

	Conclusion
	Methods
	Plant materials and cell wall analysis
	RNA extraction, cDNA library preparation and sequencing
	de novo transcriptome assembly
	Alfalfa Gene Index assembly
	Polymorphism detection
	Digital gene expression analysis
	SNP genotyping
	Real-time quantitative RT-PCR (qRT-PCR)

	Acknowledgements
	Author details
	Authors' contributions
	References

