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Abstract

Background: Transcription factors in disease-relevant pathways represent potential drug targets, by impacting a
distinct set of pathways that may be modulated through gene regulation. The influence of transcription factors is
typically studied on a per disease basis, and no current resources provide a global overview of the relations
between transcription factors and disease. Furthermore, existing pipelines for related large-scale analysis are tailored
for particular sources of input data, and there is a need for generic methodology for integrating complementary
sources of genomic information.

Results: We here present a large-scale analysis of multiple diseases versus multiple transcription factors, with a
global map of over-and under-representation of 446 transcription factors in 1010 diseases. This map, referred to as
the differential disease regulome, provides a first global statistical overview of the complex interrelationships
between diseases, genes and controlling elements. The map is visualized using the Google map engine, due to its
very large size, and provides a range of detailed information in a dynamic presentation format.
The analysis is achieved through a novel methodology that performs a pairwise, genome-wide comparison on the
cartesian product of two distinct sets of annotation tracks, e.g. all combinations of one disease and one TF.
The methodology was also used to extend with maps using alternative data sets related to transcription and
disease, as well as data sets related to Gene Ontology classification and histone modifications. We provide a web-
based interface that allows users to generate other custom maps, which could be based on precisely specified
subsets of transcription factors and diseases, or, in general, on any categorical genome annotation tracks as they
are improved or become available.

Conclusion: We have created a first resource that provides a global overview of the complex relations between
transcription factors and disease. As the accuracy of the disease regulome depends mainly on the quality of the
input data, forthcoming ChIP-seq based binding data for many TFs will provide improved maps. We further believe
our approach to genome analysis could allow an advance from the current typical situation of one-time integrative
efforts to reproducible and upgradable integrative analysis. The differential disease regulome and its associated
methodology is available at http://hyperbrowser.uio.no.

Background
Knowledge of the molecular biology of the cell is rapidly
being gained, providing increasing detail of the cellular
signalling systems, as well as better mapping of the var-
ious parts of cell regulation. Among the elements that
provide dynamics to a signalling system are the transcrip-
tion factors that bind to sequence specific transcription
factor binding sites (TFBSs) along the DNA to regulate

gene transcription. Transcription factors represent a
potential as drug targets, as ablation of activity of a cer-
tain transcription factor may impact a distinct set of
genes under its control. One option is therefore to target
a transcription factor of a disease-relevant pathway.
However, the challenges associated with the develop-

ment of drugs for transcription factors have to some
extent limited their use, partly due to the structural
requirements of inhibition. A recent example of a success-
ful strategy involves inhibition of NOTCH1 in leukemia
[1], hinting towards a more rapid development of opportu-
nities for transcription factor inhibition. Other examples
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targeting transcription factors using small molecule drugs
include Stat3 [2] and NFKappaB [3].
The development of a global map of transcription fac-

tor over-and under-representation in disease could
reveal information relevant for drug target prioritization,
as well as serving as a novel knowledge resource.
The relation between a single transcription factor (TF)

and a single disease can be probed by evaluating the fre-
quency of binding sites for the TF in regulatory regions of
genes assumed to have a role in the disease. One useful
strategy in this direction has been to identify differentially
expressed genes in a disease state, followed by motif
discovery [4]. Binding motif profiles are available for a
large number of TFs in motif libraries like Transfac [5]
and JASPAR [6], facilitating investigations of multiple TFs.
With the advent of technology such as ChIP-chip [7]
and ChIP-seq [8], it is now becoming possible to map
the binding sites for each TF in unprecedented detail,
although such experimental data is still sparse. Therefore,
genome-wide predictions of binding sites, albeit noisy,
remain valuable sources, and predictions for a large num-
ber of TFs are available [9,10], as well as predictions of the
target genes for a large number of TFs [11,12] A number
of in-depth studies have addressed the functional charac-
terization of TF binding motifs [13-15]. Also, several
sources provide information regarding gene-associations
for a range of diseases. Phenopedia [16] is a recently devel-
oped disease-centered view of the manually curated
Human Genome Epidemiology Network (HuGENet) data-
base of genetic associations [17], covering all multifactorial
diseases. Another approach is represented by the IntOGen
tool, which facilitates integration of data sources relevant
for cancer development [18]. Combining such resources
with TF binding predictions now permit the development
of a global visualization of statistical overrepresentation of
regulatory elements across all diseases.

Results
Pairwise analysis of cartesian products
In order to advance from the current typical situation of
one-time integrative efforts, we have created a generic
methodology for integrating complementary sources of
genomic information. This is based on an abstract
representation of genomic information in the form of
genome annotation tracks, allowing very different infor-
mation types to be treated in a similar manner. Each
input source is a set of related genome annotation
tracks, e.g. a set of disease tracks or a set of TF tracks.
The methodology performs a pairwise, genome-wide
comparison on the cartesian product of two distinct sets
of annotation tracks, e.g. all combinations of one disease
and one TF. The results are provided in the form of
tables and interactive heatmaps with the underlying data
easily available.

The pairwise comparison of annotations is based on a
principled mathematical approach to genomic analysis,
where the test statistic in principle can be selected from a
range of relations between annotation tracks generically
represented as tracks of points, segments or functions.
Based on the selected test-statistic, normalized values of
over-/under-representation are computed and visualized
(see Figure 1 for a schematic representation of the strat-
egy and Methods for details).

Differential disease regulome
In order to obtain a global view of diseases and transcrip-
tion factors, we have used our integrative methodology to
perform a large-scale analysis on the combination of the
Phenopedia disease-gene catalogue [16] and a recent
resource of predicted target genes of TFs [12] (where the
datasets of 1010 diseases and 446 TF motifs are con-
structed as detailed in Methods). The resulting map is
referred to as the differential disease transcriptional regu-
lome. For each combination of disease and TF (i.e. the
Cartesian product), we find the intersection of TF target
genes and disease-associated genes across the genome.
Under our main scheme, we investigate deviations from
the average across the set of all selected diseases and
therefore refer to the regulome as differential. We have
developed two different views of the resulting data: a
dynamic list of TFs for each disease, and a clustered heat
map representation. While the dynamic lists provide direct
access to z-score values of over-/under-representation, the
heat map representation allows a broader overview of
results, providing powerful visual clues of the most deviant
associations, and also providing a broad impression of
similarities and differences between specific TFs/diseases
of interest. As both rows and columns are clustered, dis-
eases with similar profiles of association to TFs will be
adjacent (and similarly for TFs against diseases), allowing
larger patterns of associations between sets of diseases and
TFs to be spotted visually (as well as specific deviances
within such clusters). The clustered heat map was visua-
lized using the Google Maps engine, due to the very large
number of elements (see Figure 2).
The information to be gained from this approach will

obviously depend on the signal-to-noise ratio in the
underlying data. To demonstrate the presence of useful
signals in the disease regulome, we analyzed a prominent
set of TF motifs that were overrepresented in a set of 116
immune related conditions, including immunologic defi-
ciency syndromes, graft versus host disease, asthma, aller-
gies, a number of autoimmune and infectious diseases.
The cluster was defined by six NF-�B/Rel-related TF
motifs. A smaller cluster based on a subset of 81 of the
immune related conditions was also identified, based on
six TF motifs, four related to the IRF family, one to Stat1
and to one Cux1 (See Supplemental Results in Additional
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file 1). There is currently intense ongoing activity in map-
ping of the regulation of immune diseases, and both
experimental data and computational methods are
applied. In essence, all of the TFs identified here have

previously been implicated in important immune related
settings [19-26]. For each cluster, the underlying genes
were ranked according to the number of TF bindings
found. The highest scoring gene was TNF, regulated by
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Figure 1 Schematic model of regulome construction. Two input sources are selected, e.g a set of TF tracks and a set of disease tracks. For
each combination, the pairwise relation model, in this case the number or genes containing TF binding locations, is evaluated and subsequently
differentiated against the full matrix of counts. The main output is an interactive heat map of over-/under-representation that for each entry also
includes detailed information and links to follow-up analysis. The regulome construction is performed by a web-based system, the Genomic
HyperBrowser [33], that allows input data, a pairwise relation model and a measure of deviation to be selected.

Figure 2 A screenshot of the differential disease regulome, using Google Maps API http://code.google.com/apis/maps/index.html for
visualization and user interface. Detailed information about each disease-TF combination is available. The selected cell contains information
about the overrepresentation of HIF-1alpha in the regulation of the genes associated to Barret Esophagus, a relation previously reported [35].
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the NF-�B/Rel TFs, according to the clustering. When
ranking diseases according to effect size, i.e. the over-/
under-representation of TF binding as compared with
the expected value for that disease, a set of autoimmune
diseases, including arteritis and spondylitis scored
highest.
In addition to the immune-related example, the dis-

ease regulome contains a vast number of small and
large clusters not described further here, that may repre-
sent interesting hypotheses for further investigation (see
Figure 3 and Additional file 2 and 3 for listings). One
example is that of the ETS1 transcription factor (V
$ETS1_B), indicated to be statistically significantly over-
represented in glioblastoma and astrocytoma (indexes:
(48, 141 and 142)). Using a decoy strategy to function-
ally deactivate ETS1, Sahin et al. could demonstrate
reduced tumorigenesis of rat C6 glioma cells in an
in vivo model, underlining the concept value [27].
An additional example investigation of a small cluster

is provided in Additional file 1.

A flexible approach to integrative genomics
There are several reasons why the process of generating
a resource like the disease regulome should be as highly
automated and as flexible in scope as possible.
First, there is an obvious need to update maps such as

the disease regulome, as the underlying data quality con-
stantly improves. Second, there are also presently several
alternative sources available both for disease associations
and regulation, each having different characteristics, and
thus having the potential to provide complementary infor-
mation. We have generated various alternate versions of
the disease regulome based on combinations of different
sources of regulation data. For diseases, we have used both
literature-mined [28] and experimentally-based cancer dis-
ease associations [18], and for TFs, we have used predicted
binding sites from UCSC (see Methods). Third, the disease
regulome represents only one instance of a whole class
of similar maps that may be generated. We have compiled
a large collection of resources similar to the disease regu-
lome, addressing other regulatory aspects of genes, includ-
ing microRNAs, histone modifications and repeat
structures in DNA instead of TFs, and with gene regions
associated to Gene Ontology terms or even simply chro-
mosome arms or cytobands instead of disease gene regions
(Additional file 1). A total of 17 different regulomes can be
browsed interactively on our web server http://hyperbrow-
ser.uio.no.

Analyzing the immune component in alternative
regulomes
To further characterize the immune component that we
observed in the disease regulome, we examined a map of
all gene ontology terms versus TFs for potential immune

related clusters, and could indeed identify two clusters
containing 83 and 79 immune related GO terms, respec-
tively. This cluster was intriguingly defined essentially by
the same TF motifs as for the disease list, indicating that
this is a strong signal of functional importance (Additional
file 1). Based of the top 100 ranked genes from each clus-
ter, we identified the genes with most influence on the dif-
ferences and similarities across the clusters, thus most
central for regulation. Of these 275 unique genes, 14 were
found in all the clusters, while an additional 85 genes
were present in more than one cluster (see Figure 4 and
Table 1). As it is known that there is a level of transcrip-
tional regulation by histone modifications [29], we further
analyzed a heatmap of co-localization of TF binding sites
and various histone modifications in T-cells, to examine
whether we could identify a cluster of TFs similar to those
we had identified with the disease and GO regulomes. We
identified a cluster that contained 7 of the 9 TF motifs
previously found that were part of the dataset used (Addi-
tional file 1), with the histone modifications H3K4me3,
H3K36me3 and H2AZ being enriched. Interestingly, the
H3K4me3 pattern has been identified as important for the
binding of the transcription factor and autoimmune inhi-
bitor Aire, which is not present in the TF data set used. It
has previously been speculated that IRF family members
may form a higher order transcriptional complex with
Aire [30]. The H3K36me3 modification has been linked to
a number of autoimmune diseases through SNP associa-
tions in GWAS studies [31].

Discussion
We have here introduced a generic methodology for
large-scale integration of genomic information. Based on
this methodology we have generated a collection of
novel genomic resources in the form of interactive maps
that show the relation between various genomic ele-
ments. This collection of genomic resources includes
the disease regulome, which shows the relation between
TFs and diseases in the form of ≈450000 values of
over-/under-representation for specific combinations of
a TF and a disease.
A common approach to automating large-scale analysis

is the construction of a dedicated pipeline for the purpose.
Examples of this include a pipeline of for integrating bind-
ing site scanning of TF motifs with sets of gene promoters
[14], and the GREAT tool for finding enriched annotations
in an input set of genomic regions [15]. Although such
pipelines may allow e.g. thousands of TF vs gene set com-
binations to be explored efficiently, the construction of the
pipeline itself is a labour-intensive task. The resulting
pipeline may be quite ad hoc and limited to certain inves-
tigations. Our methodology is based on a generic repre-
sentation of genomic information in the form of
annotation tracks, making it possible to exchange both
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input sources for a pairwise comparison. The methodology
presented here can thus be used in a much wider range of
settings than what can be achieved with a typical pipeline.
We are able to treat the relation between for example
chromosomes and histone modifications in the same man-
ner as the TF-disease relation. This allows us to generate
the large number of maps presented in the article, and

also allows our methodology to be easily applied to future
investigations.
In light of the many possible variations of input data

and parameterizations, the question of the robustness of
the methodology logically arises. Consider again the
immune-related clusters discussed previously. Looking
at the hit rate of a gene (the percentage of disease-TF

Figure 3 A small part of the differential disease regulome, showing a cluster of TFs associated with a range of lipid metabolism
disorders in addition to gallstone, including dendrograms of the hierarchical clustering of the TFs and diseases. The disease category
“Diseases in Twins” seems to have joined the cluster because of twin studies on lipid metabolism and gallstone. The color of each square
indicates the difference between the observed and expected number of gene regions with TF bindings, as denoted by z-scores calculated under
the specific null hypothesis. Black denotes no difference, blue to cyan (lowest) denotes under-representation, while red to yellow (highest)
represent over-representation of TF binding. Small circles denote significant under-or over-representation, as calculated by the appropriate
hypothesis test (see Additional file 1). Different parts of the regulome have been joined together in the figure and dendrograms have been
shortened for illustrative purposes.
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pairs in the clusters where the gene is relevant to dis-
ease regulation) we find that only 24 genes have a hit
rate exceeding 25%. Still, the combined hit rate of these
24 genes only comprise about a third of the total hit
rate, leaving the rest of the contributions scattered over
many genes. These clusters therefore seem to be quite
robust as regards to noise of single genes. Other clusters
may, however, be chiefly caused by one or a small num-
ber of genes. Inspecting the gene lists is therefore
important when assessing the robustness of a finding.
The results of the clustering algorithm seem to be quite

dependent on variations in parameters and input data.
When parameters are varied, large and distinct clusters
will usually stay robust, but smaller, less well-defined
clusters will typically move around, or be split and
merged together. Thus, there is no “final” version of the
disease regulome. We provide a set of disease regulomes
with varying data sources and under two specific null
hypotheses (Additional file 1), in addition to a range of
other maps based on other combination of data sources.
Note that clustering of diseases in the disease regulome
heat map should not be thought of in terms of phenoty-
pic similarities, and neither in terms of general similarity
at a molecular level. The clustering is exclusively focused
on transcriptional regulation of genes connected to the
diseases, where high similarity between two diseases

Figure 4 Venn-diagram of the number of contributing genes
that are unique for different combinations of the four
immune-related clusters analyzed, one pair of which were
based on NF-�B/Rel-related TF motifs (I) and the other pair on
IRF/Stat1/Cutl1-related TF motifs (II). Note that each cluster pair
is comprised of one cluster found in the disease regulome and one
found in the TF vs Gene Ontology regulome. Only the 100 genes
with highest hit rate were considered (including all genes with the
exact same hit rate as the 100th gene). The gene symbols for a
select set of combinations are presented in Table 1. The figure was
created with the online tool VENNY, by Oliveros, J.C. http://
bioinfogp.cnb.csic.es/tools/venny/index.html.

Table 1 Lists of unique genes contributing to the immune clusters

All
clusters

Both NF-�B/Rel
clusters

Both IRF/Stat1/Cutl1
clusters

Both disease
clusters

Both GO
clusters

NF-�B/Rel
cluster (GO)

Gene Hit rate Gene Hit rate Gene Hit rate Gene Hit rate Gene Hit rate Gene Hit rate

HLA-A 22.1% TNF 99.5% TLR4 12.1% HLA-B 30.1% CSF1 19.3% ICAM1 74.7%

NOD2 20.1% LTA 58.3% IL6 9.5% CARD15 22.3% TNFSF13 13.3% IRF6 44.0%

STAT1 12.2% TGFB1 36.9% CTLA4 9.4% VDR 17.5% FLT3LG 8.0% CD69 28.9%

CD40 11.6% CD4 24.8% CCR5 8.5% VEGF 4.1% RELB 6.9% REL 27.7%

TAP1 10.7% AKT1 12.1% TLR3 7.7% NFKBIZ 3.3% CD27 6.0% TNFRSF4 21.1%

NFKBIA 10.7% LTB 11.6% HLA-DRB1 7.2% COL6A1 2.4% PER1 5.9% RELA 18.7%

IRF1 10.1% IL1RN 10.2% IL2 5.9% PSORS1 2.1% PTPN6 5.6% EDC4 16.9%

CXCL10 10.0% IL2RA 10.2% IFNB1 4.2% CYBA 1.7% LCK 5.3% CD58 14.5%

IRF5 7.3% TNFRSF1B 5.3% CCL2 4.1% DDAH2 1.5% MYD88 5.0% TNFRSF18 14.1%

PSMB8 6.7% CD86 5.3% TNFSF13B 3.5% CYP27B1 1.4% PTMA 4.8% CD83 14.1%

PSMB9 6.2% ITGAM 5.1% MX1 3.3% PLAU 1.4% IL27 4.7% TNFRSF9 12.9%

FAS 5.5% TRADD 5.0% STAT5A 3.0% RUNX1 1.3% B2M 4.3% IL17C 12.0%

IL7R 2.6% MIF 3.9% NOD1 3.0% RUNX3 1.2% IRF2 3.1% CD5 10.8%

IFIH1 1.9% NFKBIB 3.4% TLR1 2.9% PAX2 1.1% STAT3 3.0% CD70 9.6%

CXCL5 3.2% HLA-DMA 2.3% CCND1 1.0% TAPBP 2.9% DPP4 9.6%

PTGS1 3.0% CASP1 2.1% RXRB 1.0% BIRC3 2.5% NFATC2 9.0%

SOCS1 1.7% HIF1A 0.8% TRAF2 9.0%

TRIM21 1.3% CREB1 8.0%

CCL21 1.1% ...

Lists of genes that are unique for selected combinations of the four immune-related clusters analyzed (see Figure 4). For each gene, the hit rate (proportion of
cluster where the gene is relevant to disease regulation) is presented. The NF-�B/Rel cluster in the Gene Ontology regulome is included because of the large hit
rates (only the top of the list is shown). Note that TNF is relevant for regulation for nearly all disease-TF pairs in both NF-�B/Rel-related clusters. The full gene
listing is included in Additional file 4.
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could mean that these diseases share several associated
genes, or they could be associated to different genes that
are still targeted by many of the same TFs.
As genome-wide dataset typically contain a substantial

amount of noise, a main consideration when generating
regulomes is to provide sufficient signal-to-noise ratio for
the global maps to be meaningful. Predicted TF binding
sites are currently of very limited accuracy. The predicted
TF-gene bindings used in the main disease regulome are
more accurate [12], but could still be largely improved by
either more precise prediction or by substituting predic-
tions with forthcoming ChIP-seq based results for many of
the TFs. For instance, a very interesting regulome would
be that of combining TF binding sites actually used in T
cells and T cell histone modifications, as opposed to the
presently applied less precise prediction scheme. The Phe-
nopedia disease-association database [16] is constantly
growing, and could also be complemented by experimen-
tally-based evaluations of disease associations. The TF-
relevance for a given disease could use more sophisticated
strategies than the generic model of track intersection
used here, as could other model assumptions for the
expected values be improved from the two used here.
A large-scale, automated effort like the disease regulome

clearly represents an inferior handling of a specific TF-dis-
ease relation compared to what can be achieved by a sepa-
rate, manual investigation of the same relation. We don’t
claim that each value in the disease regulome represents a
satisfactory conclusion regarding the relation between a
specific TF and disease. What we claim is merely that our
approach is able to capture a part of the underlying reality,
and that multiplied with the large number of combinations
studied, a map like the disease regulome constitutes a sub-
stantial resource of genomic information. We consider the
disease regulome as mainly a hypothesis-generating tool to
be used as the starting point for a number of future
investigations.

Conclusion
We believe the disease regulome may prove immensely
useful in early phases of research projects, as a resource
for obtaining an initial overview of the regulation of dis-
ease and for supporting the formation of hypotheses to be
studied further by computational or experimental meth-
ods. Moreover, we believe that the disease regulome will
provide important pathway information for diseases,
thereby serving as an aid to target identification and drug
development.

Methods
Data set of transcription factor binding sites
For the main disease regulome, we used binding predic-
tions for a set of 446 transcription factor motifs
(PWMs), each with a list of the top 1000 predicted

target genes [12]. These predictions are based on
machine learning from 29 relevant features, including
conservation, CpG island content, DNase I hypersensi-
tivity and histone modifications, in addition to the
PWM score. Other regulomes were calculated on the
basis of a track of transcription factor binding site
(TFBS) predictions for 258 PWMs from the UCSC gen-
ome browser called “TFBS conserved”. The track was
generated by Matt Weirauch and Brian Raney at UCSC
and last updated July 17, 2007 http://genome.ucsc.edu/
cgi-bin/hgTrackUi?hgsid=153908909&c=chrX&g=tfbs-
ConsSites. Each PWM represent the binding specificity
of one or a small set of closely related transcription fac-
tors. For simplicity, we mostly refer to the regulatory
categories as TFs, instead of TF motifs, or PWM.

Data set of disease gene lists
Disease-associated genes were mapped to genomic coor-
dinates, resulting in a set of genome regions for each
disease. For the main regulome we used the complete
list of all disease-gene association from Phenopedia [16],
which is based on years of manually curation of
reported associations in literature, collected the Human
Genome Epidemiology Network (HuGENet) database.
Only diseases with more than 20 gene associations were
included.
An alternative data source for disease-associated genes

sets was also used, based on citations and co-citations of
disease and gene terms in the literature, as collected by
PubGene [28]. Let N be the number of documents in this
collection and let m be the number of documents that
mention disease term d and n the number of documents
that mention gene term g. Under the null model that
there is no association between the disease term d and
gene term g, the number of documents that mention both
d and g follows a hypergeometric distribution with para-
meters N, m and n. We then define the gene list for a
given disease to be all genes for which we obtain a Bonfer-
roni-corrected p-value less than 0.02. Only diseases with
more than 300 citations in literature were included. Both
sources of gene lists use the set of diseases as defined by
MeSH (Medical Subject Headings).

Intersecting transcription factors and diseases
For each combination of TF and disease, we counted, over
the whole genome, the number of segments (disease
genes) with at least one point (TF binding prediction) fall-
ing inside them. For the main TF data set, the points refer
to the TSS of the genes with predicted associations. As
this dataset used gene coordinates according to Refseq,
while the disease datasets were encoded using Ensembl,
we extended the gene regions by 150 bp upstream to pro-
vide support for TSS inconsistencies between the two
standards. To reduce noise, only diseases with a gene list
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of at least 20 genes were included. For the UCSC data set,
each point refers to a predicted TFBS. As TFBSs acting on
a gene are often close to but outside a gene, we extended
the gene regions to include flanks, set to 5 kb in each
direction. In this case we only included diseases with a
gene list of at least 10 genes. The choice of 5 kb in each
direction is somewhat arbitrary, simply assuming that a
substantial amount of relevant binding sites would be
included. Other schemes are easily incorporated in the
approach.
To conclude whether a TF is associated to a disease, we

used hypothesis testing to investigate whether the num-
ber of disease-associated gene regions containing loca-
tions of binding (TSS or TFBS) of the given TF, were
greater or less than expected by chance. Two different
tests, providing complementary information, have been
implemented. In both tests we assume under the null
hypothesis that gene regions are fixed, that the number
of binding locations for each TF is fixed, and that their
positions are randomly selected among the positions con-
taining binding locations for any TF.
We have calculated z-scores based on the deviation from

expected values under two specific null hypotheses.
Several different model assumptions may be reasonable. In
our main scheme, the null-hypothesis is that the propor-
tion of binding sites associated to a given TF is the same
within the regions of a given disease as it is across all
diseases.
The first test further assumes in the null hypothesis

that binding locations of a given TF falls uniformly
among the set of positions containing binding locations
for any TF.
Conversely, the second test modifies this by assuming

in the null hypothesis that binding locations of the
given TF falls inside gene regions of the given disease
proportionally to how often the binding locations of this
TF on average falls inside gene region sets across all dis-
eases. The first test is based on the hypergeometric dis-
tribution, while the second test is based on the binomial
distribution. Details and formulas for both tests are pro-
vided in Additional file 1.

Clustering
Groups of similar disease/TF tracks are found by sepa-
rately clustering rows and columns of a matrix of
z-values (see above). Hierarchical clustering has been
used, as this provides information on several levels, both
closely related diseases and large groups of diseases with
a certain amount of similarity. As similarity measure
between individual objects (diseases/TFs) we used the
Euclidean distance, and for distance between clusters we
used the average (Euclidean) distance between all pairs
of objects. Further details on the clustering are given in
Additional file 1.

Data sets of complementary regulomes
A range of regulomes have been generated based on dif-
ferent combinations of input data. These regulomes
make use of gene lists associated with GO terms, as well
as histone modification data. The gene lists for GO
terms are generated based on literature co-occurrence
in the same way as the gene lists for diseases. The his-
tone modification dataset is based on raw tag hit data
from ChIP-seq experiments on human T-Cells [29].
These were preprocessed using the NPS (Nucleosome
Positioning from Sequencing) software [32], using peak
detection, leading to nucleosome positioning informa-
tion as short segments, treated as points. When looking
at the regulatory effects of histone modifications, we
counted the number of points (defined as the middle of
the DNA strand eclipsing modified nucleosomes) in the
2 kb up-and downstream region surrounding the tran-
scription start site of each gene. A complete overview of
complementary regulomes is given in Additional file 1.

Software
The methodology is implemented within a software sys-
tem that supports interactive, real time, large-scale
genomic analyses [33] (further details given in Addi-
tional file 1). The software system allows large and fully
customizable analyses to be performed interactively. The
system is open source, runs integrated with the Galaxy
web server [34], and is available on the web at http://
hyperbrowser.uio.no.

Additional material

Additional file 1: Supplemental material for “The differential
disease regulome”. Miscellaneous supplemental material: details on the
Genomic HyperBrowser; overview of generated regulomes; details on
immunology example; additional example from a disease regulome
variant; statistics overview and supplemental figures.

Additional file 2: TF-disease clusters. A listing of 57 manually
indentified TF-disease clusters in the differential disease regulome.

Additional file 3: TF-GO clusters. A listing of 105 manually indentified
TF-GO clusters in the Gene Ontology regulome.

Additional file 4: Gene listings for immunology example. Listings of
all the genes of the immunology clusters in the differential disease
regulome and the Gene Ontology regulome, sorted on their hit rate. The
genes indicated in the different sections of the Venn diagram in Figure 4
are also detailed here.

List of abbreviations used
bp: base pair; GO: Gene Ontology; kb: kilobases; PWM: position weight
matrix; TF: transcription factor; TFBS: transcription factor binding sites; TSS:
Transcription start site.
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