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Abstract

Background: Array-based Comparative Genomic Hybridization (CGH) data have been used to infer phylogenetic
relationships. However, the reliability of array CGH analysis to determine evolutionary relationships has not been
well established. In most CGH work, all species and strains are compared to a single reference species, whose
genome was used to design the array. In the accompanying work, we critically evaluated CGH-based phylogeny
using simulated competitive hybridization data. This work showed that a limited number of conditions, principally
the tree topology and placement of the reference taxon in the tree, had a strong effect on the ability to recover
the correct tree topology. Here, we add to our simulation study by testing the use of CGH as a phylogenetic tool
with experimental CGH data from competitive hybridizations between N. crassa and other Neurospora species. In
the discussion, we add to our empirical study of Neurospora by reanalyzing of data from a previous CGH
phylogenetic analysis of the yeast sensu stricto complex.

Results: Array ratio data for Neurospora and related species were normalized with loess, robust spline, and linear
ratio based methods, and then used to construct Neighbor-Joining and parsimony trees. These trees were
compared to published phylogenetic analyses for Neurospora based on multilocus sequence analysis (MLSA). For
the Neurospora dataset, the best combination of methods resulted in recovery of the MLSA tree topology less than
half the time. Our reanalysis of a yeast dataset found that trees identical to established phylogeny were recovered
only by pruning taxa - including the reference taxon - from the analysis.

Conclusion: Our results indicate that CGH data can be problematic for phylogenetic analysis. Success fluctuates
based on the methods utilized to construct the tree and the taxa included. Selective pruning of the taxa improves
the results - an impractical approach for normal phylogenetic analysis. From the more successful methods we
make suggestions on the normalization and post-normalization methods that work best in estimating genetic
distance between taxa.

Background
Microarray-based Comparative Genomic Hybridization
(Array CGH) for two-color array platforms uses DNA
samples from a reference individual and a test indivi-
dual, each labelled with a different fluorescent dye, and
competitively hybridizes them to an array composed of
immobilized DNA fragments based on genomic
sequence of the reference individual [1-4]. Array CGH
produces abundant information about genetic distance
for all genes between pairs of individuals. This ability to

estimate genetic distance for all genes in one assay has
made array CGH an attractive tool for phylogenetic ana-
lysis. Several studies have used array CGH to compare
bacterial species [5-10], and in one case both human
and bovine data [11], to deduce evolutionary relation-
ships from cluster analysis. Other studies, also mostly in
bacterial systems, applied distance and parsimony tree-
building techniques to construct phylogenies from
microarray data [12-20].
A complication that has not been addressed in these

studies involves the use of one species to design the
array, which requires that all competitive hybridizations
have as one partner the same reference species. This
situation has been termed “unbalanced gene content”
[21] or, as we will refer to it, the single reference design.
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Use of a single reference individual is at odds with tradi-
tional sequence-based phylogenetic analysis, where all
pairwise comparisons among the taxa are used for tree
construction. An underlying assumption of array CGH
phylogeny is that the massively parallel nature of micro-
arrays, where genes number in the thousands, will pro-
vide enough phylogenetic signal to resolve a tree, even
when the microarray is based on a single reference
taxon.
This approach has been applied to bacterial species

with largely clonal reproduction, for example studies by
Dagerhamn, Wan, and Guidot [18,20,22] reported uses
of CGH for a subset of genes to recover clusters of bac-
teria concordant with previously published MLSA phy-
logenies. The work of Solheim et al directly compared
MLST with aCGH trees for Enteroccocus species with
the goal of defining lineage-specific genes [23]. Although
the biology of bacteria differs from that of fungi like
Neurospora or yeast in that bacterial horizontal gene
transfer is not the same as eukaryotic mating and meio-
sis, we wanted to determine if CGH would be as useful
with eukaryotic microbes as it appeared to be with
bacteria.
In the accompanying study we examined this question

using an in silico approach. While it was sometimes
possible to recover the topology used to initiate the
simulation, it was possible for only a very restricted set
of conditions involving the underlying tree topology.
Key parameters affecting success were the position in
the topology of the reference taxon, and the method of
phylogenetic analysis.
To challenge our in silico findings with experimental

data, we developed experimentally derived CGH data for
Neurospora, and used it to test CGH as a tool for phylo-
genetic analysis that could be applied to any group of
genetically isolated taxa with any combination of clonal
and recombining reproduction. Using the 70 mer
expression array designed for Neurospora crassa [24,25],
we compared seven species of Neurospora, as well as the
related species Podospora anserina and Sordaria macro-
spora. The relationships of these nine species have been
established by phylogenetic analyses of multiple DNA
sequences (multilocus sequence analysis, MLSA), which
has provided a well supported tree spanning closely
related Neurospora species and representatives of their
neighboring genera [26-28]. The close relatedness of
these taxa — and the fact that they are not subject to
large amounts of fluctuation in gene content — makes
them excellent candidates for successful aCGH
phylogeny.
Based on published accounts, we used eight general

methods of phylogenetic analysis of aCGH data. These
approaches, which are detailed in the methods section,
encompass different methods of data normalization and

post-normalization, two basic tree construction methods
(Neighbor-Joining and Parsimony), and three more
sophisticated methods of processing CGH ratio data
(BAGEL, MPP, and GACK - see Additional File 1: table
S1). To compare the phylogenies inferred from array
CGH analysis to those based on MLSA, we used the
symmetric (SymD) and agreement subtree (D1) tree-to-
tree distance metrics [26-28] implemented in the pro-
gram PAUP [29].
We show that CGH cannot be counted on to recover

the established multilocus phylogeny for Neurospora
[26]. We also find, in our reanalysis of yeast CGH data
[17], that CGH cannot be counted on to recover the
MLSA phylogeny for Saccharomyces sensu stricto spe-
cies. A good phylogenetic method should be able to
recover phylogenies in cases where there is sufficient
phylogenetic signal in the genetic or genomic variation
to produce a well-supported phylogeny. Our application
of phylogenetic methods to these two sets of empirical
CGH data does nothing to contradict the conclusions of
our accompanying analysis of simulated data [Gilbert et
al.: Array Comparative Genomic Hybridizations: Asses-
sing the ability to recapture evolutionary relationships
using an in silico approach. BMC Genomics 2011
12:456]. In fact, our results suggest that the noise inher-
ent in array CGH data further compromises use of these
data for phylogenetics.

Methods
DNA Preparation and Hybridization
Fungal strains used in this study are listed in Table 1.
Neurospora strains were obtained from the Fungal
Genetics Stock Center [30], Sordaria macrospora was
generously provided by the Kück lab (Lehrstuhl fur All-
gemeine Botanik, Ruhr-Universitat, Bochum, Germany),
while Podospora anserina was provided by Philippe Silar
of the Institut de Génétique et Microbiologie (Université
de Paris-Sud XI/CNRS).
Genomic DNA was isolated with the DNeasy Plant

Tissue kit (Qiagen, Valencia, CA) with the following
modifications: tissue was lyophilized, ground, and then
incubated at 65 C for an hour with 50 mM Tris-HCl, 50
mM EDTA, 3% SDS solution with 100 μl of Proteinaise
K (20 mg/ml). This was followed by chloroform:isoamyl
alcohol extraction. The aqueous phase was added to the
Qiagen extraction buffer and extraction proceeded
according to the manufacturer’s instructions.
Genomic DNA was sheared mechanically with a target

range of 1 kb using a Hydroshear® (GeneMachines™,
San Carlos, CA). Test species and reference species
were labelled using the BioPrime® Plus Array CGH
Indirect Genomic Labeling kit (Invitrogen, Carlsbad,
CA). A full-genome 70 mer oligonucleotide microarray
representing 10,918 individual elements was constructed
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as described for a partial [24] and the full genome array
[25]. Slides were treated to minimize background fluor-
escence with the Pronto!™ Background Reduction Kit
according to the manufacturer’s instructions (Corning,
Lowell, MA), then pre-hybridized and hybridized as
described [31] with several modifications, which are
published online at http://www.yale.edu/townsend/
Links/ffdatabase/downloads.html.
Images were scanned with an Axon GenePix 4000 B

scanner (Molecular Devices Corporation, Sunnyvale,
CA). GenePix Pro 6 software was used to quantify
hybridization signals. Bad spots were flagged automati-
cally by GenePix software and each slide was manually
inspected. Each species comparison was done in at least
quadruplicate with dye swaps.

Data Filtration and Normalization
Data were normalized for non-biological variation related
to printing and hybridization of spotted microarrays by
four methods. The first normalization, linear and based on
the ratio of means (Acuity 4.0, Molecular Devices Cor-
poration, Sunnyvale, CA), used a set of twelve control
spots with no known sequence polymorphisms between
N. crassa and N. discreta to standardize the ratio data
(unpublished data). For the second normalization, print-
tip lowess (locally weighted linear regression, Acuity 4.0),
an additional percent pixel saturation cutoff and a round-
ness score were used to filter the initial dataset according
to the Acuity manufacturer’s recommendations. The third
normalization method is a different implementation of
loess (locally weighted quadratic regression) and the fourth
is robust spline (regression spline with empirical Bayes
shrinkage), both from the R package Limma [32-34].

In addition to the four kinds of normalization, filtered
according to the criteria discussed in the methods, an
additional filtering criterion was applied for a duplicate
subset of the linear and lowess normalizations, where a
spot had to scored as present in at least 40% of the
slides to be included. These additionally filtered data
sets are referred to as the “40% present” set while the
rest are referred to as the standard set. All were
imported to R to calculate correlation and Euclidean
distance matrices. PAUP Neighbor-Joining trees were
constructed from these matrices.

Distance and Binary Matrix Calculation
Using the functions cor() and dist() from the R stats
package [35], the Pearson correlation or Euclidean dis-
tance was calculated from mean or median ratio values
to make a distance matrix. Note that this step does not
require discretizing the ratio values prior to the distance
calculation. Euclidean and correlation-based distance
matrices (1-correlation) were used for Neighbor-Joining
tree construction. Distance matrices were calculated for
normalized filtered ratio values and for BAGEL (Baye-
sian Analysis of Gene Expression Level) estimates of
hybridization level.
To convert continuous distances to binary characters

(1,0), we used the program GACK, Genome Composi-
tion analysis by Charles Kim, to implement a “genomo-
typing” method. This program employs a dynamic cutoff
based on the signal ratio distribution to classify genes as
present or absent [36]. The exact value of the cutoff
could be modified by changing the value of the expected
probability of being present (EPP) within the range of 0
to 100% [36]. For example, a 50% EPP value, calculated

Table 1 Strains used in this study

Identifier Other
ID

Species Origin Mating
Type

Comment

FGSC
2489

Neurospora crassa
A

Louisiana A conidiating taxa

FGSC
8781

D21 Neurospora
intermedia

Florida A conidiating taxa

FGSC
8858

D98 Neurospora crassa
C

Tamil Nadu,
India

A conidiating taxa

FGSC
8813

D53 Neurospora
sitophila

Thailand A conidiating taxa

FGSC
8775

D15 Neurospora
tetrasperma

Hawaii a conidiating taxa

FGSC
8906

D146 Neurospora discreta New Mexico a conidiating taxa

FGSC
1889

Neurospora
terricola

homothallic homothallic non conidiating

S48977 Sordaria
macrospora

homothallic K strain, courtesy of the Kuck lab, Ruhr-Universität Bochum

S strain Podospora anserina + courtesy of Phiippe Silar of the Institut de Génétique et Microbiologie
Université de Paris-Sud
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from the distribution of the ratio data, categorizes all
genes with a 50% or greater chance of being present as
conserved (1), and those with a less than 50% chance as
diverged (0). These binary matrices were used for parsi-
mony tree construction.

Phylogenetic Analysis
Phylogenies were created from distance data by the
Neighbor-Joining (NJ) algorithm from PAUP version
4.0b10 [29]. Phylogenies were created from discrete data
with the parsimony analysis using a heuristic search
with 500 replicates, followed by construction of a 50%
majority rule consensus tree (PMR) also in PAUP [29].

BAGEL
We used Bayesian analysis of gene expression levels
(BAGEL) because it estimates hybridization levels for
the reference species differently than all of the other
methods that we employed, except MPP. Typically,
hybridization values for the reference species are taken
from hybridizations between the reference species and
itself. However, with BAGEL, for each gene, the ratio
data from all the hybridizations involving the reference
and test species are used to estimate a relative hybridi-
zation level for each species, including an extrapolated
value for the reference species [37,38]. For distance phy-
logenetic analyses, the BAGEL output was converted to
Euclidean and correlation-based distance matrices as
before. For parsimony phylogenetic analyses, the ratio
data were converted to binary characters by binning the
ratio values in the taxon-by-gene matrix in one of the
four quartiles (Q1, Q2, Q3 or Q4) and choosing to
score presence (1) for genes with values in Q4, Q4-Q3,
or Q4-Q2 and absence (0) for genes with values in
lower quartiles (Q3-Q1, Q2-Q1 or Q1, respectively
which correspond to the negative or smaller hybridiza-
tion ratios). This binary data set made from BAGEL-
treated data could then be compared to the one made
by applying GACK to the filtered, normalized data.

MPP
In addition to genomotyping with GACK, we utilized a
second genomotyping program -the Microarray to Phy-
logeny Pipeline (MPP) [21]. MPP is an all-inclusive
pipeline that uses CGH hybridization data, converts it to
binary and uses those values to create a distance matrix
for tree construction.
GPR files from the GenePix program were input into

MPP and replicate spots were averaged according to
species. The ratio data were filtered and then log-trans-
formed or transformed with the inverse hyperbolic sine
(arsinh) function [35,39]. Following transformation, the
data were binned with the EPP method or the Bayesian
Probability of Presence (BPP), to determine thresholds

for the presence or absence of a probe. A binwidth set-
ting of .05 and the experimental binwidth option (desig-
nated as norm and exp) were applied to the data during
the binning process. Binned matrices were exported
from the program for parsimony phylogenetic analysis
by PAUP (not a recommendation of the program’s crea-
tors) or were used to calculate a pairwise distance
matrix using the CGHdist method implemented in
MPP. This method employs a death process to model
loss of genes in a set of related taxa and is meant to
compensate for the “unbalanced gene content” that
results from having a single reference taxon for array
CGH [21]. During this process MPP extrapolates a value
for the reference from the comparisons. This pairwise
distance matrix was then used for Neighbor-Joining tree
construction.

Tree to tree distance metric quantification
To quantitatively assess the differences between CGH-
derived and MLSA trees, we compared the MLSA topol-
ogy for the nine Sordariomycete fungi [26-28] to the
CGH derived trees using two tree-to-tree distance
metrics, symmetric distance (SymD) and agreement sub-
tree (D1), implemented in PAUP [29]. The symmetric
distance, SymD, determines the number of branches
that must be rearranged or collapsed to make two topol-
ogies identical. If the topologies are identical the step
size is 0. One step indicates a single collapsed branch
and a rearrangement between two taxa is scored as two
steps [40]. The agreement subtree metric, D1, counts
the number of taxa that must be pruned to make two
topologies identical [41]. The symmetric distance is
reported by default while values for D1 are available in
the Additional Files 2, 3, and 4: table S2, S3, and S4.

Results
Almost all of the steps needed to process array CGH
ratio data for phylogenetic analysis can influence the
result. These include the filtering, normalization and
tree-building procedures applied to the data. Using
empirical data, we tested the effect of different analytical
approaches on distance and parsimony analysis. Differ-
ent methods of normalization combined with mean or
median hybridization values for each species were used.
For Neighbor-Joining analysis, different metrics for con-
verting normalized intensity ratios to genetic distances
were used, as well as different thresholds for converting
ratios to discrete character data for parsimony analysis.
One such method was a probabilistic method for con-
verting ratios to discrete character data (GACK) and the
other was a self-contained work-flow (MPP), which con-
verts raw CGH data to data suitable for phylogenetic
analysis. An alternative to average or median CGH ratio
values, BAGEL (a Bayesian approach to estimate a
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representative hybridization value for each species), was
also tested.
To consider the effect of evolutionary distance among

taxa on the analyses, we grouped taxa into three datasets
that varied in combined genetic distance. The CON set
consisted of the six most closely related outbreeding indi-
viduals of Neurospora (N. crassa A, N. crassa C, N. sito-
phila, N. tetrasperma, N. intermedia, and N. discreta). The
NEU set is the CON set plus N. terricola, an obligately
self-fertilizing relative. The ALL taxa set is the NEU set
plus two more distant relatives, Sordaria macrospora and
Podospora anserina. Phylogenetic trees for these taxon
sets, based on multilocus sequence analyses (MLSA;
[26-28]) are shown in Figure 1, with and without the refer-
ence taxon as indicated. As detailed in the methods, in all
analyses, we present results with and without the reference
taxon because some analyses are confounded by the zero
distance between the reference taxon and itself.
Summaries of our analyses given below are supported

by analyses in the additional material as follows: Analy-
sis of filtered normalized data for NJ (Additional File 1:
table S1A) and parsimony after GACK processing
(Additional File 1: table S1B). Analysis of Bayesian-based
(BAGEL) treatments for NJ (Additional File 1: table
S1C) and parsimony (Additional File 1: table S1D). Par-
simony analyses using MPP (Additional File 1: table
S1F). MPP was also used to implement a likelihood
approach with Neighbor-Joining to compensate for the
single reference design (Additional File 1: table S1E).

Neighbor-Joining Analysis Normalized data, (Figure 2A
&2B, Additional File 2: table S2)
In no case did analysis of the ALL taxa set by Neighbor-
Joining of CGH data that had been simply normalized
produce the same tree as MLSA tree (Figure 2A). The
most successful analyses produced trees at least two
steps longer than the MLSA tree as judged by the SymD
(symmetric distance) metric. These most successful ana-
lyses used NJ with either Pearson’s correlation coeffi-
cient or Euclidean distance and with or without the
reference taxon, and with loess (Limma), robust spline
or linear normalization, but never with lowess (Acuity)
normalization. Taking the mean or median of normali-
zation values had no effect on the outcome and neither
did employing the additional 40% filter.
With the NEU taxa set, the MLSA tree was recovered

perfectly by NJ using Euclidean distance, but only with
linear normalization based on the ratio of means. There
was no effect of including or excluding the reference
taxon, using the mean or median value for each gene, or
adding the additional 40% filter. Clearly, exclusion of the
distant taxa, Sordaria and Podospora, had a positive
effect on the analyses, but only with this combination of
methods.

With the CON taxa set, the MLSA tree was recovered
less frequently. Here, again, the most robust result (0
steps away) was by NJ analysis using Euclidean distance
of data linearly normalized by the linear ratio of means.
However, results were better when the reference taxon
was included and the additional 40% filter was omitted
on mean values for each gene. Again, inclusion or exclu-
sion of the more divergent taxa had the largest effect on
recovery of the MLSA tree and trees with topologies
close to the MLSA tree were found only with a narrow
combination of methods.

Parsimony Analysis Normalized data, (Figure 2C &2B,
Additional File 2: table S2)
For the ALL dataset, with or without the reference, no
trees with topologies identical to the MLSA tree were
produced for any normalization. With the reference
taxon included, the averaged loess and median of the
spline normalization give trees two to four steps distant
for most values of the %EPP cutoff. The lowess trees
were 1 to 10 steps longer than the MLSA tree, depend-
ing on the values of the %EPP. Trees that included the
reference taxon were substantially worse (see Additional
File 2: table S2).
With the NEU taxon set, several of the thresholds

based on %EPP resulted in trees with topologies identi-
cal to the MLSA tree when the reference taxon was
excluded. These trees identical to MLSA trees included
those made using the averaged values of the loess and
the median values of the spline normalizations, and
many of the percent EEP values using averaged linear
normalization. Adding the additional 40% filter had a
negative effect such that only the 50% EPP threshold
gave the MLSA tree topology. With the reference taxon
included in the analysis, the MLSA tree topology was
not recovered as judged by the SymD metric (no closer
than six steps) or the D1 metric (as close as one step,
see Additional File 2: table S2).
For the CON dataset, excluding the reference, the aver-

aged values of the linear and loess normalizations recov-
ered the MLSA tree topology in four and five of the
eleven percent EPP thresholds respectively. The median
and average values of the robust spline normalization
were also successful in capturing the MLSA tree. Again,
the additional 40% filter resulted in poorer trees overall.
The remaining iterations of the data were two to four
steps away. Including the reference species gave trees
that were no closer to the MLSA tree than four steps and
then only for the spline and loess normalizations.

NJ after Bayesian estimation of a relative hybridization
level (Figure 3A and 3B, Additional File 3: table S3)
For the ALL taxa set, with and without the reference
species, the MLSA tree topology was not recovered
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A B

C D

E F

Figure 1 Desired topology as cladograms. The figure shows six different trees, different permutations of the Neurospora topology that we
attempted to recover from CGH data using a variety of methods. These trees are broken down into three groupings of taxa, CON (Figures 1A
and 1B), NEU (Figures 1C and 1D), and ALL (Figures 1E and 1F). These are shown with and without the reference N. crassa A as some methods
performed better without the reference taxon included. For this reason both versions of each taxon grouping were used to construct CGH
phylogenies. Note that these cladograms do not reflect true branch length distances.
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NJ without reference taxon
SYMD

A

ALL NEU CON

NJ with reference taxon
SYMD

B

ALL NEU CON

Parsimony without reference taxon
SYMD

C

ALL NEU CON

Parsimony with reference taxon
SYMD

D

ALL NEU CON
Figure 2 Results for NJ and Parsimony analysis of normalized ratio data. These stacked histograms in this figure represent the SymD
measures (symmetric distance away from the desired topology) for the Neighbor-Joining (Figures 2A and 2B) and parsimony (Figures 2C and
2D) CGH trees constructed from the ACUITY and Limma-based normalizations. Each stack represents the twelve iterations of the four different
normalization procedures, detailed in Additional File 1: table S1. In histograms 2A and 2B, a correlation (COR) or a Euclidean distance matrix (EU)
was calculated for each of the twelve iterations described using R and input into PAUP in order to construct NJ trees for the ALL, NEU, and CON
taxa sets excluding (2A) and including (2B) the reference taxa, respectively. Figures 2C and 2D show stacked histograms for the corresponding
Parsimony Majority Rule consensus (PMJ) trees binned with the GACK method. For each stack, the EPP threshold was varied in 10% increments
from 0 to 100%. The same data is given in table form in Additional File 2: table S2.
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with either the Euclidean or correlation-based metric.
The closest approximation of the MLSA tree was
achieved by the robust spline and loess normalizations
(two steps longer by both the Euclidean and correla-
tion distance metrics). For the correlation metric,

including the reference species had no effect on
results. However, for the Euclidean metric, including
the reference species in some cases increased the
length as compared to the MLSA tree by from two to
six steps.

NJ without reference taxon 
SYMD

ALL

A
NJ with reference taxon

SYMD

NEU

B

CON ALL NEU CON

C
Parsimony without reference taxon

SYMD

ALL NEU CON

D
Parsimony with reference taxon

SYMD

ALL NEU CON
Figure 3 Results for NJ and Parsimony analysis of Relative Bayesian Estimated Hybridization Levels. Figure 3 show the stacked
histograms of the SymD measures for Neighbor-Joining tree construction of the ACUITY and Limma-based normalizations processed with the
BAGEL program. Five trees are represented in each stack, constructed from each of the four normalizations done and the additional linear
normalization based on the ratio of the medians (see Additional File 1: table S1). Only these five datasets were input into BAGEL as it only
accepts log-transformed data. Figures 3A and 3B show the results for the NJ algorithm excluding and including N. crassa A respectively for the
symmetric distance. Figures 3C and 3D show the SymD measures from parsimony analysis of the BAGEL-estimated values converted to binary
matrices as described in the methods. The same data is given in table form in Additional File 3: table S3.

Gilbert et al. BMC Genomics 2011, 12:487
http://www.biomedcentral.com/1471-2164/12/487

Page 8 of 14



For the NEU dataset, the Euclidean distance metric
captured the MLSA tree for both the spline and loess
normalizations while the correlation metric did so solely
with the robust spline normalization. This result was
found regardless of whether or not the reference taxon
was included. For the CON dataset, the correlation
metric outperformed the Euclidean metric by capturing
the MLSA tree with almost all approaches (except the
lowess normalization) regardless of whether the refer-
ence taxon was included or excluded. The Euclidean
metric recovered the MSLA tree topology with fewer
combinations of approaches, and performed worse when
the reference taxon was included (Limma spline normal-
ization moved from no to two steps distant).
One noteworthy result with BAGEL NJ trees is that,

unlike the other methods tested, the results are far less
sensitive to inclusion or exclusion of the reference
taxon. This insensitivity is presumably due to BAGEL’s
extrapolation of the reference value, which appears to
be a more robust way of including the reference taxon
than including self-self controls for tree construction.

Bagel Parsimony (Figure 3C and 3D, Additional File 3:
table S3)
For parsimony analysis, the BAGEL estimates of hybridi-
zation levels described above were binned at the first,
second, and the third quartile. For the ALL dataset, no
method of analysis recovered the MLSA tree topology.
The loess, spline, and lowess normalizations were four
steps distant irrespective of inclusion of the reference
taxon. The linear normalization was worse (six steps
distant) and the worst result was obtained when the
reference taxon was included (eight steps distant).
For the NEU set, no method of analysis recovered the

MLSA tree topology, although the loess, spline, and loess
normalizations again performed best (two steps distant
when binning data at the first quartile). The CGH trees
constructed from the linear normalization were at best
four steps longer than the MLSA tree when the reference
taxon was excluded, and six steps longer when it was
included. Binning at the second or third quartile resulted
in trees that were typically four steps longer.
For the CON taxon set the MLSA tree topology was

recovered only when the reference taxon included, and
then only when binning at the first quartile for the
spline, loess or lowess normalizations, or at the third
quartile for spline and loess normalizations. Other
approaches gave trees two to four steps longer than the
MLSA tree.
Unlike the BAGEL NJ analyses, which were insensitive

to inclusion or exclusion of the reference taxon, the
BAGEL parsimony analysis improved when the refer-
ence taxon was included in the CGH phylogeny. How-
ever, in the BAGEL parsimony analyses, the MLSA tree

was recovered only for the CON taxa dataset, any only
for a narrow set of approaches, as noted above.

Treebuilding with MPP, the Microarray to Phylogeny
Pipeline (Figure 4, Additional File 4: table S4)
As described in the methods, we used the MPP pipeline
to construct both Neighbor-Joining and Parsimony trees
for the three groups of taxa. The MPP method begins
by using CGH data to score hybridization probes as pre-
sent or absent. These data can be exported for parsi-
mony analysis or they can be used to make pairwise
distance matrices by a likelihood approach that is
designed to compensate for the single reference design.
These distance data are then used for phylogenetic ana-
lysis by Neighbor-Joining analysis. MPP allows the user
to control various options: the CGH data can be trans-
formed using either a log or an inverse hyperbolic sine
function (arsinh), the presence or absence of a probe
can be estimated by EPP or by BPP, and the binwidth
for assigning probe presence or absence can be set at
either 0.05 (norm) or determined experimentally (exp).
Applying these options in all combinations gave us eight
basic combinations of options for both parsimony and
NJ phylogenetic analyses.
For the ALL dataset, MPP using NJ did not recover

the MLSA tree for any of the eight options. A tree two
steps longer than the MLSA tree was recovered using
arsinh, BPP, with a binwidth set at norm and excluding
the reference taxon. Use of EPP or inclusion of the
reference taxon gave trees at least twice as distant.
For the NEU taxon set using MPP and NJ, with the

reference taxon excluded, trees concordant with the
MLSA tree were recovered for five of the eight options.
These five included all of the log-transformed data and
the arsinh-transformed data option with BPP and norm
binwidth. When the reference was included, the same
iterations gave CGH trees four to six steps longer than
the MLSA tree.
For the CON dataset using MPP with NJ, the results

were similar to the NEU set in that all log-transformed
data options recovered the MLSA tree topology when
the reference taxon was excluded and no options recov-
ered the MLSA tree topology when the reference taxon
was included.

Parsimony MPP tree construction (Figure 4C and 4D,
Additional File 4: table S4)
For parsimony analysis, the same eight combinations
were used to convert GCH data to presence/absence
data sets and trees were made using 50% Majority-Rule
consensus.
For MPP with parsimony analysis of the ALL dataset

with the reference taxon excluded, the best trees using
any option were one step longer than the MLSA tree
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(data log-transformed with either EPP or BPP followed
by exp binning, or data arsinh-transformed with BPP
followed by norm binning). When the reference taxon
was included, trees from the four BPP and EPP arsinh-
transformed sets were eight steps longer and those from
the log-transformed data were even more distant.

For MPP with parsimony analysis of the NEU dataset
with the reference taxon excluded, the five iterations
that recovered the MLSA tree topology for the NJ analy-
sis did the same for parsimony analysis, i.e., all of the
log-transformed data and the arsinh-transformed data
option with BPP and norm binwidth. When the

NJ without reference taxon NJ with reference taxon

Parsimony without reference 
taxon

Parsimony with reference 
taxon

A B

C D

Figure 4 Results for MPP based NJ and Parsimony Analysis. The stacked histograms show the SymD measures of trees constructed using
the MPP method for the sixteen different iterations detailed in Additional File 1: table S1 - representing the various options available in the MPP
program. The binary matrices constructed by MPP were output to PAUP and used to make parsimony-based trees (Figures 4 C and D). From
each binary matrix a distance matrix was calculated from each of these sixteen matrices using the cghdist option in the MPP GUI, and a
Neighbor-Joining (NJ) tree was calculated using PAUP excluding (Figure 4A) and including (Figure 4B) the reference taxon, N. crassa A. This data
is also given table form in Additional File 4: table S4.
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reference taxon was included in the CGH phylogeny, no
option returned the MLSA topology.
For MPP with parsimony analysis of the CON dataset,

when the reference was excluded from the CGH phylo-
geny, the results were identical to those the results of
the NEU taxon set. When the reference was included,
the results were nearly identical to those for the NEU
data set, i.e., no option returned the MLSA tree
topology.

Discussion
In order to assess if CGH data can be used to infer phy-
logeny, we applied a variety of approaches to CGH data
from nine species of filamentous fungi in the Sordariales
derived from a microarray constructed for one of the
species, the reference taxon N. crassa A. We chose to
focus on these taxa because their relationships had been
carefully characterized by multi-locus sequence analysis
(MLSA) [26-28,42]. The nine species were analyzed in
three sets, ALL, NEU and CON, which represent a
decreasing range of evolutionary distances. The ALL
taxon set has a maximum of 10.5% sequence variation
in coding regions [43] and protein amino acid sequence
similarity of 60% - 70% [44]. At the other end of the
spectrum, the CON taxon set has 2% to 7% sequence
difference in coding regions (J. Dettman, unpublished
data). We should note that our analysis assumes that
hybridization data accurately reflects evolutionary dis-
tance. Though the mismatch kinetics of DNA poly-
morphisms are not always perfectly correlated to
hybridization level, the relationship between the two is
roughly linear [5,36,45-48]. Consequently hybridization
level should provide an adequate proxy for evolutionary
distance though it is subject to some experimental noise.
The diversity of approaches that we used to apply

CGH data to phylogenetics included the following. To
filter the data and normalize them to estimate hybridiza-
tion levels we used four methods, two from the Acuity
package (linear ratio of means, print-tip lowess) and two
from the Limma package in R (loess and robust spline).
We filtered for pixel saturation and for consistency
among replicates. To complement these four
approaches, we also used a Bayesian approach (BAGEL)
to estimate hybridization levels. Euclidean and correla-
tion methods were used to determine genetic distances
from the hybridization levels. The distance method,
Neighbor-Joining, was used for phylogenetic analyses of
the genetic distances. To allow the use of parsimony
phylogenetic methods, genetic distances were converted
to binary data using GACK. We also investigated the
microarray-to-phylogenetics pipeline (MPP), which
transforms the data with either of two methods (log or
arsinh) and converts the hybridization levels to binary
data by either of two methods (EPP or BPP) for use in

parsimony analysis. The binary data are then converted
to genetic distances using a likelihood method intended
to compensate for the shortcomings of using a single
reference taxon for CGH. To assess the utility of the
many permutations of these methods, we compared
phylogenetic trees made from CGH data to the MLSA
tree for the sordariaceous fungi using both symmetric
distance (SymD) and taxon pruning (D1).
We found no single method that consistently pro-

duced a CGH phylogeny equivalent to an MLSA phylo-
geny. Instead, all the methods had different degrees of
success depending on the combination of treatments
applied to the data. Two trends stood out: that the
greater the genetic distance among taxa the lower suc-
cess, and that distance phylogenetic analysis, Neighbor-
Joining, performed better than parsimony analysis. How-
ever, even with distance methods and data sets with
restricted genetic distance, success was low; the NJ trees
the NEU and CON topologies were recovered 20.6%
and 25% of the time, respectively. It should be noted
that the greatest distance among taxa was only 10.5%,
roughly at the acknowledged limit of utility for long oli-
gomer arrays [45].
There was considerable variation between the normal-

ization methods. For the distance-based trees, the most
successful recovery was with a basic linear normalization
(25% overall) and the worst was lowess normalization
(6.25%). For the parsimony trees, the linear normaliza-
tion was the worst, with a 6.3% recovery rate and the
best was the robust spline, with a recovery rate of 12%.
The Neighbor-Joining method was better than the

parsimony method (15% vs. 6.93% recovery). Of the two
distance metrics used to construct distance trees, the
Euclidean method performed better than the correla-
tion-based metric (21% v. 9.8%). This result was in con-
trast to our in silico investigations, detailed in the
accompanying work, where the correlation-based metric
was superior in capturing topologies. The Euclidean
metric, however, was better able to estimate the branch-
lengths. Typically, correlation measures are more reli-
able as they smooth rough data. However, in this case
correlation measures may not be sensitive enough to
distinguish very small differences in relationships based
on microarray data, particularly with taxa close to the
reference taxon.
When hybridization levels for the CON and NEU

datasets were estimated using BAGEL, distance phyloge-
netic analysis recovered the MLSA tree more often, but
this advantage was not seen with parsimony analysis.
Tree construction with Bayesian estimates of relative

hybridization levels for each species was slightly more
robust than a simple average or median of ratio values.
For the distance trees of the CON and NEU datasets,
more BAGEL-treated normalizations recovered the
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MLSA tree than normalization alone. The advantage of
BAGEL-treated datasets was not seen with parsimony
analysis.

MPP NJ and Parsimony
The MPP platform, an all-inclusive pipeline designed
specifically for CGH phylogeny construction, performed
similarly to the traditional filtering and normalization
methods. MPP was sensitive to inclusion of the refer-
ence taxon, that is, no NJ tree equalled the MLSA tree
when the reference taxon was included, but 37.5% of NJ
trees and 41.7% of parsimony trees did equal the MLSA
tree with the reference taxon was excluded. MPP was
also sensitive to the genetic distance among taxa, no
analysis of the ALL data set found the MLSA tree, while
the MLSA tree was recovered from the CON and NEU
datasets in between 25% and 32% of NJ or parsimony
analyses. In MPP, the Log transformation, with a fixed
binwidth, performed better than the arsinh transforma-
tion, indicating that the former is better suited to our
empirical CGH data.
Our analysis of CGH for eukaryotic microbes may be

compared to a similar study of yeast species [1]. We
took the opportunity to reanalyze the yeast CGH data
with the newly developed MPP workflow [2] to see if
our Neurospora results were of general significance. The
yeast dataset contains more genetic distance than the
Neurospora dataset (the two closest taxa, S. cerevisiae
and S. paradoxus, differ by 15% [49-51]), so the analysis
of yeast data would be expected to be more challenging.
CGH phylogenies were compared to a MLSA phylogeny
for the yeast taxa based on 106 orthologous genes [50].
When all eight taxa (including the reference species, S.
cerevisiae) from the CGH study of Edwards-Inghram et
al. [17] were used for tree construction, all CGH trees
were at least ten steps longer than the MLSA tree. The
gap dropped to 8 steps when S. cerevisiae was excluded
(data not shown). When the taxon set was restricted to
just the six species studied by both Edwards-Inghram
and Rokas et al. (i.e., excluding the two taxa closest to
the reference taxon, S. cariocanus and S. boulardii),
some CGH trees equalled the MLSA tree. Here, BPP
outperformed EPP in converting CGH data to discrete
data, although both methods did equally well when the
reference species was excluded. It seems that MPP ana-
lysis of yeast is confounded by taxa that are too closely
related, whereas MPP analysis of Neurospora was con-
founded by taxa that were too distantly related. In the
end, however, with neither yeast nor Neurospora could
CGH data be counted on to recover the sequence-based
MLSA phylogeny reliably or consistently.
As a final point of discussion, our results with empirical

CGH data can be compared to our previous analyses of
simulated CGH data, which allowed for comparison of

three different topologies. In both cases, distance analysis
was superior to parsimony analysis, probably due to the
loss of information when genetic distances are converted
to discrete data. Similarly, using distance analysis, highly
filtered data sets produced less well-resolved phylogenies
than data sets that included more ratio data. Finally, it
was more difficult to recover MLSA phylogenies using
empirical CGH data than using simulated CGH data,
likely due to the additional noise in empirical data.

Conclusions
Our results with empirical CGH data and those of the
accompanying in silico analysis demonstrate that aCGH-
based phylogenetics cannot be counted on to produce a
phylogeny equivalent to those derived by MLSA. Even
with methods specifically designed to compensate for
the single reference CGH design, there is inconsistent
recovery of the MLSA phylogeny. Therefore, in experi-
mental contexts without prior knowledge of the rela-
tionships, it would be impossible to be certain that the
true tree was recovered by CGH phylogeny. These find-
ings are in contrast to several published works in bacter-
ial species, which have found concordance between their
aCGH tree and those based on one or a few loci. While
our results confirm that aCGH is partially successful in
some cases, inconsistent recovery in our datasets pre-
cludes our endorsement of the technique for widespread
use. This does not forestall the usefulness of CGH data
for various other analyses.
Our analysis does suggest that some normalization

and post-processing methods may best reflect the
underlying genetic distance between taxa and these
methods might be best for other analyses of CGH data.
Of the normalization methods implemented, the linear
and robust spline methods worked better than the low-
ess/loess methods. The BAGEL estimation of hybridiza-
tion levels also performed well. Unlike most other
methods, it allowed for inclusion of the reference with-
out a penalty. If a quick approximation of a topology is
sufficient for the user’s needs, the MPP pipeline offers a
simple and easy way to construct a tree from CGH data.
However, even the MPP approach recovered the MLSA
topology less than half the time. If phylogeny is the aim,
it would be better to invest in a modest MLSA
approach.

Additional material

Additional file 1: Additional table S1 - Method matrix listing data
treatments that are represented in each figure.

Additional file 2: Additional table S2 - Figure 2: Neighbor-Joining
and GACK Parsimony Analysis when the dataset is only normalized.
Figure 2 in table form, with actual tree scores. Zeros are bolded. In excel
format.
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Additional file 3: Additional table S3 - Figure 3: NJ and Parsimony
Analysis after Bayesian estimation of a relative hybridization level.
Figure 3 in table form, with actual tree scores. Zeros are bolded. In excel
format.

Additional file 4: Additional table S4 - Figure 4: MPP-Based Tree
Construction. Figure 4 in table form, with actual tree scores. Zeros are
bolded. In excel format.
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