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Abstract

Background: Searching for associations between genetic variants and complex diseases has been a very active
area of research for over two decades. More than 51,000 potential associations have been studied and published, a
figure that keeps increasing, especially with the recent explosion of array-based Genome-Wide Association Studies.
Even if the number of true associations described so far is high, many of the putative risk variants detected so far
have failed to be consistently replicated and are widely considered false positives. Here, we focus on the world-
wide patterns of replicability of published association studies.

Results: We report three main findings. First, contrary to previous results, genes associated to complex diseases
present lower degrees of genetic differentiation among human populations than average genome-wide levels.
Second, also contrary to previous results, the differences in replicability of disease associated-loci between
Europeans and East Asians are highly correlated with genetic differentiation between these populations. Finally,
highly replicated genes present increased levels of high-frequency derived alleles in European and Asian
populations when compared to African populations.

Conclusions: Our findings highlight the heterogeneous nature of the genetic etiology of complex disease, confirm
the importance of the recent evolutionary history of our species in current patterns of disease susceptibility and
could cast doubts on the status as false positives of some associations that have failed to replicate across
populations.

Background
The discovery of genetic variants that increase suscept-
ibility to disease represents one of the greatest chal-
lenges for epidemiology and genomics [1]. Detailed
knowledge about the etiology of many diseases keeps
accumulating and in the near future it will help to
improve disease management [2]. After decades of
research in genetic epidemiology, more than 51,000 dif-
ferent association studies for human diseases have been
published and 11,501 genes have been described to be
associated to disease, as recorded up to December 2010
in the HuGENet browser [3]. Moreover, thanks to last
technological advances, we have recently escalated into

a flurry of genome-wide association studies (GWAS)
that simultaneously study hundreds of thousands of
SNPs over the whole genome [3-5]. For instance, most
GWAS recorded in the HuGENet browser have been
published recently, from 2008 on (812 out of 935 by
December 15th, 2010).
In spite of their success, genetic association studies for

common complex diseases usually suffer from a pro-
blem of lack of reproducibility of results. Only a very
low number of risk variants have been shown to present
a consistent pattern of positive replication through inde-
pendent studies [4-8]. Different confounding factors
may constitute the source of these inconsistencies. Two
well-known sources of lack of replicability are reduced
statistical power due to small (and varying) experimental
samples sizes [5,9,10]; and population stratification [11].
Other potential sources of lack of replicability include
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disease heterogeneity, since some complex diseases
might include similar entities with shared symptoms but
different genetic architectures [12]; hidden age-varying
effects [13]; biased ascertainment of genetic markers
[14] and publication bias [7]. To overcome these con-
founding factors, the NCI-NHGRI working group on
replication in association studies published a set of
recommendations to achieve essential credibility of true
positive disease-associated genetic variants [4]. One of
their crucial recommendations is that the replication of
results in an independent sample of individuals is
required to make an association statistically trustable.
However, a true association could fail to be replicated

due to heterogeneity in the genetic architecture of the
disease under study, particularly when replicas are car-
ried out in populations with different evolutionary his-
tories. Indeed, many common SNPs present significantly
different frequencies among human populations or even
appear to be polymorphic just in certain populations (i.
e. they are population-specific SNPs) [15]. For instance,
the six possible pairwise comparisons of the allele fre-
quencies of 63,012 genic SNPs among 4 different popu-
lations (Hispanics, African Americans, Asian Americans
and European Americans) show that, although most
SNPs (from 72% to 96%) are present in the two com-
pared populations, only 44% to 72% of these shared var-
iants are found to have allelic frequencies >10% (i.e. to
be common) in both populations [16]. Furthermore, a
resequencing survey in a sample of 90 individuals from
6 world-wide populations showed that only 56% of com-
mon SNPs were already present in the HapMap data-
base [17]. Finally, 25 out of 43 meta-analysis of complex
disease-associated variants showed heterogeneity in alle-
lic frequency among human populations [18].
It is thus reasonable to hypothesize that differences in

the evolutionary history of loci associated to disease could
have led to a non-homogeneous world-wide distribution
of genetic risk variants. In this scenario, replication studies
of risk alleles would frequently fail because of a true het-
erogeneity in the genetic architecture of common diseases.
Previous studies have partially addressed the role of het-
erogeneity of the genetic ancestry in association studies,
without positive results. Lohmueller et al. [19] analyzed
population differentiation patterns between populations of
European and African ancestry in 48 highly replicated dis-
ease-associated SNPs. Also, Myles et al. [20] analyzed the
world-wide allelic distribution of 25 disease-associated
SNPs from the WTCCC genome-wide scan [5]. Finally,
Adeyemo et al. [21] checked for the differences in allele
frequencies among 11 HapMap populations for 621 SNPs
that had been associated to disease in GWAS performed
with peoples from European ancestry. In all three studies,
with the exception of some extreme differences in a few
variants, disease-associated SNPs presented levels of

differentiation among populations that were equivalent to
the genome-wide average.
To date, however, no general study has tested whether

inter-population genetic heterogeneity has affected the
replication rates of association studies. Here, we aim to
evaluate such a hypothesis. Ideally, the study should be
carried-out by means of a comprehensive meta-analysis
of GWAS data. However, there is still a bias in the
populations that are chosen to perform these kind of
association studies, since the great majority of them
(≈90%) has been carried out upon individuals of Eur-
opean ancestry [22]. In addition, most of these GWAS
use mixed panels of individuals from different regions in
Europe, making it impossible to assign the status of
replication of disease variants through populations
within Europe.
In contrast, classical association studies based on can-

didate genes have been performed in great numbers all
over the world and their results are publicly available.
The Genetic Association Database (GAD) [23], is one of
the largest repositories of the association studies carried
out during the last 25 years. Analyzing that dataset, we
find that risk variants from genes that diverged most
between human populations present lower rates of repli-
cation. In contrast, world-wide distributed risk alleles
appear to be located in loci that do not show popula-
tion-specific patterns of genetic variability. These results
point towards a role of the recent evolutionary history
of human populations in shaping genetic risk for com-
plex diseases and suggest that part of the disease var-
iants that have not been replicated might be true risk
alleles, at least in some populations.

Results
Two different sets of associations between genes and
diseases were obtained from the Genetic Association
Database [23]. The first set, named the Global Set, con-
tained associations that had been replicated many times
(at least 4 studies per association, n = 890), regardless of
which human population had been tested in each study.
The second set, the Continental Set, contained those
associations that had been widely studied in both Eur-
opean and East Asian samples (at least 4 studies in each
continent, n = 37). A summary of the main steps and
filters to ascertain the Global and Continental Sets is
available in Figure 1 and Additional File 1. Both Sets are
listed in Additional File 2 and 3, along with their main
features, such as the global replicability, continental-spe-
cific replicabilities and the degree of population differen-
tiation corresponding to each association.

Analyses of the Global Set - Global vs. Pairwise FST
A first analysis showed that the disease-associated genes
contained on the Global Set (n = 403 genes) present
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significantly lower inter-population genetic differentia-
tion than equivalent sets of autosomic genes (FST =
0.083 vs. FST = 0.1045, resampling test, p-value < 10-4).
Next, we analyzed the relationship between levels of

population differentiation and the replicability of disease

associations. We detected a tendency towards negative
correlations between FST and replicability. The tendency
is only visible when testing the most reliable associa-
tions, the ones with many studies or with longer genes
(Additional Files 4, 5 and 6) and it maintains regardless

> 39,000 records (GAD database)

A) 17,355 records with information: B) 7,342 records with information: 

i) Final status of association (Y/N)

4,979 gene-disease continental associations 
(i.e. AKT1 – Schizophrenia – Europe, n = 2)

i) Final status of association (Y/N)
ii) Genetic Ancestry of the individuals

7,072 gene-disease associations 
(i.e. ADRB2 – Asthma, n = 59)

Filtering of associations with < 4 studies 
Exclusion of X chromosome associations
Assignation of the replicability index (0 – 100%)

238 Associations:

i) 129 European, 99 East Asian and 4 African 
associations with  4 studies

ii) Selection of 37 shared associations (  4 studies in 
Europe and  4 studies in East Asia)

iii) Assignation of Cramer’s to each association

FINAL GLOBAL SET
n = 890 Associations
(i.e. TNF – Arthritis – 10 studies – Replic 40%)

For each association:
Average F per gene

FINAL CONTINENTAL SET
n = 37 Associations
(i.e. ACE – Hypertension – = 0.0625)

For each association:
Average F per geneAverage FST per gene

Average FST per SNP
Average FST per tagSNPs

For some analysis, conservative datasets filtering by:

Average FST per gene
Average FST per SNP
Average FST per tagSNPs

i) Threshold on N of SNPs per gene (  10 SNPs) 
ii) Thresholds on N of studies per association

(i.e. 8, 10, 12, 14, 16, 18 and 20)

i) Associations with replicability <50% in at least
one Continent (Europe or East Asia):
11 (out of 37) associations excluded

y g y

Figure 1 Summary of the steps and filters to ascertain the Global and Continental Sets. A further text summary is available in Additional File 1.
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of the method used to compute FST (average genic FST,
by SNP or only tagSNPs). Thus, although there was a
trend towards lower replicability of associations between
disease and genes with high global FST, most correla-
tions were non-significant and the correlations between
replicability and global FST lacked consistency.
We performed a similar analysis focusing on pairwise

FST values. When values involved African individuals
(European - African FST and East Asian - African FST)
there was no clear pattern (Additional File 4 and 5). In
contrast, our replicability measures consistently showed
significant negative correlations with FST values between
European and East Asian populations (Additional File 4
and 5). Moreover, this pattern became more apparent
after filtering out those associations that had been stu-
died fewer times, that is, when using more reliable data
(Figure 2). These results fit a well-known continental
bias in the origin of samples: most of the associations
reported in the GAD (≥94%) had been performed with
individuals of European or East Asian ancestry. Thus,
replicability indexes for the associations in the Global
Set mostly reflect the outcome of studies upon these

two continental populations, and it makes sense that
they are related to pairwise FST values between Eur-
opeans and East Asians and not to global FST values,
that include African individuals.

Analyses of the Continental Set
Given the continental bias in the origin of studies, the
Continental Set is more adequate to test our hypothesis
since it includes only studies performed upon cohorts of
European or East Asian ancestry. For the 37 associations
in the Continental Set, the discordance in continental
replicability measured by j (see Methods) showed a
consistent pattern of positive correlation with FST values
between Europeans and Asians (Table 1). In other
words, genes with lower FST formed associations with
higher consistency of replicabilities between continents.
This trend was detected under a diversity of approaches.
First, a significant and positive correlation was detected
when using average genic FST values (r = 0.496, p <
0.003, n = 33, Figure 3). Second, the result maintained
when performing a SNP-centered analysis in which each
SNP was assigned the j value corresponding to the
gene in which it lay (r = 0.155, p < 10-7, n = 3,710).
Moreover, because almost 80% of SNPs studied
belonged to only two associations with very large genes
(NRG1 - Schizophrenia/PARK2 - Parkinson’s disease) a
third analysis removing these two genes was performed
and the same correlation between FST and j was
detected (r = 0.152, p < 10-5, n = 821). In addition, FST
values obtained using only tagSNPs from the studied
genes also showed a positive correlation to j (r = 0.16,
p < 2.2 × 10-4, n = 538), which maintained after remov-
ing the two largest genes. Finally, the positive correla-
tion between FST and discordance in continental
replicabilities became even stronger when using the con-
servative strategy of keeping for analysis only the most
reliable associations (with >50% replicability in both
continents, Table 1).
These results suggest that differences in the continen-

tal replicabilities of disease associations (in Europe and
East Asia) tend to occur in disease-associated genes that
show an increased amount of genetic differentiation
between human populations. Still, different confounding
factors could be shaping this correlation. For instance, a
recent study based on HapMap data has shown that the
degree of differentiation in the frequency of SNPs in dif-
ferent human populations depend on the functional role
of the SNPs [24]. Within genes, for instance, non-synon-
ymous SNPs show the lowest amount of genetic differ-
entiation among populations while SNPs located in 3’-
UTR, 5’-UTR and intronic regions show an increased
level of population differentiation. This trend was also
observed in our data: intronic SNPs have a mean FST of
0.117 (n = 3,590, 96.9% of the total) while exonic
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Figure 2 Coefficients of correlation between replicability and
FST for the 890 associations from the Global Set. Values
correspond to Spearman correlation coefficients (r). The replicability
is measured in % of positive studies over total studies and the
genetic differentiation values correspond to average FST values
between Europeans and East Asians, under different pooling
conditions. X-axis values indicate the cutoff of number of studies
per associations, filtering out those associations with fewer studies
than indicated. Solid grey lines correspond to the Full Set of
associations. Dashed lines correspond to associations from the
Conservative Set (replicability ≥50% in at least one continent).
Circles, triangles and squares correspond to FST values computed
from average of the SNPs in a gene, individual SNPs and tagSNPs,
respectively.
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(synonymous and non-synonymous) SNPs have a mean
FST of 0.063 (n = 63, 1.7% of the total). Therefore, vari-
able contributions of different SNP classes to high and
low replicabilities may be driving the correlations
between FST and j. Moreover, the fact that the GAD
database pools association studies performed during a
wide range of years and under many different conditions
(such as sample size) constitutes another potential
source of confounding factors.

To try to control for these potential sources of bias,
we performed a multiple forward stepwise regression
analysis to determine which variable or combination of
variables best explained variance in j. We introduced
eight possible predictors in the model, the average genic
FST together with seven potential confounding factors:
(1) total number of SNPs in the gene (related to gene
length); (2) the percentage of intronic SNPs; (3) total
number of studies in the association; (4) total number
of studies performed in Europe; (5) total number of stu-
dies performed in East Asia; (6) the average sample size
of studies; and (7) the average year of study publication
for each association. In total, 564 association studies
were surveyed (Additional File 7).
Our analysis unveiled a significant model (Fdf: 1,31 =

24.641, p < 5 × 10-7, adjusted R2 = 0.596, Table 2) with
two significant predictor variables: the total number of
SNPs in a gene (Beta = 0.613, p < 7 × 10-6) and the
genetic differentiation between populations as measured
by FST (Beta = 0.456, p < 0.00033). Values of tolerance
were high, so we could confirm that these two predic-
tors were independent (i.e. not correlated). Since, as we
saw above, NRG1 and PARK2 genes stood out because
of their large number of SNPs (1,213 and 1,676, respec-
tively), we carried out another multiple forward stepwise
regression analyses without these two genes (n = 31
associations). In this case, a significant model emerged
(Fdf: 1,29 = 16.097, p < 0.00039, adjusted R2 = 0.335)
with FST as the sole predictor variable (Beta = 0.597,
p < 0.00039) explaining j. Correlations become even
stronger when using only the 26 associations from the
more conservative set that includes associations with at
least 50% replicability in each continent (see Methods
and Table 2). These results highlight the role of FST
explaining the consistency of replicabilities in different
continents

Table 1 Summary of Spearman’s correlation coefficients between FST and j as the discordance in replicabilities for the
37 associations from the Continental Set

ASSOCIATIONS CATHEGORY POOLINGa VARIABLEb N P value

Full Set All SNPs By Gene Average FST 33 0.496 * 0.003

Variance FST 32 0.636 * 7 × 10-5

Independently Average FST 3710 0.155 * 2.58 × 10-21

tagSNPs By Gene Average FST 33 0.187 0.313

Independently Average FST 538 0.16 * 2.02 × 10-4

Conservative Setc All SNPs By Gene Average FST 26 0.666 * 0.0002

Variance FST 24 0.666 * 4.5 × 10-6

Independently Average FST 2454 0.15 * 0.628

tagSNPs By Gene Average FST 24 0.453 0.280

Independently Average FST 486 0.063 * 6.85 × 10-4

a Pooling by gene tests average genic FST, while in pooling independently each SNP has been assigned the replicability from the association it belongs to
b Variable indicates which parameter (either average or variance in FST) has been tested versus j
c Conservative set contains those associations that have a replicability of ≥50% in at least one continent
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Figure 3 Correlation between discordance in replicability and
FST for the 37 associations from the Continental Set. The
discordance in replicability values correspond to values and the
genetic differentiation to average genic FST values between
Europeans and East Asians. Grey circles correspond to the
associations from the Conservative Set (n = 26, replicability ≥50% in
at least one continent). Solid line indicates the regression line for
the full set of associations (n = 33). Dashed line indicates the
regression line for the conservative set of associations.
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It is still possible that this correlation could have
arisen due to pure lack of statistical power. For instance,
an association study in East Asians could have failed to
replicate a previous association found in Europeans if,
with similar sample size, the tested genes harbored mar-
kers with lower allele frequencies in the replica popula-
tion. We calculated the percentage of SNPs per gene
from the Continental Set that happened to be very rare
in a given continent while being common in the other,
that is, the percentage of SNPs that are common in just
a continent (see Methods). This percentage of extreme-
frequency SNPs was not correlated with j (r = 0.138, p
< 0.443, n = 33), but it was positively correlated with
FST (r = 0.469, p < 0.006, n = 33). Additionally, we per-
formed an additional multiple forward stepwise regres-
sion with the addition of this statistic as another
explanatory variable for. However, the same models as
above arose (see Table 2), this statistic being discarded
as an explanatory variable of the j. Thus, we can
exclude the possibility that FST explains the differences
in replicability between Europe and East Asia just as a
by-product of lack of statistical power.
Finally, to further validate the correlation between j

and FST, we performed a marker-based analysis in which
we studied the associated variants themselves and not the
genes that contain them. After manual scrutiny of the
444 papers that reported the 37 associations in the Conti-
nental Set, we established the genetic marker had been
analyzed in each study, and ascertained that 54 different
SNPs that where associated in these studies where avail-
able for FST analysis (Additional File 8). Again, we found
a positive correlation between the discordance in conti-
nental replicabilities measured by j and the FST from the
selected markers (r = 0.286, p < 0.036, n = 54).

Ancestral and derived alleles
The correlation between lack of replicability and larger
genetic differentiation of human populations that we
report here may reflect differences in the evolutionary
history of genes affecting complex disease. Such differ-
ences may have arisen under different evolutionary
scenarios since the ancestors of human populations
left Africa. These scenarios range from neutral evolu-
tion governed by pure genetic drift to processes of
population-specific adaptation to new environments.
An excess of high-frequency derived alleles may be
indicative of a shift in allele frequencies, pointing
towards an active role of population-specific phenom-
ena. Thus, we compared the amount of high-frequency
derived alleles among genes from the Global Set,
according to their replicability (Table 3). We defined
high-replicability associations as those whose replic-
ability was above the median (66.7%). In all popula-
tions, high replicability genes presented increased
levels of high-frequency derived SNPs (derived allele
with an allele frequency >50%). This trend was stron-
ger in non-African populations. In Europeans, the
derived allele was the major one for 20.7% of SNPs
from the high-replicability associations (compared to
only 19.2% in low-replicability associations, p < 4.89 ×
10-5, chi-squared test). Also, high-replicability associa-
tions carried an excess of high-frequency derived
alleles (22.6% in Chinese and 22.3% in Japanese) com-
pared to low-replicability associations (21.2%, p < 3.19
× 10-4 and 20.9%, p < 1.43 × 10-4, respectively) in East
Asian populations. Finally, although less pronounced,
this pattern held in Africans (16.8% compared to
15.9%, p < 0.0144, chi-squared test). Gene-specific
values are available at Additional File 9.

Table 2 Summary of multiple regression analysis for the Continental Set

a) FULL SET F df:1,31 P value R2 Beta P value Tolc

a.1) Two predictors (n = 33)a

Gene Length (number of SNPs) 24.641 5 × 10-7 0.596 0.613 7 × 10-6 >0.93

FST (population differentiation) 0.456 0.00033 >0.99

a.2) One predictor (n = 31;NRG1/PARK2 out)

FST (population differentiation) 16.097 0.00039 0.335 0.597 0.00039 -

b) CONSERVATIVE SET b F df:1,24 P value R2 Beta P value Tolc

b.1) Two predictors (n = 26)a

FST (population differentiation) 26.709 9.9 × 10-7 0.673 0.64 1.1 × 10-5 >0.99

Gene Length (number of SNPs) 0.502 2.14 × 10-4 >0.99

b.2) One predictor (n = 24;NRG1/PARK2 out)

FST (population differentiation) 18.023 0.00031 0.428 0.673 0.000314 -
a 6 Excluded non-significant variables: a) percentage of intronic SNPs in the gene from each association, b) total number of studies of each association, c) total
number of studies performed in Europe, d) total number of studies performed in East Asia, e) average study sample size of each association, and f) average year
of study performance in each association.
b Conservative set contains those associations that at least in one continent have a replicability index of 50%.
c Tol = Tolerance.
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Discussion
We have analyzed the role of genetic heterogeneity
among human populations in the replicability of genetic
association studies. To address this question, we have
measured the degree of population differentiation in loci
that have shown differential patterns of association to
disease, as reported in the Genetic Association Database
[23]. We report three main results. First, SNPs harbored
in genes associated with complex disease present lower
FST values than the rest of genic SNPs in the genome;
second, there is a negative correlation between the
replicability of studies associating genes to disease and
the FST values of the associated genes in European and
East Asian populations; and, third, in the same popula-
tions, high replicability genes present increased levels of
high-frequency derived alleles. These findings would
confirm the importance of the recent evolutionary his-
tory of our species in the current patterns of susceptibil-
ity to complex diseases.
Given the large number of false positives reported in

association studies [4,6-8] a relevant starting issue is the
adequacy of the GAD to perform our analysis. In that
respect, two points must be noted. First, it is important
to see that replication studies, which are the center of
our manuscript, are in fact a way to assess how likely
previous associations are false positives. A good part of
our study would be unnecessary if every association ever
reported had been a true positive. In that sense, the
known presence of both false and true positives in the
database prompted the particular series of analysis that
we presented here. The approach will be different when
enough GWAS data are available, since, given current
standards in the field; it is false negatives that dominate
in these studies [6,25,26]. Secondly, even if the “low
replicability” category contains a mixture of false and
true positives, it is clear that the studies with highest
replication rates will correspond to true positives.
Indeed, it has been known for quite some time that a
considerable number of genetic variants have been con-
sistently associated to complex diseases. For example, a
review of 25 associations by Lohmueller et al. [27]

found an excess of replications in classical association
studies that cannot be explained by false positives.
Moreover, a recent paper by Siontis et al. [28] shows
that a good number of the associations detected in non-
GWAS classical association studies (mostly those exten-
sively studied) have been replicated in recent GWAS (41
of 291 with a p < 10-7). Neither of these results would
have been obtained if highly replicated associations
would have been false positives.
Our first observation of lower FST values in genes

associated to complex disease is relevant to the adaptive
history of these genes. It is well-known that purifying
selection is the main force driving the evolution of
genes related to Mendelian disorders, as they tend to
harbor lower levels of polymorphism. In contrast, com-
plex-disease associated genes seem to be under different
pressures, with mixed evolutionary signals [29]. Overall,
our observation of lower levels of population is sugges-
tive of purifying selection. These findings contradict
results from other authors that did not detect differ-
ences in FST values of disease-associated variants relative
to genome-wide levels [19-21]. However, these previous
studies focused in variants instead of genes and, there-
fore, could only muster small sample sizes. Myles et al.
[20] and Lohmueller et al. [19] studied, respectively, 25
and 48 SNPs, with the resulting lack in statistical power.
More recently, the study by Adeyemo and Rotimi [21]
was able to collect 621 disease-associated SNPs. As
expected, they found both SNPs with very large and
very low FST values through populations. However, they
focused on average FST values per disease and did not
test their global average FST of 0.105.
Anyhow, our finding of low average FST values in 403

genes that have been associated to disease is still incon-
clusive. Since our data mainly come from classical (non
genome-wide) association studies, our observation may
have different causes, some of them spurious. Of course,
a true extensive role of purifying selection governing the
evolution of these genes is a possibility; but it is also
possible that certain classes of genes with particular
average selective pressures tend to be involved in

Table 3 Population-specific test on the long-term evolutionary status for the SNPs from the 890 associations from the
Global Set

Europeans (CEU)a East Asians (CHB)a East Asians (JPT)a Africans (YRI)a

Replicability ANCb (%) DERb (%) ANCb (%) DERb (%) ANCb (%) DERb (%) ANCb (%) DERb (%)

≤66.67% 19017 4533 18529 4991 18623 4919 19816 3757

(n = 441) (80.8) (19.2) (78.8) (21.2) (79.1) (20.9) (84.1) (15.9)

≥66.67% 19783 5173 19271 5620 19334 5556 20789 4187

(n = 441) (79.3) (20.7) (77.4) (22.6) (77.7) (22.3) (83.2) (16.8)

p-value 4.89 × 10-5 p-value 3.19 × 10-4 p-value 1.43 × 10-4 p-value 0.0144
a CEU = North Americans (Utah) of Northern European ancestry; CHB = Chinese from Beijing; JPT = Japanese from Tokyo; YRI = Yorubans from Ibadan (Nigeria)
b ANC = SNPs with an ancestral major allele (freq ≥ 0.5); DER = SNPs with a derived major allele (freq ≥ 0.5)
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complex diseases; or that there has been a human bias
towards the inclusion of certain categories of genes in
association studies [30]. Indeed, when tested for func-
tional enrichment of PANTHER Biological Process cate-
gories (see Additional File 10), complex-disease genes
from the Global Set showed an enrichment for the cate-
gory “Immunity and defense” (corrected p < 2.11 × 10-
40) and an array of “signaling"- related categories, such
as “Signal transduction”, “Cell surface receptor mediated
signal transduction” and “Cell communication” (cor-
rected p-values = 9.71 × 10-40, 2.22 × 10-30 and 1.21 ×
10-23, respectively), but these results can be the conse-
quence of anyone of the causes mentioned above, or of
several of them.
In a previous analysis of the Genetic Association Data-

base, Amato et al. [31] found a trend that seems oppo-
site to the one we report here. Namely, they detected
increased levels of population differentiation in disease-
associated genes when compared to genome-wide base
levels. However, a careful analysis shows that our results
are consistent with Amato et al.’s and that the apparent
contradiction is due to their analysis criteria differing
from ours in two key aspects. First, their set of “disease
genes” was composed by genes positively associated to
disease at least once while, to avoid noise, we only
included associations that had been studied four or
more times (n = 1,793 vs. n = 403). Second, Amato et
al. [31] used as the FST value representative of each gene
the maximum FST value of any of the SNP within that
gene. In contrast, we averaged the FST values of all the
SNPs in a gene. This second difference is crucial: when
we repeat our analysis using the “maximum FST“
method we do find marginally significant increased
levels of population differentiation in disease genes (FST
= 0.366, n = 403 vs. FST of 0.345, n = 18,671, p-value <
0.022, Mann-Whitney test). The reverse is also true,
when we analyze the gene set from Amato et al. [31]
with our “average FST“ approach, we detect significantly
lower population differentiation than genome-wide auto-
somic levels (FST = 0.097, n = 1,631 vs. FST of 0.104,
n = 17,443, p-value < 4.4 × 10-5, Mann-Whitney test).
The fact that using either “maximum FST“ or “average

FST“ leads to different results, raises the question of
which approach is more accurate. We believe our
method to be more precise, due to the larger average
length of “disease genes”. As such, they tend to harbor
more SNPs than the average gene (34.8% more, with an
average of 101.48 SNPs, n = 403 vs. an average of 75.28
SNPs, n = 18,671, p-value < 3.1 × 10-14, Mann-Whitney
test). And, in fact, there is a strong positive correlation
between the number of SNPs a gene harbors and the
maximum FST value these SNPs can reach (r = 0.527,
p < 10-50, n = 19,074), while the correlation is much
weaker with the gene-specific average FST (r = 0.094, p

< 10-39, n = 19,074). As a result, the maximum FST is
more biased by gene length than the average FST. There-
fore, an approach based on the average FST in our data
seems to be more accurate, in the sense that the average
FST of a gene is a better proxy of the amount of genetic
differentiation at a given locus.
Our second main observation is that genetic heteroge-

neity through human populations varies greatly amongst
loci associated to complex diseases. These loci present
different degrees of population differentiation if we
attend to their replicability and the consistency of
replicabilities between Europeans and East Asians.
These two populations are more similar for loci that
contain variants which have been similarly associated to
disease over and over again in different studies, while
greater genetic differences are found in loci whose dis-
ease variants have not been consistently replicated.
These observations can have at least three sources. First,
it is possible that different statistical power in different
populations is contributing to the correlation between
continental replicability and FST. For this to happen, it
should be the case that genetic variants that have been
associated to disease in a given population tend to be
rare other parts of the world. However, we found no
evidence of loci with low consistency of replicability
having more SNPs with extreme frequencies (common
in a population while rare in the other). Alternatively,
recent theoretical studies demonstrate that rare variants
may create spurious or synthetic associations at certain
common alleles [32]. If rare causal variants make a sub-
stantial contribution to disease risk and if different
populations present different genealogies, the spurious
associations detected in each population would differ
and replicability patterns may differ. This scenario
would point to an important role for rare variants in the
etiology of complex diseases. However it is difficult to
see how highly replicated associations could be spurious
and we did observe a stronger correlation between FST
and consistency of replicability for associations that have
been replicated in at least 50% of the studies. The final
explanation would be that certain variants are contribut-
ing to the risk for the disease in some populations but
not in others. The range of factors underlying this possi-
bility is not limited to purely genetic causes. For
instance, some gene-environment interactions that have
appreciable joint effects in complex diseases have been
described [33] and environmental conditions vary widely
across the planet. Thus, environmental variability among
populations could have a role in the differential effect of
genetic variants through populations that we have
detected. In any case, the evolutionary history of
humans would be such that some of the variants asso-
ciated to disease would increase susceptibility differently
in different populations.
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Our study points at the heterogeneous genetic archi-
tecture of complex diseases, which even if modulated by
similar cellular and molecular pathways in all humans,
may present intricate population differences regarding
causal variants and loci. Although in most cases the
behavior of susceptibility or protective risk variants are
shared through populations [18], some differential
effects for the same alleles in different populations have
been established, like the European-specific protective
effects to HIV1 infection progression by the 32-bp dele-
tion allele of the CCR5 gene [34-36] or the presence of
two different haplotype blocks in the NRG1 gene that
give susceptibility to schizophrenia in European and
East Asian populations, respectively [37]. These differ-
ences could eventually lead to systematic differences
among human populations in susceptibility to, and may
underlie well-known cases, such as the differential sus-
ceptibility and prevalence of asthma between individuals
of Mexican or Puerto Rican ancestry [38-40].
Usually, lack of replication of association mapping

methods is thought to be due to the presence of con-
founding factors such as population stratification, lack
of statistical power or publication bias. Therefore, strin-
gent replication criteria are necessary to avoid false posi-
tives and to ultimately confirm that a certain genetic
variant confers susceptibility to disease [4]. However,
the fact that the allelic architecture of disease may be
different through human populations raises the issue of
revisiting some genetic association studies for complex
diseases, since some putatively false positives might
hint at diseases whose etiology is geographically
heterogeneous.
As to the causes of these differences, it has been pre-

viously shown that there is variation in the disease-sus-
ceptibility variants that are present in different
populations. These differences have been attributed to
changes in selective pressures over standing variation
[41,42] or to population-specific selective processes
[43,44]. Our results showing that, when compared
against low replicability genes, high replicability genes
present lower FST values between European and Asians,
but high FST values between either of these populations
and Africans; together with the fact that derived alleles
are more frequent in these high replicability genes in
Asian and European populations, suggest that replicabil-
ity has been higher in loci whose allele frequencies
changed in the ancestors of Europeans and Asians after
they left Africa. It is tempting to speculate about a role
of natural selection in shaping this pattern, which would
fit into suggestions about selection leading, in some
cases, to disease as a side-effect consequence of adapta-
tion [41,42]. However, our results could be just due to
the action of genetic drift relaxing purifying selection in
non-African populations. In fact, it has been shown that

the bottleneck due to the out-of-Africa event induced a
decreased ability of purifying selection to purge deleter-
ious alleles [45].

Conclusions
In summary, our results not only show that the evolu-
tionary history of disease-associated loci (influenced
either by demographic or by selective forces) plays a
role in the genetic susceptibility to disease in Eurasians;
but they also cast doubts about the status of false posi-
tives of many associations that have not been widely
replicated. Obtaining this picture has only been possible
by analyzing more than 20 years worth of classical asso-
ciation studies. We hope that the extension of GWAS
to populations of non-European ancestry will allow, in
time, to perform systematic research on the world-wide
distribution of genetic risk variants.

Methods
Database
We used the Genetic Association Database (GAD,
http://geneticassociationdb.nih.gov/, update December
29th, 2007) [23], comprising over 39,000 records, to
select genetic loci that contain variants associated to
common diseases. The GAD reports the most important
features of genetic association studies published over the
last 25 years, including, among others, risk variant, gene
name, disease phenotype, sample ethnic origins, known
epistatic interactions, conclusion of the study, journal,
year and submitter. Every record refers to an associa-
tion, that is, if a given study analyzes k different markers
from the same gene, GAD keeps them into k different
records performing k different associations. However,
the protocols of the GAD are hierarchically gene-cen-
tered, with less than a 10% of the records providing sys-
tematic information about the actual marker analyzed.
In other words, the database does not focus on studies
of certain genetic markers but on associations between
genes and disease phenotypes. Therefore, although ide-
ally our aim was to distinguish marker-specific replic-
ability patterns, we focused onto associations among
genes and diseases. A summary of the steps and filtering
undertaken upon the records from the GAD that are
explained in following sections is available in Figure 1
and Additional File 1.

First set of associations - Global Set
From the original database, we loaded in a local mySQL
database those records (n = 17,355) that carried informa-
tion on the final status of the association, with two possi-
ble states: positive or negative (association or lack of it,
respectively). Then, all the associations between gene and
disease (e.g., CTLA4 - diabetes type II) were selected.
Next, we performed a global manually-controlled
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accuracy control to solve problems due to extra-sensitiv-
ity of our queries. Thus, those associations between the
same gene and the same disease previously classified as
different (such as “NOS3 - high blood pressure” and
“NOS3 - hypertension”) were clustered together. Also,
typographical errors (e.g. “epilpsy” - “epilepsy”) were cor-
rected. At this point, our database was formed by 7,072
different associations between one gene and one disease.
Although many associations had been studied several
times (e.g., ADRB2 - Asthma, 59 times), most of them
had been performed only once (4,491 associations,
63.5%).

Second set of associations - Continental Set
From the original database, we kept those records (n =
7,342) for which besides the final status of the associa-
tion (Y/N), there was also information on the ancestry
of the samples (e.g., European Americans from New
York). For instance, four different records tested for
association between markers at the AKT1 gene and schi-
zophrenia: three of them were positive and based on
individuals from Iran, Japan and the USA, while the last
study, performed with Finnish individuals, was negative
(GAD ID: 116446, 116448, 144228 and 144230,
respectively).
Next we classified each study according to the geo-

graphic origin of the individuals that took part in it.
Incorporating consensus information on human evolu-
tionary history [46,47], six major geographic regions
were considered: Africa, Europe, Middle East, East
Asia, Oceania and America. For example, the four stu-
dies from the association between AKT1 and schizo-
phrenia were classified into three categories: those
performed upon Finnish and USA individuals from
European ancestry were grouped together and labeled
as European (AKT1 - Schizophrenia - Europe - 2
times); the study with Japanese individuals was labeled
as East Asian (AKT1 - Schizophrenia - East Asia - 1
study) and the study with Iranian individuals was clas-
sified as Middle Eastern (AKT1 - Schizophrenia - Mid-
dle East - 1 study). More recent world-wide migrations
were also considered (e.g. association studies on Afri-
can American individuals were labeled as African).
Moreover, we recovered further information from
those studies that had an ambiguous label on the
genetic ancestry of the samples (such as “Australian”
or “Canadian”) and only those for which more specific
and unequivocal information was available were kept
(e.g. the label “Caucasian” was assigned to European
category). Finally, those studies performed on a mixed
panel of samples from different ethnical origins (e.g.
“British individuals from Caucasian and Indian ori-
gins”) were classified under the label of “Mixed”, unless
the study carried separate information on the

association status (positive/negative) for each of the
ethnicities present in the samples.
At this point, the 7,342 records from the Continental

Set were classified into 4,979 different associations con-
necting one gene and one disease and classified into
continental populations: 2,136 associations were labeled
as European, 1,775 as East Asian, 287 as Mixed, 131 as
African, 65 as Middle Eastern, 39 as Amerindian, 11 as
Oceanian and 535 were left unassigned.

Replicability Index Assignation
To measure the replicability of a given association, we
calculated the proportion of positive studies compared
to the total number of studies of the association. How-
ever, since a reliable replicability index can only be esti-
mated if associations have been studied several times,
we defined an arbitrary cutoff of four studies, so that
only associations that had been studied at least four
times were considered. After applying these criteria, the
Global Set was finally formed by the 890 gene-pheno-
type associations that had been studied at least 4 times
(out of 7,072 initial associations, Additional File 2).
For the Continental Set, 238 associations (out of

4,979) remained after applying the same criterion of at
least 4 studies per association. Most of the remaining
associations had been carried out with individuals from
Europe (n = 129, 54.2%) and East Asia (n = 99, 41.6%).
Only a few association studies had been performed with
African (n = 4, 1.7%) or Mixed (n = 6, 2.5%) individuals.
Since 3 out of the 4 African associations (FCGR2A,
NOS2 and TNF loci) were studies about malaria, which
is endemic of African populations, we decided to
remove them from our analysis and focus on associa-
tions that had been widely studied in both Europe and
East Asia (≥4 times in each). Thus, the final Continental
Set was formed by the 37 overlapping associations con-
sistently studied in each European and East Asian popu-
lations (Additional File 3).

Discordance Index for Replicability in the Continental Set
- Cramer’s Phi (j)
We used Cramer’s j coefficient to calculate an index of
discordance among the continental-specific replicabil-
ities, so we could make use of the geographic informa-
tion in the Continental Set. This statistic ranges from 0
to 1 and constitutes an unbiased estimator of the
strength of association between two qualitative variables
from a contingency table [48]. For the Continental Set,
these variables were “continent” (Europe or East Asia)
and “positive and negative studies within continent”.
When j = 0 there is no association between the two
variables, indicating that the two levels of replicability in
the two continents under study were consistent (e.g. a
replicability of 70% in European and 70% in East Asian
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populations). On the other hand, j = 1 indicates that
there is a complete association between the degree of
replicability and the continent of origin of the studied
populations, that is, that replicabilities were discordant
between continents (e.g. the replicability was 0% in Eur-
opean studies and 100% in East Asian studies).

Genotypes
SNP polymorphism data from HapMap Project Phase 2
(release 22, April 2007) [15] were selected to study
genetic variability between human populations. Only
genic SNPs as defined by ENSEMBL (Build 35) were
ascertained for further analyses (n = 1,439,152 SNPs,
from 19,176 genes). We downloaded all genotypes for
all unrelated samples from the four HapMap popula-
tions: 60 CEU individuals (samples of Northern-Eur-
opean ancestry from CEPH panel), 45 JPT individuals
(from Tokyo, Japan), 45 CHB individuals (from Beijing,
China) and 60 YRI individuals (Yorubans from Ibadan,
Nigeria). Following previous works, JPT and CHB sam-
ples were clustered together due to their close genetic
relationships (90 individuals, ASN from now on) [49].
We identified a total of 50,317 SNPs located in genes
reported in the 890 associations from the Global Set;
and a total of 6,092 SNPs within the 27 genes from the
37 associations in the Continental Set (no SNPs were
found in 4 genes: APOE, HLA-DQA1, HLA-DQB1 and
LTC4S). Finally, those SNPs that were monomorphic in
both European and East Asian populations were
removed from the Continental Set (final set, n = 3,710
SNPs).

tagSNP selection
Adjacent SNPs tend to be inherited together (these
SNPs being in Linkage Disequilibrium or LD). There-
fore, any measure of genetic differentiation calculated
for a given SNP may be correlated with the signal from
nearby SNPs, if in LD. Since our aim is to check the
patterns of replicability and genetic differentiation at dif-
ferent genetic loci, variable SNP densities and LD pat-
terns through different genes might cause some bias in
our estimates. To avoid this, we ascertained sets of
representative SNPs (tagSNPs) for each block of LD in
the genes under study. We used SYSNPs browser http://
www.sysnps.org, [50] that uses the Tagger algorithm
[51], to select the tagSNPs of our interest. We tagged
for each population (CEU, ASN and YRI) using an r2

threshold of 0.8 and minimum MAF of 0.1, considering
only SNPs with a minimum genotyping call of 75% of
the individuals. Finally, we selected those SNPs that
appeared to be tagSNPs in all three populations, with a
final set of 6,582 and 538 tagSNPs for the Global and
Continental Sets, respectively.

Population Differentiation (FST) Calculation
We used Wright’s FST [52] to measure genetic differen-
tiation among populations. This statistic ranges from 0
to 1 and quantifies the amount of differences in allelic
frequencies among populations and has been classically
used to measure genetic differentiation between popula-
tions. Allele frequencies and measures of FST [53,54] for
each SNP were calculated with Arlequin v3.11 [55] as
implemented in SNPator [56], using the genotypes from
the ASN, CEU and YRI populations for the Global Set
and from the ASN and CEU populations for the Conti-
nental Set. Therefore, for each SNP we calculated three
pairwise FST values (European-Asian, European-African
and Asian-African) and a global FST value including the
three HapMap populations. To test for genetic differen-
tiation patterns in different genes, we computed FST in
three different ways (1) averaging out the FST values of
all SNPs in a gene; (2) using separately the FST value
corresponding to each SNP and (3) using for each gene
only the FST values corresponding to its tagSNPs.
Finally, to study how association studies performed in
different continents could have failed to replicate due to
lack of statistical power, we calculated the percentage of
SNPs for each gene from the Continental Set that hap-
pened to be rare (MAF < 0.1) in a given continent while
common (MAF > 0.2) in the other continental popula-
tion (see Table 2).

A marker-based analysis of the Continental Set
One of the pitfalls of the GAD database is that the
actual markers tested in each study have been rarely
recorded. Therefore, we focused on genes and summar-
ized the replicability of each association by genes. How-
ever, the tendency of classical association studies to test
a set of few markers may have affected our replicability
measures. Thus, we decided to perform an analysis
based on the actual tested markers that would help to
validate our findings. As surveying all the papers that
have been selected from the GAD seemed unfeasible, we
focused in the 564 records (from 444 papers) that
belong to the 37 associations from the Continental Set.
For each record (see Additional File 7), we selected
those variants that had been tested in at least 10% of
the studies from each association. In total, we gathered
72 different polymorphisms. Of those, 54 were SNP
markers. For each, we gathered allele frequencies for
Europeans and East Asians from either public databases
(HapMap, ALFRED or dbSNP) or, if not available, from
the paper with the highest sample size for each Conti-
nental population. Similar to the gene-based analysis of
the Continental Set, for each SNP we calculated the FST
between Europeans and East Asians. Finally, we assigned
to each marker the j value from the association it
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belonged to. All the features from the selected markers
are available in the Additional File 8.

Ancestral vs. derived alleles
To study the role of long-term evolutionary pressures in
disease-associated loci and the replication of association
studies, we inferred the ancestral-derived status of each
SNP using a phylogenetic parsimony criterion by means
of orthologous alignments with chimpanzee (Pan troglo-
dytes) and macaque (Macaca mulatta). Using the
Ensembl v49 BlastZ-net alignments [57,58] we reported
the ancestral or derived status for the major allele (allele
frequency ≥0.5) for all SNPs in each HapMap popula-
tion (Additional File 9).

Gene Ontology analysis
We used the service “expression data analysis” from the
PANTHER database tools website [59]. This utility per-
mits to “uncover statistically significant relationships
between input data and gene or protein functions” [60].
We tested the whole list of complex-disease related
genes from the Global Set (n = 403) versus the NCBI
full set of genes. By means of a binomial test, we
obtained a Bonferroni-corrected p-value for under- or
over-representation of each functional category for all
Biological Processes.

A conservative dataset
In some analyses (were indicated in the text) we applied
some further filters in order to be even more conserva-
tive. First, we eliminated associations that had failed to
replicate at least 50% of the time after many attempts
on the basis that these associations lacked credibility
(after filtering, 710 associations remained in the Global
Set and 26 associations in the Continental Set). In addi-
tion, for the estimation of the average genic FST, we fil-
tered out any gene that had less than 10 SNPs in order
to get more reliable measures of genetic distances.
Finally, for the Global Set we applied varying thresholds
on the number of studies, filtering out associations with
less than 8, 10, 12, 14, 16, 18 or 20 studies, respectively.

Statistical analyses
Statistical analyses were performed using SPSS version
15.0 (SPSS, Inc., Chicago, IL) and using scripts in R
v2.10.1 [61]. To check whether average FST from dis-
ease-associated genes from the Global Set was signifi-
cantly different than genome-wide average FST, we ran a
resampling test, with 10,000 sets of genes randomly
chosen from the whole genome. Each set of genes had
the same number of genes (n = 403) than our Global
Set. Thus, we checked how many times 403 random
genes chosen from the whole genome had an average

FST value equal or greater than the average FST from
the Global Set.

Additional material

Additional file 1: Text summary of the steps and filters to ascertain
the Global and Continental Sets.

Additional file 2: Main Features and Population Differentiation
values in the selected 890 associations from the Global Set.

Additional file 3: Main Features and Population Differentiation
values in the selected 37 associations from the Continental Set.

Additional file 4: Summary of Spearman’s (r) correlation
coefficients between the world-wide replicability (in %) and the
average genic population differentiation (FST) for the 890
associations from the Global Set.

Additional file 5: Summary of Spearman’s (r) correlation
coefficients between the world-wide replicability (in %) and the
average population differentiation (FST) for the 50,317 SNPs from
the Global Set. Each SNP has been assigned the replicability of the
gene they locate.

Additional file 6: Summary of Spearman’s (r) correlation
coefficients between the world-wide replicability (in %) and the
average FST for tagSNPs from the 890 associations from the Global
Set. Each tagSNP has been assigned the replicability of the gene they
locate

Additional file 7: Main Features from the 564 studies of the 37
associations from the Continental Set.

Additional file 8: Main Features and Population Differentiation
values in the 54 SNP markers from the selected 37 associations
from the Continental Set.

Additional file 9: Main Features and summary of population-specific
ancestrality status for the 890 associations from the Global Set.

Additional file 10: Gene enrichment analysis for the PANTHER
database “Biological Process” categories for the 403 genes from
the 890 associations of the Global Set.
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