
RESEARCH ARTICLE Open Access

An iterative workflow for mining the human
intestinal metaproteome
Koos Rooijers1†, Carolin Kolmeder2†, Catherine Juste3, Joël Doré3, Mark de Been2, Sjef Boeren4, Pilar Galan5,
Christian Beauvallet6, Willem M de Vos2,7, Peter J Schaap1*

Abstract

Background: Peptide spectrum matching (PSM) is the standard method in shotgun proteomics data analysis. It
relies on the availability of an accurate and complete sample proteome that is used to make interpretation of the
spectra feasible. Although this procedure has proven to be effective in many proteomics studies, the approach has
limitations when applied on complex samples of microbial communities, such as those found in the human
intestinal tract. Metagenome studies have indicated that the human intestinal microbiome contains over 100 times
more genes than the human genome and it has been estimated that this ecosystem contains over 5000 bacterial
species. The genomes of the vast majority of these species have not yet been sequenced and hence their
proteomes remain unknown. To enable data analysis of shotgun proteomics data using PSM, and circumvent the
lack of a defined matched metaproteome, an iterative workflow was developed that is based on a synthetic
metaproteome and the developing metagenomic databases that are both representative for but not necessarily
originating from the sample of interest.

Results: Two human fecal samples for which metagenomic data had been collected, were analyzed for their
metaproteome using liquid chromatography-mass spectrometry and used to benchmark the developed iterative
workflow to other methods. The results show that the developed method is able to detect over 3,000 peptides per
fecal sample from the spectral data by circumventing the lack of a defined proteome without naive translation of
matched metagenomes and cross-species peptide identification.

Conclusions: The developed iterative workflow achieved an approximate two-fold increase in the amount of
identified spectra at a false discovery rate of 1% and can be applied in metaproteomic studies of the human
intestinal tract or other complex ecosystems.

Background
The human intestinal tract is colonized since birth by a
large number of microbes, together making a complex
ecosystem, even considered an organ by itself [1]. Many
studies indicate a pivotal role for the intestinal microbes
in carbohydrate metabolism, production of vitamins,
inflammatory response regulation, fat metabolism and
other biological processes of the human host [2,3]. In
adults, the community consists of around 1014 cells
[4-6], with a complexity that is predicted to include over
5000 microbial species [3]. While recent progress has

been made in characterizing the genomes of around 200
intestinal species in the Human Microbiome Project
(HMP) [7], the vast majority has not yet been cultured.
Hence, these are known as phylotypes as their presence
can be deduced from molecular markers such as 16S
rRNA and other nucleotide sequences. This approach
has shown that most of the intestinal phylotypes belong
to a limited set of phyla, including the Firmicutes, Bac-
teroidetes, Actinobacteria, Proteobacteria and Verruco-
microbia [5]. In healthy adults the intestinal microbiota
fluctuates around a stable individual core of phylotypes
that are affected by host genetics, environmental and
stochastic factors [3]. High throughput metagenomics
studies, such as that of the recently reported MetaHIT
project, have indicated that the human gut microbiome
contains a gene repository that is estimated to be over
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100 times the number of genes encoded by the human
genome [8].
The current developments in high-throughput omics

techniques allow for unique insight in the functions of
this community that can be predicted via metagenomics
and established at the biochemical level. Proteomics of
isolated microbes is an established and powerful method
to determine global expression profiles [9]. However,
metaproteomics i.e studying the proteome of a complex
environmental system like the human intestinal micro-
biota is an emerging field within the area of proteomics
that is characterized by a high level of complexity
[10,11]. Common high-throughput spectral interpreta-
tion algorithms use peptide spectrum matching to link
the raw data obtained from a mass spectrometer to
large listings of peptides that are possibly represented in
the data. Generation of theoretical spectra from these
peptides present in the database and matching them
with the obtained data forms the basis of these algo-
rithms [12]. Thus, in order to properly identify the spec-
tra, one needs to know very accurately which peptides
one can expect. The complex gut microbial proteome is,
however, far from defined, as the HMP is still advancing
[7,8]. Moreover, the distribution of species is dynamic
and it differs between individuals [3,13]. A common
method to circumvent the lack of a defined proteome is
to use proteomes from closely related species in so-
called cross-species protein identification. This is
reported to lead to relatively high false discovery rates
however, and should be considered a sub-optimal solu-
tion [14]. Another approach is to exploit the metage-
nomics developments but this approach suffers from the
limited coverage of the present databases. An ideal case
is the use of available sequence data of the sample that
is to be analyzed by metaproteomics. This matched
metagenome could serve as a basis for the predicted
metaproteome by naive six-frame translation and basic
filtering of the obtained hypothetical proteins for the
presence of trypsinated peptides of sufficient size. Since
most of the predictions will be incorrect as it fills the
search space with noise, this approach may also either
suffer from a high false discovery rate or results in a low
proteomics identification efficiency.
Since both approaches suffer from unacceptable high-

false positive rates, which lead to low accuracy in the iden-
tification of proteins, we aimed to develop an iterative
workflow based on a synthetic metagenome from over 200
intestinal species that would increase the sensitivity of
peptide identification by peptide spectrum matching of the
metaproteomics data. Synthetic metagenomes have already
been successfully applied in the analysis of less complex
microbial proteomes, [15] and biofilms, reviewed in [16]
and recently in the analysis of biostimulated microbial
communities from field experiments [17]. For the complex

microbial proteome of fecal samples VerBerkmoes et al.,
[18] successfully used a mixture of gut microbial metagen-
ome sequence data supplemented with a synthetic meta-
genome constructed from known gut inhabitants
representatives. The human gut microbial gene catalogue
[8] is however increasing exponentially and thus there is
need for alternative approaches that keep the false discov-
ery rate within limits while still maintaining high proteo-
mics identification efficiency.
In this study a synthetic metagenome setup is used as

a starting point in an iterative approach. This approach
combines the power of sequence diversity contained in
metagenomic diversity while keeping the reliability of
predicted proteins high and hence the search space
small, which limits false discovery rates. To provide
proof of concept for this approach, we determined the
metaproteomes of two fecal samples from healthy adults
that had also been characterized by metagenomic
sequence analysis.

Results and Discussion
To develop the iterative workflow for identifying mass
spectrometric data from the intestinal metaproteome,
we first assembled a synthetic metagenome. This was
done by selecting a set of genomes from 216 known gut
inhabitants that were available, fully sequenced, and
annotated [19] (for a listing see additional file 1). Subse-
quently, we collected a metaproteomics dataset from
fecal samples from two French healthy subjects, termed
NO1 and NO3, which had been analyzed by metagen-
ome sequencing. Finally, we benchmarked the developed
iterative workflow by comparing the predictions
obtained with other search strategies.

Phylogenetic Analysis of Two Human Metagenomic
Datasets
The two matched metagenomes from the subjects NO1
and NO3 were determined by high fidelity Sanger
sequence analysis and contained 128,441 and 120,415
sequence trace files respectively, giving in total
169,762,767 and 162,162,286 nucleotides per metagen-
ome. The phylogenetic diversity of these samples was
determined by 16S rRNA sequence analysis of the meta-
genomic data sets (Figure 1A and 1B). This was com-
pared to an abundance analysis of the metagenomic
sequences using the synthetic metagenome as reference
set (Figure 1C and 1D, see Materials and Methods sec-
tion for details). The results indicate the presence of
Bacteroidetes, Firmicutes, Actinobacteria, Verrucomicro-
bia and Proteobacteria as the dominant phylotypes in
these gut samples (Figure 1). Moreover, the high con-
gruency between the different approaches testifies for
the representativeness of the synthetic metagenome
used in this study.
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Both phylogenetic analysis methods (Figure 1)
revealed significant difference between the two samples
in abundance of Actinobacteria, Proteobacteria and
Verrucomicrobia and both methods suggest that the
Verrucomicrobia are more present in the NO3 sample.
Remarkably, based on the abundance analysis of the
metagenomic sequence trace files the Verrucomicrobia
were highly prominent in the NO3 sample (represent-
ing approximately 12% of the total community). The
metagenomic sequence trace files from this group all
seem to originate from Akkermansia muciniphila-like
species. A. muciniphila is a common bacterial compo-
nent of the human intestinal tract and is reported to
reach densities up to approximately 3% in the human
colon [20]. It is unlikely that the discrepancy between
the direct diversity analysis and the metagenome
mining results derived from inappropriate annotation
of the metagenome information, as A. muciniphila
belongs to the Verrucomicrobia, which is a deeply
rooted phylum, and changing the cut-off values for the
average nucleotide identity from 90 to 95% still

predicted 6% abundance of A. muciniphila-like bacteria
(data not shown). Hence we assumed that this discre-
pancy is a result of a cloning bias of the 16S rRNA
versus genomic fragments of the A. muciniphila-like
bacteria. Such cloning biases have recently been
reported in a model study comparing different metage-
nomic sequencing approaches [21].

Metaproteomics Data Collection and its Analysis Using
Naive Translations of the Matched Metagenomes
Proteins extracted from the microbial fractions isolated
from the fecal samples of subjects NO1 and NO3 were
separated by 1-D SDS-PAGE followed by liquid chroma-
tography-mass spectrometry (LC-MS/MS) analysis of
trypsin-treated gel fractions. This resulted in the collec-
tion of a set of 41845 and 45042 MS/MS spectra in the
NO1 and NO3 samples respectively. Six-frame naive
translations were made from the matched NO1 and NO3
metagenomes, filtering out small peptides. Peptide Spec-
tral Matching (PSM) was performed on the MS/MS data
using the NO1 and NO3 naively translated metagenomes

Figure 1 16S rDNA and Meta-mining analysis of matched metagenomes NO1 and NO3. A and B: 16S rDNA abundance analysis of the two
metagenomes. The analysis shows the presence of Bacteroidetes, Firmicutes and Actinobacteria as dominant phylotypes in the gut samples. C
and D: Meta-mining of the traces, using a set of 216 annotated high quality genomes from known gut inhabitants using a sequence similarity
threshold of >90% over >300 nucleotides. 46.2% of the NO1 traces and 41.8% of the NO3 traces were matched in this approach. The analysis
confirms the distribution over the phyla measured using 16S rDNA analysis. E: Color code key
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as single search spaces. False positives were determined
using reversed versions of each database [22] and the
results of all PSM analyses are reported at a fixed peptide
False Discovery rate (FDR) of 1%. The peptide search
against the matched metagenomes resulted in 2,331
peptide hits for NO1 and 1,870 peptide hits for NO3
(Figure 2). Moreover, the search against the un-matched
metagenomes resulted in only 1,120 and 922 peptide hits

for the NO1 and NO3 metaproteomes, respectively
(Figure 2). Remarkably, the use of the matched metagen-
ome resulted in a more than two fold increased number
of identified MS/MS spectra compared to the un-
matched metagenome, demonstrating the importance of
using a search database where the listed sequences pre-
cisely match the peptides present in the sample. How-
ever, the number of peptides present might be even

Figure 2 The effect of using matched metagenome in peptide spectrum matching. Total number of Peptide Spectrum Matches (PSM) with
matched microbial genome sequences obtained from stool samples of human volunteers NO1 and NO3. The spectra from the two samples
were identified using a naive translation of their respective matched metagenomes (black bars) and cross-validated with the naive translation of
the non-matching metagenome (grey bars).
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under-estimated when using the naive translations as
search space as these have the drawback that the pseudo-
genes vastly outnumber true genes. This results in a large
number of false positives that only can be eliminated by
increasing the threshold and hence limiting the discovery
success. Therefore, an alternative approach was devel-
oped based on an iterative analysis of the metaproteome
data using a synthetic metagenome database as described
below.

Development of an Iterated Search Method Using a
Synthetic Metagenomic Data Set
As indicated above, a representative synthetic metagen-
ome data set was constructed and used for developing
an improved method for metaproteomics data analysis.
The sequence variability present in the predicted syn-

thetic proteome cannot be fully covered, as the species
diversity of the intestinal microbiota is enormous. More-
over, in the analysis of shotgun proteomics data with PSM
algorithms, an exact match between the experimental data
and a theoretical spectrum from a theoretical peptide from
the database is necessary. Peptides containing a single
amino acid polymorphism are not detected if they are not
contained in the database. To circumvent this limitation, it
is necessary to cover the sequence variability of the pro-
teins in the sample. With the release of sequence reposi-
tories from the high throughput metagenomic studies,
such as the MetaHIT project, an enormous amount of gut
metagenome data is available [8]. These repositories are
increasing in size and hence difficult to use directly in a
naive translation approach as their complexity is increasing
exponentially. Furthermore, faithful annotation of the data
is hampered by the inability to efficiently transform
sequence data completely into contigs of sufficient length
that capture complete protein encoding genes [8,23].
Moreover, there is no way to deal with the inevitable
occurring sequencing errors associated with the new gen-
eration technology sequencing approaches [24]. Further-
more, standard methods of FDR calculation using decoy
databases derived from search databases of this size are
increasingly impractical, notably as the computing time is
limiting. The iterative workflow we propose here is based
on a combination of the synthetic metagenome described
above and a metagenome repository without any form of
assembly, annotation or a priori translation (see Figure 3).
We selected the MetaHIT dataset as a basis as this is by
far the most comprehensive analysis to date [8]. It is evi-
dent that the synthetic metagenome selected here may be
increased in size as the HMP is continuously progressing.
PSM analysis of the MS/MS data is performed in a

first step using the synthetic metaproteome. Since these
genomes are reliably annotated, we are able to use the
DNA gene-sequences coding for the peptides identified
in the first PSM run to retrieve homologous sequence

trace files from the MetaHIT repository. To reduce the
computational load this enrichment procedure is done
in two steps (Figure 3). The first step using discontigu-
ous megablast with coding spaced seeds [25] performs a
first selection of these sequence trace files at DNA level.
The second step using blastx performs a comparison of
this selection on amino-acid level, thus ensuring homol-
ogy between the protein sequence from the synthetic
metagenome selected by the initial peptide spectrum
match and the MetaHIT sequence trace file on peptide
level. Next the selected sequence trace file is translated
and recorded in a new peptide database. These new
peptide databases are created for each individual MS
data sample. The databases are then used for a next
round of PSM analysis.
Application of this iterative search workflow showed

an increase in spectral identifications when compared to
that obtained with the synthetic metagenome and the
earlier described matched metagenome searches. The
iterative method resulted in 5,010 and 3,542 identified
peptides in the NO1 and NO3 samples, respectively.
Compared to each of the two other methods, this repre-
sents an approximately 2-fold increase (Figure 4). An
important factor contributing to the increased number
of identifications is the increase in sensitivity of the
iterative method compared to a direct synthetic meta-
proteome approach. The sequence trace files enable the
PSM algorithms to search the data using a broad
sequence variability. (Figure 3). Another factor is the
increase in specificity of the enrichment procedure with
respect to a naive translation approach. As the number
of incorrectly predicted proteins is drastically reduced
by the method of sequence trace file selection before
they are translated, the FDR is also drastically reduced.
The Open Mass Spectrometry Search Algorithm

(OMSSA) search against the matched metagenomes
resulted in 840 and 584 identified peptides for NO1 and
NO3 respectively which could not be identified by the
iterative search approach. These hits are peptides, which
do not have an apparent homolog in the synthetic meta-
genome. However, this loss of information can be taken
into account as in a standard experiment a matched
metagenome is not available.
The enrichment procedure also minimizes the impact

of an initial false discovery. Sequence trace files selected
by a true peptide match will in turn produce additional
PSMs (Figure 3) and thus increase the relative weight
of the presence of particular molecular function in
a matched gut metaproteome. Trace sequence files
selected by a random hit generally will not produce
additional PSMs for the same molecular function. These
concepts together contribute to the accuracy of the
method and the increased number of identified spectra.
Moreover, as the size of protein sequence databases is
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Figure 3 The bioinformatics workflow of the proposed method. A: Peptide spectral matching with the ‘synthetic metaproteome’ leads to
peptide hits. The ORFs underlying the hitting peptide sequences are used to select a subset of the metagenomic pool of sequence data (in this
case MetaHIT sequence repository). The two-step selection of megablast and blastx reduces the computational load and allows the
metagenomic pool to be large. The selected subset is naively translated and is used as a search space for a next round of peptide spectral
matching, generating set 2 of peptide hits. Note that many elements of the workflow can be altered to fit other metaproteomics studies. B:
Alignment of naive translations of selected traces with a synthetic metagenome starting sequence assigned to COG074. Underlined: domains of
the synthetic metagenome starting sequence; Red: peptides spectrum matches using the synthetic metagenome peptide database; Blue: variant
peptides detected in selected naively translated MetaHit sequence trace files. Leucine (L) and isoleucine (I) are isobaric and can therefore not be
detected separately.
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constantly growing, the success of the identifications is
expected to increase accordingly using the described
iterative method that accommodates the dynamics in
database development.

Molecular Function Prediction of the Metaproteomics
Data
To illustrate the power of the described metaproteomic
approach in combination with the iterative search
method, we predicted the functions of the intestinal
microbiota isolated from the subjects NO1 and NO3.
For this purpose we performed a blast search of the
trace hit sequences against the COG Clusters of Ortho-
logous Proteins of Comparable Molecular Function [26]
database (Figure 5 and additional file 2) and assigned a
COG to each identified spectrum. Molecular function
abundance estimates were determined by summing the

COGs over all spectral counts and grouping COGs into
COG families (see Materials and Methods section for
details). The iterative search method resulted in a simi-
lar distribution over the COG families as that obtained
with the synthetic metaproteome-search method, reflect-
ing the approach taken (Figure 5). Remarkably, the dis-
tribution over the COG families between the NO1 and
NO3 samples is highly similar. The COG categories
Translation, Energy production and conversion and Car-
bohydrate transport and metabolism count for over 50%
of the spectra in each sample. Furthermore, COG cate-
gories Amino acid transport and metabolism, Nucleotide
transport and metabolism and Lipid transport and
metabolism are abundantly present. A similar distribu-
tion of COG families based on metaproteomes was
recently reported for a Swedish adult twin pair [18]. It
reassures the role of the gut microbiota in carbohydrate
metabolism and harvesting and conversion of other
nutrients. Moreover, the elucidation of the full range of
microbial functions allows studies to gain insight in the
relation between gut microbial community and obesity
or other inflammatory disorders.

Metaproteomic Mining Points to a Specific Role of A.
muciniphila-like Bacteria in the Intestinal Tract
The identified metaproteome can also be used to focus
on the proteome of phylogenetically deeply rooted
microbial taxa as these stand out in the blast analyses.
An example is A. muciniphila-like bacteria that is a sin-
gle intestinal representantative of the deeply rooted Ver-
rucomicrobia and has recently been characterized at the
genome level (van Passel et al. submitted). The traces
from the MetaHIT pool selected by a PSM were phylo-
genetically analyzed by a meta-mining approach for the
relative presence of proteins derived from A. municiphi-
lia-like bacteria. This resulted in the detection of a total
of 9 such proteins in the NO1 metaproteome while
close to 200 of such proteins were found in the NO3
metaproteome (see additional file 2). This reflects accu-
rately the observed abundance of A. muciniphila-like
bacteria in the different metagenome datasets (see
Figure 1). Close inspection of the large dataset from the
NO3 subject shows a specific COG distribution of the
peptides derived from A. muciniphila-like bacteria
(Figure 6). Apart from the obvious housekeeping func-
tions, the largest COG groups included proteins pre-
dicted to be involved in carbohydrate transport and
metabolism as well as amino acid transport and metabo-
lism. This is compatible with the observation that
A. muciniphila is capable of using mucin as carbon and
nitrogen source [20].
Moreover, as these proteins include various muci-

nases, it testifies for predicted activity and function of
A. muciniphila-like bacteria in the intestinal tract.

Figure 4 Results from three different approaches to peptide
spectrum matching of shotgun meta proteomics data. Spectra
from NO1 (A) and NO3 (B) were identified in separate OMSSA runs
using the ‘synthetic metaproteome’ (green), naive translation of the
matched metagenome (blue) and a translated metagenomic subset
(red) as search space. Combining the search results from the
synthetic metagenome search and the results from the search
against the translated metagenomic subset, the proposed method
(Figure 3) yields the highest spectrum identification rate. As
expected, most of the spectra identified using the ‘synthetic
metaproteome’ are also identified using the translated subset.

Rooijers et al. BMC Genomics 2011, 12:6
http://www.biomedcentral.com/1471-2164/12/6

Page 7 of 11



Conclusions
The wealth of information contained in the intestinal
metaproteomes becomes increasingly accessible as tech-
nical and analytical methods for its analysis mature.
Although there are still limitations in peptide identifica-
tion, we describe here a novel approach that increases
the accuracy of peptide identification from shotgun pro-
teomics data significantly. The setup of the iterative
workflow is highly dynamic, which allows capitalizing
on the developing databases. Moreover, it is sufficiently
general to make it applicable to study metaproteomes of
other ecosystems. The developed iterative workflow was
benchmarked to other approaches using data from two
human intestinal metaproteomes, showing superior
identifcation power and its applicability in defining func-
tions of intestinal bacteria.

Materials and methods
Study Material
Fecal material was obtained from subjects NO1 and NO3
from the Micro-Obes - Human Intestinal Tract Metagen-
omes. NO1 and NO3 were two healthy lean male volun-
teers aged 63 and 61 respectively, without symptoms of
gastrointestinal disease, family history of gastrointestinal

Figure 5 The distribution of the spectra over the COG categories. Left three bars represent spectra counts per COG category for the NO1
sample right three bars show spectra counts per COG category for NO3 sample. Blue: Peptide database is derived from direct naïve translation
of traces; green: Peptide database is derived from the non-redundant synthetic metagenome; red: Iterative Peptide database

Figure 6 COG functional category distribution of A. muciniphila-
like bacteria in subject NO3. Apart from the obvious housekeeping
functions, the largest COG groups include proteins predicted to be
involved in carbohydrate transport and metabolism (G) as well as
amino transport and metabolism (E).
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disease, or medication use. They were recruited from the
SU.VI.MAX2 cohort, in which they had been followed
over 8 years for their healthy nutritional and lifestyle
habits [27]. The SU.VI.MAX 2 study was conducted
according to the guidelines laid down in the Declaration
of Helsinki and was approved by the Ethical Committee
for Studies with Human Subjects of Paris-Cochin Hospi-
tal (CCPPRB n° 2364) and the Comité National Informa-
tique et Liberté (CNIL n° 907094). Written informed
consent was obtained from all subjects.

Liquid chromatography tandem mass spectrometric
analysis
Bacteria were separated from fresh fecal material from
subjects NO1 and NO3 by flotation in a preformed
Nycodenz continuous gradient adapted from [28] and
stored at -80°C. Proteins were extracted from bacterial
pellets by chemical lysis. Freshly prepared buffer con-
taining 8.75 M urea (Pharmacia), 2.5 M thiourea
(Sigma), 5% (w/v) CHAPS (Sigma), 75 mM DTT
(Sigma) and 31.25 mM dihydrate spermine base (Fluka)
was added to each frozen bacterial pellet. The pellets
were dispersed by vigorous vortexing and incubated at
room temperature for 1 h with periodic vortexing. The
lysates were centrifuged at 45,000 rpm for 1 h at 18°C.
Protein concentration of the supernatant was deter-
mined using the GE Healthcare 2-D Quant Kit. After
neutralizing with concentrated HCl, the protein solu-
tions were stored at -80°C.
Protein solutions were buffer exchanged and per sample

50 μg of proteins were fractionated on a 4-12% gradient
gel and lanes fractionated into 20 pieces. Proteins were
reduced with 50 mM (DTT) in 50 mM ammonium bicar-
bonate (NH4HCO3) for 1 h at 60°C, alkylated with
100 mM iodoacetamide (IAA) in 50 mM NH4HCO3 for
1 h at room temperature and digested with 0.2 μg trypsin
per gel piece at room temperature over night. Peptide
solutions were acidified with trifluoroacetic acid to pH 2
and centrifuged. 18 μl of supernatant were loaded on a
0.1×30 mm reversed phase column and peptides were
eluted to an 0.1×300 mm analytical reversed phase column
with an acetonitrile gradient from 9 to 34% and a fixed
concentration of formic acid in 50 minutes (Proxeon
nLC). The eluent was subjected to an electrospray poten-
tial via a coupled platinum electrode. MS spectra were
measured on an Orbitrap (Thermo Electron, San Jose, CA,
USA) and MSMS scans of four most abundant peaks were
recorded in data-dependent mode in coupled LTQ.

Bioinformatics
Synthetic metagenome/metaproteome assembly
The synthetic metaproteome and synthetic metagenome
were assembled by taking the known gut inhabitants
described in [19] and the gut microbiota listed on the

NCBI FTP server (ftp://ftp.ncbi.nih.gov/genomes/Bacteria/)
for which both genomic information and annotated pro-
teome information was available and (nearly) complete.
Selected microbial proteomes are listed in additional file 1.
Synthetic metaproteome redundancy minimization
All protein sequence databases have been made non-
redundant (in the case of the synthetic proteome at the
level of subspecies, e.g., when Lactobacillus reuteri
MM4-1 and Lactobacillus reuteri SD2112 share a pro-
tein sequence exactly, the sequence is only in the data-
base once, however redundancy with other Lactobacilli
is ignored. This eliminated most of the redundancy in
the synthetic metaproteome), leading to lower (better)
e-values in PSM runs and shorter computational times.
Abundance analysis of the metagenomic sequences
Metagenomic sequence data was compared to the syn-
thetic metagenome using ‘megablast’ [29], with default
settings. Reported hits are above a 95% average nucleo-
tide identity threshold. The synthetic metagenome
allowed extraction of species to determine lineage of the
metagenomic data (Figure 1).
Metagenomic data
The pool of metagenomic traces consisted of the Meta-
HIT traces found at ftp://ftp.ncbi.nih.gov/pub/TraceDB/
human_gut_metagenome/ (latest archive 13th of Novem-
ber 2009, in total 3,148,461,906 basepairs in 2,415,707
traces).
Naive translations of trace sequence data (i.e. of subset of
MetaHIT and NO 1 (NCBI genome project 33305) & NO3
(NCBI genome project 33307) matched metagenomes)
Naive translation was done in six-frames, and naive
translations shorter than 25 amino acids or having no
fully tryptic peptide of length > 5 amino acids were fil-
tered out (Python regular expression “[KR](?!P)([^K^R]|
([KR](? = P))){5,}[KR](?!P)”).
Decoy databases
Decoy databases for FDR estimation were created by
reversing each individual protein sequence according to
[22] and tagging the deflines to aid further analysis.
Peptide spectral matching
Peptide spectral matching was performed for the MSMS
spectra of each gel piece using stand-alone version 2.1.7
of OMSSA [30] with fixed modification “carbamido-
methyl C” (option “-mf 3”), variable modifications “oxi-
dation of M” and “carboxymethyl C” (option “-mv 1,2”),
product mass tolerance 0.4 Da (option “-to”), precursor
mass tolerance 0.03 (option “-te”) and maximum
allowed E-value in hit list of 0.1 (option “-he”).
FDR estimation
FDR estimation was done per sample/search database
combination according to [22]. FDR estimation for
which too few hits were generated used the score of the
best False Positive as threshold with upper bound
OMSSA e-value of 0.01 for subsequent data analysis.
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Iterated search method
Iterated searching was done by (i) taking all PSM hits
for all respective MSMS data sets searched against the
synthetic metagenome search with e-value < 0.01
(excluding reversed hits from the decoy peptide data-
base), (ii) megablasting the genomic sequences from
those hits against the metagenomic pool with option
“coding spaced seeds” of length 12 (option “-N 0 -W 12
-t 21”) for optimal results [25,31] and maximum
reported e-value 0.01 (option “-e”). Megablast output
was parsed and only sequence trace files giving 50%
identity over 150 nucleotides or better were retained
for the next filtering round. (iii) The retained trace
files were compared using blastx against the protein
sequences from the PSM hits in (i). Output was parsed
and only trace files having 80% identity over 50 amino
acids or better with a subject sequence were used. (iv)
The sequence trace files remaining were three-frame
translated. The correct strand could be inferred from
the blastx search and three-frame translation mitigates
the problem of frame shifts in low-quality sequencing
data. Translation was followed by basic ORF filtering
described earlier at “naive translations”. The translations
were combined into a new search database used for the
second PSM round again using an e-value < 0.01.
COG assignment
Sequences were searched using blastp against the COG
database (NCBI, ftp://ftp.ncbi.nih.gov/pub/COG/COG/)
and assigned the COG of the best hit if the hit had an
e-value better than 10-10.
Computational details
All processing was done by in-house python (version
2.6) software except where usage of other software is
stated. Data warehousing was done using MySQL (ver-
sion 5.0.75). Machines used were an AMD Sempron
3000+ (1.8 GHz, 1 GB) for development and an Intel
Xeon E5320 (8× 1.86 GHz, 8 GB) as deploy server, both
running Linux 2.6 kernels.

Additional material

Additional file 1: List of selected microbes used for construction of
the synthetic metagenome.

Additional file 2: COG annotation of matching mass spectra found.
File is in comma-separated value
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