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Abstract

Background: Detecting epistatic interactions plays a significant role in improving pathogenesis, prevention,
diagnosis and treatment of complex human diseases. A recent study in automatic detection of epistatic
interactions shows that Markov Blanket-based methods are capable of finding genetic variants strongly associated
with common diseases and reducing false positives when the number of instances is large. Unfortunately, a typical
dataset from genome-wide association studies consists of very limited number of examples, where current
methods including Markov Blanket-based method may perform poorly.

Results: To address small sample problems, we propose a Bayesian network-based approach (bNEAT) to detect
epistatic interactions. The proposed method also employs a Branch-and-Bound technique for learning. We apply
the proposed method to simulated datasets based on four disease models and a real dataset. Experimental results
show that our method outperforms Markov Blanket-based methods and other commonly-used methods, especially
when the number of samples is small.

Conclusions: Our results show bNEAT can obtain a strong power regardless of the number of samples and is
especially suitable for detecting epistatic interactions with slight or no marginal effects. The merits of the proposed
approach lie in two aspects: a suitable score for Bayesian network structure learning that can reflect higher-order
epistatic interactions and a heuristic Bayesian network structure learning method.

Background
Genome-wide association study (GWAS) focuses on stu-
dies of the genetic variants related with a variety of dis-
eases from individual to individual among a cohort of
cases (people with the disease) and controls (similar
people without the disease) [1-3]. The most important
category of genetic variations is SNP (Single Nucleotide
Polymorphism), which influences disease risk. Conven-
tional analysis methods for GWAS data only consider
one SNP at a time by the Armitage trend test (ATT)
and are likely to miss genetic variants having slight to

moderate marginal effects but strong joint effects on
disease risk. Moreover, it is widely acknowledged that
some common complex diseases such as various types
of cancers, cardiovascular disease, and diabetes are
caused by multiple genetic variants [4]. Therefore, there
is an urgent need to detect high-order epistasis (gene-
gene interaction), which refers to the interactive effect
of two or more genetic variants on complex human dis-
eases, and explore how these epistatic interactions con-
fer susceptibility to complex diseases [5]. However, the
very large number of SNPs checked in a typical GWAS
(more than 10 million) and the enormous number of
possible SNP combinations make detecting high-order
epistatic interactions from GWAS data statistically and
computationally challenging [6,7].
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During the past decade, some heuristic computational
methods have been proposed to detect causal interacting
genes or SNPs. One type of computational methods for
epistatic interactions detection are statistical methods
including multifactor dimensionality reduction (MDR)
[8-11], penalized logistic regression (stepPLR [12], las-
soPLR [13]), and Bayesian epistasis association mapping
(BEAM) methods [14]. MDR is a non-parametric and
model-free method based on constructing a risk table
for every SNP combination [11]. If the case and control
ratio in a cell of this risk table is larger than 1, MDR
will label it as “high risk”, otherwise, “low risk”. By the
risk table, MDR can predict disease risk and will select
the SNP combination with the highest prediction accu-
racy. StepPLR and lassoPLR make some modifications
to avoid the overfitting problem of standard logistic
regression when detecting epistatic interactions [15]. For
example, stepPLR combines the LR criterion with a
penalization of the L2-norm of the coefficients. This
modification makes stepPLR more robust to high-order
epistatic interactions [12]. In general, most statistical
methods can only be applied to small-scale analysis (i.e.,
a small set of SNPs) due to their computational com-
plexity. Moreover, MDR, stepPLR and lassoPLR are all
predictor-based methods, which make them easy to
include false positives. Comparing to MDR, stepPLR
and lassoPLR, BEAM is a scalable and non-predictor-
based statistical method [14]. BEAM partitions SNPs
into three groups: group 0 is for normal SNPs, group 1
contains disease SNPs affecting disease risk indepen-
dently, and group 2 contains disease SNPs that jointly
contribute to the disease risk (interactions). Give a fixed
partition, BEAM can get the posterior probability of this
partition from SNP data based on Bayes theory. A Mar-
kov Chain Monte Carlo method is used to reach the
optimal SNP partition with maximum posterior prob-
ability in BEAM. One drawback of BEAM is that identi-
fying both single disease SNP and SNP combinations
simultaneously make BEAM over-complex and weakens
its power.
An alternative approach is machine learning based

methods, which are based on binary classification (pre-
diction) and treat cases as positives and controls as
negatives in SNP data. Support vector machine-based
approaches [16] and random forest-based approaches
[17] are two commonly-used machine learning methods
for epistatic interactions detection. They use SVM or
random forest as a predictor and select a set of SNPs
with the highest prediction/classification accuracy by
feature selection. Like predictor-based statistical meth-
ods, machine learning-based methods lack the capability
of detecting causal elements and tend to introduce
many false positives, which may result in a huge cost for
further biological validation experiments [18].

Recently, we propose a new Markov Blanket-based
method, DASSO-MB, to detect epistatic interactions in
case-control studies [18]. The Markov Blanket is a mini-
mal set of variables, which can completely shield the tar-
get variable from all other variables based on Markov
condition property. Thus, DASSO-MB can detect the
SNP set that shows a strong association with diseases
with the fewest false positives. Furthermore, the heuris-
tic search strategy in DASSO-MB can avoid the time-
consuming training process as in SVMs and Random
Forests.
In this paper, we address the problems by introducing

a Bayesian networks-based method, which also employs
a Branch-and-Bound technique to detect epistatic inter-
actions. Bayesian networks provide a succinct represen-
tation of the joint probability distribution and
conditional independence among a set of variables. In
general, a structure learning methods for Bayesian net-
works first defines a score reflecting the fitness between
each possible structure and the observed data, and then
searches for a structure with the maximum score. Com-
paring to Markov Blanket based methods, the merits of
applying Bayesian networks method to epistatic interac-
tion detection includes: (1) BDE, BIC or MDL scores for
Bayesian network structure learning can reflect higher-
order interactions and are not sample-consuming; and
(2) heuristic Bayesian network structure learning
method can solve the classical XOR problem, which
may hinder the applications of Markov blanket based
approaches.
We apply the bNEAT (Bayesian Networks based Epi-

static Association sTudies) method to simulated datasets
based on four disease models and a real dataset (the
Age-related Macular Degeneration (AMD) dataset). We
demonstrate that the proposed method outperforms
Markov Blanket methods and other commonly-used
methods, especially when the number of samples is
small.

Results
Analysis of simulation data
We first evaluate the proposed bNEAT method on
simulated data sets, which are generated from three
commonly used two-locus epistatic models in [15] and
one three-locus epistatic model developed in [14].
Model-1 is a multiplicative model, model-2 demon-
strates two-locus interaction multiplicative effects and
model-3 specifies two-locus interaction threshold effects.
There are three disease loci in model-4 [14]. Some cer-
tain genotype combinations can increase disease risk in
model-4 and there are almost no marginal effects for
each disease locus.
To compare the performance of different methods, we

use the same data generation process and the similar
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parameter settings as in [14,15,18]. We generate 50
datasets and each contains 100 markers genotyped for
1,000 cases and 1,000 controls. To measure the perfor-
mance of each method, we use “power” as the criterion
function. Power is calculated as follows:

Power
N
N
D= (1)

where N is the total number of simulated datasets and
ND is the number of simulated datasets in which all dis-
ease associated markers are identified without any false
positives.
We compare the bNEAT algorithm with four meth-

ods: BEAM, Support Vector Machine, MDR and
DASSO-MB on the four simulated disease models. The
BEAM software is downloaded from http://www.fas.har-
vard.edu/~junliu/BEAM and we set the threshold of the
B statistic as 0.1 [14]. For support vector machines, we
use LIBSVM with a RBF kernel to detect gene-gene
interactions and the detail is shown in [18]. Since MDR
algorithm can not be applied to a large dataset directly,
we first reduce the number of SNPs to 10 by ReliefF
[19], a commonly-used feature selection algorithm, and
then MDR performs an exhaustive search for a SNP set
that can maximize cross-validation consistency and pre-
diction accuracy. For DASSO-MB, we set the threshold
of G2 test as 0.01 to determine (conditional) dependence
and (conditional) independence.
The results on the simulated data are shown in

Figures 1 and 2. As can be seen, among the five meth-
ods, the bNEAT algorithm performs the best. BEAM is
worse than both bNEAT and DASSO-MB. One possible
reason is that BEAM tries to detect single disease loci
and epistatic interactions simultaneously. This strategy
is unnecessary and makes BEAM over-complex. The
other possible reason is that BEAM uses fixed Dirichlet
priors in its Bayesian marker partition model, which
may not reflect and penalize the model complexity
appropriately [20].
Typically, GWAS can not generate a large number of

samples due to the high experiment cost. Thus, the per-
formance of various computational methods for epistatic
interaction detection in case of small samples is impor-
tant. We explore the effect of the number of samples on
the performance of bNEAT, DASSO-MB, BEAM and
SVM. We generate synthetic datasets containing 40
markers genotyped for different number of cases and
controls with r2 = 1 and MAF=0.5.
The results are shown in Figure 3. We find that

bNEAT is more sample-efficient than other methods in
that it can achieve the highest power when the number
of samples is the same. In addition, it needs fewer sam-
ples to reach the perfect power comparing to other

methods. DASSO-MB is the second best. For models 1-
3, almost all methods can obtain a perfect power except
SVM when the number of samples is larger than 4000.
SVM can not achieve a perfect power even though we
have sufficient samples (≥ 8000). This may indicate that
the predictor-based methods lack the ability to find cau-
sal elements precisely. The result from model-4 is parti-
cularly interesting: bNEAT exhibits overwhelming
superiority over other three methods, as bNEAT yields a
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Figure 1 Performance comparison for r2 = 0.7 The power is
defined as the proportion of simulated datasets whose result only
contains disease associated markers without any false positives.
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perfect power even the number of samples is small
(around 400), which indicates that bNEAT is especially
suitable for detecting epistatic interactions with slight or
no marginal effects.

Results on AMD data
In this section, we apply bNEAT to large-scale (large
number of SNPs but small samples) datasets in real gen-
ome-wide case-control studies, which often require

genotyping of 30,000–1,000,000 common SNPs. We
make use of an Age-related Macular Degeneration
(AMD) dataset containing 116,204 SNPs genotyped with
96 cases and 50 controls [21]. Multiple genetic factors
cause AMD, which can result in a loss of vision.
To remove inconsistently genotyped SNPs, we per-

form filtering process as in [18]. After filtering, there are
97,327 SNPs remained. Since the number of SNPs is
very large, restricting the search space to avoid unrea-
sonable search by selecting some candidate SNPs as in
[22] is necessary. We select top 200 candidate SNPs
based on G2 test and then use bNEAT to identify
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Figure 2 Performance comparison for r2 = 1 The power is
defined as the proportion of simulated datasets whose result only
contains disease associated markers without any false positives.
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Figure 3 Comparison of sample efficiency
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disease SNPs related with AMD. bNEAT detects three
associated SNPs: rs380390, rs3913094 and rs10518433.
The first SNP, rs380390, is already found in [21] with a
significant association with AMD. Although no evi-
dences were reported with the other two SNPs related
to AMD in the literature, they may be plausible candi-
date SNPs associated with AMD.

Conclusions and discussion
Comparing with many computational methods used for
identification of epistatic interactions, Markov Blanket
based method can increase power and reduce false posi-
tives. However, Markov Blanket based method is sam-
ple-consuming and the greedy searching strategy in
Markov Blanket method is not suitable for detecting
some interaction models with no independent main
effects for each disease locus. In this paper, we propose
a Bayesian networks method based on Branch-and-
Bound technique (bNEAT) to detect epistatic interac-
tions. We demonstrate that the proposed bNEAT
method significantly outperforms Markov Blanket
method and other commonly-used methods, especially
when the number of samples is small.
Even though the bNEAT method is more powerful

than Markov Blanket based method, it can not be
directly applied to genome-wide dataset due to the large
number of SNPs. Integrating Markov chain Monte
Carlo or simulated annealing technique into our bNEAT
method to make it scalable to genome-wide dataset is
one direction for future research. Moreover, we will
explore different score schemes for epistatic interaction
detection by Bayesian networks. For example, informa-
tion-based score schemes (e.g., AIC score and BIC
score) are derived in case of large number of samples
[23]. When the number of samples is small, the approxi-
mation in the inference of both AIC score and BIC
score can not hold any more. In fact, the penalty term
for model complexity in AIC score and BIC score can
also reflect the variance of the model [24]. Thus in our
future work, we will design a new score scheme by esti-
mating the penalty term from data to make sure that
the score scheme can fit data better.

Methods
Bayesian networks
A Bayesian network is a directed acyclic graph (DAG) G
consisting of nodes corresponding to a random variable
set X = {X1, X2, …, Xn} and edges between nodes, which
determine the structure of G and therefore the joint
probability distribution of the whole network [25].
Definition 1 (Conditional Independence)For three

random variables (nodes) X, Y and Z, if the probability
distribution of X conditioned on both Y and Z is equal

to the probability distribution of X conditioned only on
Y, i.e., P(X | Y, Z) = P(X | Y), X is conditionally indepen-
dent of Z given Y.
This conditional independence is represented as .

Similarly, represents conditional dependence [26].
Theorem 1 (Local Markov Assumption)Each vari-

able is conditionally independent of its nondescendants,
given its parents in the DAG G.
By applying the local Markov assumption, the joint

probability distribution J can be represented as

P X X P X Pa Xn i i

i

n

( ,..., ) ( | ( ))1

1

=
=

∏ (2)

where Pa(Xi) denotes the set of parents of Xi in G .
Therefore, there are two components in a Bayesian net-
work. The first component is the DAG G reflecting the
structure of the network. The second component, θ,
describes the conditional probability distribution P(Xi |
Pa(Xi)) to specify the unique distribution J on G.
Definition 2 (V-structure)For three nodes X, Y and Z

in a Bayesian network, a structure with the form
of X®Z¬Y (no edge between X and Y) is called a
v-structure.
Definition 3 (D-seperation)For three nodes X, Y and

Z in a Bayesian network, if there is no active path
between X and Y given Z, we say that X and Y are
d-seperated given Z, denoted as Dsep(X;Y | Z).
Bayesian networks allow us to explore causal

relationships to perform explanatory analysis and make
predictions. As shown in Figure 4, GWAS attempts
to identify the k-way interaction among SNPs: SNP1,
SNP2,…, SNPk, which are associated with a disease. The
n SNP nodes and the disease status/label node construct
a Bayesian network and we want to determine which
SNP nodes are the parent nodes of the disease status
/label node.

Structure learning of Bayesian networks
Even though a Bayesian network can be constructed by
an expert, most tasks of determining the network struc-
ture are too complex for humans. We have no choice
but to learn the network structure and parameters from
data. There are two types of structure learning methods
for Bayesian networks: constraint-based methods and
score-and-search methods.
The constraint-based methods first build the skeleton

of the network (undirected graph) by a set of depen-
dence and independence relationships. Next constraint-
based methods direct links in the undirected graph to
construct a directed graph with d-separation properties
corresponding to the dependence and independence
determined [27-29]. Even though constraint-based
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methods are developed with a rigorous theoretical foun-
dation, errors in conditional dependence and indepen-
dence will affect the stability of constraint-based
methods and this problem is especially serious when the
number of samples is small.
The score-and-search methods view a Bayesian net-

work as a statistical model and transform the structure
learning of Bayesian network into a model selection pro-
blem [30]. To select the best model, a score function is
needed to indicate the fitness between a network and
the data. Then the learning task is to find the network
with the highest score. Thus, score-and-search methods
typically consist of two components, (1) a score func-
tion, and (2) a search procedure. In this paper, we focus
on structure learning approaches for Bayesian networks
based on score-and-search methods because score-and-
search methods are more robust for small data sets than
constraint-based methods.
One of the most important issues in score-and-search

methods is the selection of score function. A natural
choice of score function is the likelihood function. How-
ever, the maximum likelihood score often overfits the
data because it does not reflect the model complexity.
Therefore, a good score function for Bayesian networks’
structure learning must have the capability of balancing
between the fitness and the complexity of a selected
structure. There are several existing score functions
based on a variety of principles, such as the information
theory and minimum description length (BIC score, AIC
score, MDL score) [31-33] and Bayesian approach (BDe
score) [34].
The general idea of BDe score is to compute the pos-

terior probability distribution. Consider that we want to
learn the structure S of a Bayesian network containing n

nodes from a dataset D with N examples, and let qi
denote the number of configurations of the parent set
Pa(Xi) of Xi and let ri represent the number of states of
Xi, the BDe score is obtained as

P S D
a

a N

a N

a
ij

ij ijj

q

i

n
ijk ijk

ijkk

ri i

( | )
( )

( )

( )

( )
=

+
+

== =
∏∏ Γ

Γ
Γ

Γ
11 1

∏∏ (3)

where Nijk is the number of cases for Xi in its kth con-

figuration and Pa(Xi) in the jth configuration and

N Nij ijk

k

ri

=
=

∑
1 . aij and aijk are user-determined Dirichlet

priors which reflect a user’s prior knowledge and we
often set aijk = N/(riqi). BDe score can penalize the
structure complexity inherently by integrating
P D SS( | , ) and measuring the average expected likeli-
hood over different possible choices of ̂S ( ̂S is an
estimate of parameters from the maximum likelihood
method for the structure S) [35,36]. For AIC (Akaike
information criterion) score and BIC (Bayesian infor-
mation criterion) score, we can write a general score
scheme as:

Score S D P D S C S f NS( | ) log ( | , ) ( ) ( )= − (4)

C S q ri

i

n

i( ) ( )= −
=
∑

1

1 (5)

where C(S) represents the structure complexity [32] .
The first term of this score scheme measures the fitness

Figure 4 An Example of Genome-wide Association Studies. The goal of genome-wide association studies is to identify the k-way interaction
among SNPs: SNP1, SNP2,…,SNPk, which are associated with disease.
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between the structure, and data and the second term
reflects structure complexity. With a maximum likeli-
hood method, we can get

P D S N N NS ijk

k

r

j

q

i

n

ijk ij

ii

( | , ) log( / ) =
===

∑∑∑
111

(6)

In (4), by setting f(N) = 1, we get the AIC score as

AIC S D P D S C SS( | ) log ( | , ) ( )= − (7)

If we set f(N) = 1/2log(N), we get the BIC score,
which is

BIC S D P D S C S NS( | ) log ( | , ) ( ) log( )= −
1
2

(8)

The BIC score are derived from a Taylor expansion
and Laplace approximation when the number of sam-
ples N approaches ∞. This results in a problem that the
structure penalty term in (8) is very strict when the
number of samples is small; therefore, we adjust the
coefficient of the second term in (8) from 1/2 to a smal-
ler number (in our applications, we empirically set it to
be 0.17 for all the datasets we study).
The computational task in score-and-search methods

is to find a network structure with the highest score.
The searching space consists of a superexponential
number of structures-2O(n2

) and thus exhaustively
searching optimal structure from data for Bayesian net-
works is NP-hard [37]. One simple heuristic search
algorithm is greedy hill-climbing algorithm. In greedy
hill-climbing algorithm, there are three types of opera-
tors that change one edge at each step:
• Add an edge
• Remove an edge
• Reverse an edge
By these three operators, we can construct the local

neighbourhood of current network. Then we select the
network with the highest score in the local neighbour-
hood to get the maximal gain. This process can be
repeated until it reaches a local maximum. However,
greedy hill-climbing algorithm cannot guarantee a global
maximum [30]. Other structure learning methods for
Bayesian networks include Branch-and-Bound (B&B)
[38,39], genetic algorithms [40] and Markov chain
Monte Carlo [41]. Branch-and-Bound algorithms guar-
antee the optimal results in a significantly reduced
search time compared to exhaustive search. Thus, we
will employ B&B algorithms in our study.
The proposed method uses B&B to search a structure

that maximizes the BIC score. The algorithm is shown
in Figure 5. bNEAT starts from an empty node set and

constructs a depth-first search tree to find the optimal
parent (disease SNPs) set for the disease label node. In
our B&B search, instead of using the pruning strategy as
in [38,39], which sets a lower bound for the MDL score
to prune the search tree, we stop the recursive calls
when we observe that the BIC score will decrease on
the children state of the current state. This strategy can-
not guarantee global optima theoretically. However, it
will significantly speed up the search process.
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Algorithm bNEAT 

INPUT: Data D, Disease label node, all n
SNP nodes 

OUTPUT: Disease SNP nodes, which has 
the maximum BIC socre on Disease label 
node

Procedure [ 1S 1P ]=bNEAT( 1V ): Input: 
node set 1V . Output: BIC score 1S , parent 
set 1P .
Begin

1. Compute BIC score 1tempS  for 1V ,
11 tempSS , 11 VP

2. IF 1V =null then i=0 else i= 1V (end)
3. For nqi 1

Begin
   (1) qVV 12  Compute BIC score 

2tempS  for 2V
   (2) IF 12 tempStempS then [ 2S 2P ] = 
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   (3) IF 12 SS then 21 SS , 21 PP

End

End

Figure 5 the bNEAT algorithm
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