
RESEARCH Open Access

Parallel progressive multiple sequence alignment
on reconfigurable meshes
Ken D Nguyen1, Yi Pan2*, Ge Nong3

From BIOCOMP 2010. The 2010 International Conference on Bioinformatics and Computational Biology
Las Vegas, NV, USA. 12-15 July 2010

Abstract

Background: One of the most fundamental and challenging tasks in bio-informatics is to identify related sequences
and their hidden biological significance. The most popular and proven best practice method to accomplish this task
is aligning multiple sequences together. However, multiple sequence alignment is a computing extensive task. In
addition, the advancement in DNA/RNA and Protein sequencing techniques has created a vast amount of sequences
to be analyzed that exceeding the capability of traditional computing models. Therefore, an effective parallel multiple
sequence alignment model capable of resolving these issues is in a great demand.

Results: We design O(1) run-time solutions for both local and global dynamic programming pair-wise alignment
algorithms on reconfigurable mesh computing model. To align m sequences with max length n, we combining
the parallel pair-wise dynamic programming solutions with newly designed parallel components. We successfully
reduce the progressive multiple sequence alignment algorithm’s run-time complexity from O(m × n4) to O(m)
using O(m × n3) processing units for scoring schemes that use three distinct values for match/mismatch/gap-
extension. The general solution to multiple sequence alignment algorithm takes O(m × n4) processing units and
completes in O(m) time.

Conclusions: To our knowledge, this is the first time the progressive multiple sequence alignment algorithm is
completely parallelized with O(m) run-time. We also provide a new parallel algorithm for the Longest Common
Subsequence (LCS) with O(1) run-time using O(n3) processing units. This is a big improvement over the current
best constant-time algorithm that uses O(n4) processing units.

Background
The advancement of DNA/RNA and protein sequencing
and sequence identification has created numerous data-
bases of sequences. One of the most fundamental and
challenging tasks in bio-informatics is to identify related
sequences and their hidden biological significance.
Aligning multiple sequences together provides research-
ers with one of the best solutions to this task. In gen-
eral, multiple sequence alignment can be defined as:
Definition 1
Given: m sequences, (s1, s2,..., sm), over an alphabet ∑,

where each sequence contains up to n symbols from ∑; a

scoring function h:
∑

×
∑

×· · · ×
∑

→ �; and a gap

cost function. Multiple sequence alignment is a technique
to transform (s1, s2, ..., sm) to

(
s′1, s

′
2, · · · , s′m

)
, where s′iis si

∪ ‘-’ [gap insertions], that optimizes the matching scores
between the residues across all sequence columns [1].
However, multiple sequence alignment is an NP-Com-
plete problem [2]; therefore, it is often solved by heuris-
tic techniques. Progressive multiple sequence alignment
is one of the most popular multiple sequence alignment
techniques, in which the pair-wise symbol matching
scores can be derived from any scoring scheme or
obtained from a substitution scoring matrix such as
PAM [3] or BLOSUM [4]. There are many implementa-
tions of progressive multiple sequence alignment as seen
in [5-8]. In general, progressive multiple sequence align-
ment algorithm follows three steps:

* Correspondence: pan@cs.gsu.edu
2Department of Computer Science, Georgia State University, Atlanta, GA
30303, USA
Full list of author information is available at the end of the article

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

© 2011 Nguyen et al. licensee BioMed Central Ltd This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:pan@cs.gsu.edu
http://creativecommons.org/licenses/by/2.0

(i) Perform all pair-wise alignments of the input
sequences.
(ii) Compute a dendrogram indicating the order in

which the sequences to be aligned.
(iii) Pair-wise align two sequences (or two pre-aligned

groups of sequences) following the dendrogram starting
from the leaves to the root of the dendrogram.
Figure 1 shows an example of these steps, where (a)

represents the input sequences, (b) represents an align-
ment of step (i), (c) shows the dendrogram obtained
from step (ii), and (d) shows a pair-wise group-align-
ment in step (iii).
Step (i) can be optimally solve by Dynamic Program-

ming (DP) algorithm. There are two versions of DP: the
Smith-Waterman’s [9] is used to find the optimally
aligned segment between two sequences (local DP), and
the Needleman-Wunsch’s [10] is used to find the global
optimal overall sequence pair-wise alignment (global
DP). The two algorithms are very similar and will be
described in more details in the next section. The
dynamic programming algorithms take O(n2) time to
complete, including the back-tracking steps. Thus, with
m(m−1)

2
unique pairs of the input sequences, the run-time

complexity of step (i) is O(m2 n2) or O(n4) if n and m
are asymptotically equivalent.

To generate a dendrogram from the distances between
the sequences (or the scores generated from step (i)),
either UPGMA [11] or Neighbor Joining (NJ) [12] hier-
archical clustering is used. These algorithms yield O(m3)
run-time complexity.
In the worst case, step (iii) performs (m - 1) pair-wise

alignments in-order following the dendrogram hierarchy.
Similar to step (i), dynamic programming for pair-wise
alignment is used, however, each of these pair-wise
group alignment yields an order of O(n4) via dynamic
programming (O(n2)) and sum-of-pair scoring function
[13](O(n2)). This scoring function is required to evaluate
every all possible residue matchings of the sequences.
As a result, the run-time complexity of step (iii) is O(m
× n4) ≈ O(n5), which is the overall run-time complexity
of progressive multiple sequence alignment algorithm.

Optimal pair-wise sequence alignment by dynamic
programming
Given two sequences x and y each contains up to n resi-
due symbols. The optimal alignment of these sequences
can be found by calculating an (n + 1) × (n + 1)
dynamic programming (DP) matrix containing all possi-
ble pair-wise matching scores of residue symbols in the
sequences. Initially, the first row and column of the
matrix cells are set to 0, i.e.

c0,j = 0,

ci,0 = 0.

The recursive formula to compute the DP matrix for
the Longest Common Subsequence (LCS) as seen in
[14] is:

ci,j =
{
ci−1,j−1 + 1 if xi = yj
max{(ci−1,j), (ci,j−1)} if xi �= yj

Similarly, the Needleman-Wunsch’s algorithm [10]
uses the following formula to complete the DP matrix:

ci,j = max

⎧⎨
⎩
ci−1,j−1 + s(xi, yj) symbol matching
ci−1,j + g gap insertion
ci,j−1 + g gap insertion

where s(xi, yj) is the pair-wise symbol matching score
of the two symbols xi and yj from sequences x and y,
respectively; and g is the gap cost for extending a
sequence by inserting a gap, i.e. gap insertion/deletion
(indel).
Smith and Waterman [9] modified the above formula as:

ci,j = max

⎧⎪⎪⎨
⎪⎪⎩

0
ci−1,j−1 + s(xi, yj) symbol matching
ci−1,j + g gap insertion
ci,j−1 + g gap insertion

Figure 1 A progressive multiple sequence alignment . An
example of progressive Multiple Sequence Alignment. (a) represents
three input sequences (S1, S2, S3); (b) shows the pair-wise dynamic
programming alignment of two sequences; (c) shows the order of
the sequences to be aligned, where the leaves on right hand-side
are the input sequences, the internal nodes represent the
theoretical ancestors from which the sequences are derived, and
the characters on the tree branches represent the missing/mutated
residues; and (d) shows the pair-wise dynamic programming of two
pre-aligned groups of sequences.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 2 of 14

The alignment can be obtained from the DP matrix by
starting from cell cn, n, (or the cell containing the max
value in the matrix as in the Smith-Waterman’s algo-
rithm), and tracking back to the top of the matrix, i.e.
cell c0,0, by following neighboring cells with the largest
value.

Existing parallel implementations
Progressive multiple sequence alignment algorithms are
widely parallelized, mostly because they perform m(m−1)

2
independent pair-wise alignments as in step (i). These
individual pair-wise alignments can be designated to dif-
ferent processing units for computation as in [15-24].
These implementations are across many computing
architectures and platforms. For example, [17] imple-
mented a DP algorithm on Field-Programmable Gate
Array (FPGA). Similarly, Oliver et al. [23,24] distributed
the pair-wise alignment of the first step in the progres-
sive alignment, where all pair-wise alignments are com-
puted, on FPGA. Liu et al. [18] computed DP via
Graphic Processing Units (GPUs) using CUDA platform,
[22] used CRCW PRAM neural-networks, [15] used
Clusters, [16] used 2D r-mesh, [20] used Network mesh,
or [21] used 2D Pr-mesh computing model.
The two most notable parallel versions of dynamic

programming algorithm are proposed by Huang [25]
and Huang et al. and Aluru [15,26]. Huang’s algorithm
exploits the independency between the cells on the anti-
diagonals of the DP matrix, where they can be calcu-
lated simultaneously. There are 2n + 1 anti-diagonals on
a matrix of size (n + 1 × n+1). Thus, this parallel DP
algorithm takes O(n) processing units and completes in
O(n) time.
Independently, Huang et al. [15] and Aluru et al. [26]

propose similar algorithms to partition the DP matrix
column-wise and assign each partition to a processor.
Next, all processors are synchronized to calculate their
partitions one row at a time. For this algorithm to per-
form properly, each processor must hold a copy of the
sequence that mapped to the rows of the matrix. Since
these calculations are performed row-wise, the values
from cells ci-1, j-1 and ci-1, j are available before the cal-
culation of cell ci,j. The value of ci, j-1 can be obtained
by performing prefix-sum across all cells in row ith.
Thus, with n processors, the computation time of each
row is dominated by the prefix-sum calculations, which
is O(logn) time on PRAM models. Therefore, the DP
matrix can be completed in O(nlogn) time using O(n)
processors. Recently, Sarkar, et al. [19] implement both
of these parallel DP algorithms [25,26] on a Network-
on-Chip computing platform [27].
In addition, the construction of a dendrogram can be

parallelized as in [18] using n Graphics Processing Units
(GPUs) and completing in O(n3) time.

Furthermore, there are attempts to parallelize the pro-
gressive alignment step [step (iii)] as in [28] and [29]. In
[28], the independent pre-aligned pairs along the den-
drogram are aligned simultaneously. This technique
gains some speed-up, however, the time complexity of
the algorithm remains unchanged since all the pair-wise
alignments eventually must be merged together.
Another attempt is seen in [29], where Huang’s algo-
rithm [25] is used. When an anti-diagonal of a DP align-
ment matrix in lower tree level in step (iii) is completed,
it is distributed immediately to other processors for
computing the pair-wise alignment of a higher tree
level. This technique can lead to an incorrect result
since the actual pair-wise alignment of the lower branch
is still uncertain.
Overall, the major speedups achieved from these

implementations come from two parallel tasks: perform-
ing m(m−1)

2
initial pair-wise alignments in step (i) simul-

taneously and calculating the dynamic programming
matrix anti-diagonally (or in blocks). These tasks poten-
tially can lower the run-time complexity of step (i) from
O(m2n2) to O(n) and step (iii) from O(mn4) to O(m3n) ≈
O(n4), [or O(m4) if n <m]. The overall run-time com-
plexity of the original progressive multiple sequence
alignment algorithm is still dominated by step (iii) with
an order of O(m3n) regardless of how many processing
units are used. The bottle-neck is the pair-wise group
alignments must be done in order dictated by the den-
drogram (O(m)), and each alignment requires all the
column pair-wise scores be calculated (O(m2)). To
address these issues, we design our parallel progressive
multiple sequence alignment on a reconfigurable mesh
(r-mesh) computing model similar to the ones used in
[16,23,24]. Following is the detailed description of the r-
mesh model.

Reconfigurable-mesh computing models - (r-mesh)
A Reconfigurable mesh (r-mesh) computing, first pro-
posed by Miller et al [30], is a two-dimensional grid of
processing units (PUs), in which each processing unit
contains 4 ports: North, South, East, and West (N, S, E,
W). These ports can be fused or defused in any order to
connect one node of the grid to its neighboring nodes.
These configurations are shown in Figure 2. Each pro-
cessing unit has its own local memory, can perform sim-
ple arithmetic operations, and can configure its ports in
O(1) time.
There are many reconfigurable computing models

such as Linear r-mesh (Lr-mesh), Processor Array with
Reconfigurable Bus System (PARBS), Pipedlined r-mesh
(Pr-mesh), Field-programmable Gate Array (FPGA), etc.
These models are different in many ways from construc-
tion to operation run-time complexities. For example,
the Pr-mesh model does not function properly with

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 3 of 14

configurations containing cycles, while many other mod-
els do. However, there are many algorithms to simulate
the operations of one reconfigurable model onto
another in constant time as seen in [31-36].
In the scope of this study, we will use a simple elec-

trical r-mesh system, where each processing unit, or
processing element (PU or PE), contains four ports
and can perform basic routing and arithmetic opera-
tions. Most reconfiguration computing models utilize
the representation of the data to parallelize their
operations; and there are various proposed formats
[37]. Commonly, data in one format can be converted
to another in O(1) time [37]. The unary representation
format is used this study, which is denoted as 1UN,
and is defined as:
Definition 2
Given an integer x Î [0, n - 1], the unary 1UN presen-

tation of x in n-bit is: x = (b0, b1, ..., bn-1), where bi = 1
for all i ≤ x and bi = 0 for all i > x [37].
For example, a number 3 is represented as 11110000

in 8-bit 1UN representation.
In addition to the 1UN unary format, we will be utiliz-

ing the following theorem for some of the operations:
Theorem 1:
The prefix-sum of n value in range [0, nc] can be found

in O(c) time on an n × n r-mesh [37].
In terms of multiple sequence alignment, the number

of bits used in the 1UN notation is correlated to the
maximum length of the input sequences. In the next
Section, we will describe the designs of r-meshcompo-
nents to use in dynamic programming algorithms.

Parallel pair-wise dynamic programming
algorithms
This section begins with the description of several con-
figurations of r-mesh needed to compute various opera-
tions in pair-wise dynamic programming algorithm.
Following the r-mesh constructions is a new constant-
time parallel dynamic programming algorithm for

Needleman-Wunsch’s, Smith-Waterman, and the Long-
est Common Subsequence (LCS) algorithms.

R-mesh max switches
One of the operations in the dynamic programming
algorithm requires the capability to select the largest
value from a set of input numbers. Following is the
design of an r-mesh switch that can select the maximum
value from an input triplet in the same broadcasting
step. For 1-bit data, the switch can be built as in Figure
3(a) using one processing unit, (introduced by Bertossi
[14]). The unit configures its ports as {NSEW}, where
the North and West are input ports and the others are
output ports. When a signal (or 1) comes through the
switch, the max bit will propagate through the output
ports. Similarly, a switch for finding a maximum value
of four input bits can be built using 4 processing units
with configurations: {NSW,E}, {NSE,W}, {NE,S,W}, and
{NSW,E} as in Figure 3(b). To simulate a 3-input max
switch on positive numbers, one of the input ports loads
in a zero value. These switches can be combined
together to handle the max of three n-bit values as in
Figure 4. This n-bit max switch takes 4 × n, (i.e. O(n))
processing units and can handle 3 to 4 n-bit input num-
bers. All of these max switches allow data to flow
directly through them in exactly one broadcasting step.
They will be used in the design of our algorithm,
described latter.

R-mesh adder/subtractor
Similarly, to get a constant time dynamic programming
algorithm we have to be able to perform a series of
additions and subtractions in one broadcasting step.
Exploiting the properties of 1UN representation, we are
presenting an adder/subtractor that can perform an
addition or a subtraction of two n-bit numbers in 1UN
representation in one broadcasting time. The adder/sub-
tractor is a k × n r-mesh, where k is the smaller

Figure 2 Port configurations on reconfigurable computing
model. Allowable configurations on 4 port processing units; (a)
shows the ports directions; (b) shows the 15 possible port
connections, where the last five port configurations in curly braces
are not allowed in Linear r-mesh (Lr-mesh) models.

Figure 3 1-bit max switches. Two 1-bit max switches. (a)- fusing
{NSEW} to find the max of two inputs from North and West ports;
(b)- construction of a 1-bit 4-input max switch.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 4 of 14

magnitude of the two numbers. The r-mesh adder/sub-
tractor is shown in Figure 5. To perform addition, one
addend is fed into the North-bound of the r-mesh, and
another addend is left-shifted one bit and fed into the
West-bound. The left-bit shifting operation removes the
bit that represents a zero, which in turn reduces one
row of the r-mesh. Similarly, there is no need to have
extra rows in the r-mesh to perform additions on the
right trailing zeros of the second addend. Therefore, the
number of rows in the r-mesh adder/subtractor can be
reduced to k, where k + 1 is the number of 1-bits in the
second addend. Each processing unit in the adder/sub-
tractor fuses {NE, SW} if the West input is 1, otherwise,
it will fuse {NS, E, W}. The first configuration allows
the number to be incremented if there is a 1-bit coming
from the West, and the second configuration maps the
result directly to the output ports. Figure 5 shows the
addition of 3 and 3 represented in n-bit 1UN. In this
case, the r-mesh needs only 3 rows to compute the
result. Similarly, for subtractions, the minuend is fed
into the South bound (bottom) of the r-mesh, the sub-
trahend is 1-bit left-shifted and fed into the r-mesh
from the West bound (left), the East bound (right) is fed
with zeros, or no signals. The output is obtained from
the North border (top).
This adder/subtractor can only handle numbers in

1UN representation, i.e. positive values. Thus, any
operation that yields a negative result will be repre-
sented as a pattern of all zeros. When this adder/sub-
tractor is used in a DP algorithm, one of the two inputs
is already known. For example, to calculate the value at
cell ci, j, three binary arithmetic operations must be per-
formed: ci-1, j-1 + s(xi, yj), ci-1, j + g, and ci, j-1 + g, where
both the gap g and the symbol matching score s(xi, yj)
between any two residue symbols are predefined. Thus,
we can store these predefined values to the West ports

of the adder/subtractor units and have them configured
accordingly before the actual operations.
For biological sequence alignments, symbol matching

scores are commonly obtained from substitution
matrices such as PAM [3], BLOSUM [4], or similar
matrices, and gap cost is a small constant in the same
range of the values in these matrices. These values are
one or two digits. Thus, k is very likely is a 2-digit con-
stant or smaller. Therefore, the size of the adder/sub-
tractor unit is bounded by O(n), in this scenario.

Constant-time dynamic programming on r-mesh
The dynamic programming techniques used in the
Longest Common Subsequence (LCS), Smith-Water-
man’s and Needle-Wunsch’s algorithms are very similar.
Thus, a DP r-mesh designed to solve one problem can
be modified to solve another problem with minimal
configuration. We are presenting the solution for the
latter cases first, and then show a simple modification of
the solution to solve the first case.
Smith-Waterman’s and Needle-Wunsch’s algorithms
Although the number representation can be converted
from one format to another in constant time [37], the
DP r-mesh run-time grows proportionally with the
number of operations being done. These operations
could be as many as O(n2). To eliminate this format
conversion all the possible symbol matching scores, or
scoring matrix, (4 × 4 for RNA/DNA sequences and 20
× 20 for protein sequences) are pre-scaled up to positive
values. Thus, an alignment of any pair of residue sym-
bols will yield a positive score; and gap matching (or
insert/delete) is the only operation that can reduce the
alignment score in preceding cells. Nevertheless, if the
value in cell ci-1, j (or ci,j-1) is smaller than the magni-
tude of the gap cost (|g|), a gap penalized operation will
produce a bit pattern of all zeros (an indication of an

Figure 4 An n-bit 3-input max switch. An n-bit 3-input max switch, where the rectangle represents a 1-bit 4-input max switch from Figure 3.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 5 of 14

underflow or negative value). This value will not appear
in cell ci,j since the addition of the positive value in cell
ci-1, j-1 and the positive symbol matching score s(xi, yi) is
always greater than or equal to zero.
In general, we do not have to perform this scale-up

operation for DNA since DNA/RNA scoring schemes
that generally use only two values: a positive integer
value for match and the same cost for both mismatch
and gap.
Unlike DNA, scoring protein residue alignment is

often based on scoring scoring/substitution/mutation
matrices such as that in [3,4]. These matrices are log-
odd values of the probabilities of residues being mutated
(or substituted) into other residues. The difference
between the matrices are the way the probabilities being
derived. The smaller the probability, the less likely a
mutation happens. Thus, the smallest alignment value
between any two residues, including the gap is at least

zero. To avoid the complication of small positive frac-
tional numbers in calculations, log-odd is applied on
these probabilities. The log-odd score or substitution

score in [3] is calculated as s(i, j) = 1
λ
log

(
Qij

PiPj

)
, where s(i,

j) is the substitution score between residues i and j, l is
a positive scaling factor, Qij is the frequency or the per-
centage of residue i correspond to residue j in an accu-
rate alignment, and Pi and Pj are background
probabilities which residues i and j occur. These prob-
abilities and the log-odd function to generate the
matrices are publicly available via The National Center
for Biotechnology Information’s web-site (http://www.
ncbi.nlm.nih.gov) along with the substitution matrices
themselves. With any given gap cost, the probability of a
residue aligned with a gap can be calculated proportion-
ally from a given gap cost and other values from the
un-scaled scoring matrices by taking anti-log of the log-

Figure 5 An n-bit adder/subtractor. An n-bit adder/subtractor that can perform addition or subtraction between two 1UN numbers during a
broadcasting time. For additions the inputs are on the North and West borders and the output is on the South border. For subtractions, the
inputs are on the West and South borders and the output is on the North border. The number on the West bound is 1-bit left-shifted. The
dotted lines represent the omitted processing units that are the same as the ones in the last rows. This figure shows the addition of 3 and 3.
Note: the leading 1 bit of input number on the West-bound (left) has been shifted off. The right border is fed with zero (or no signal) during
the subtract operation.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 6 of 14

http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov

odd values or score matrix. Thus, when a positive num-
ber b is added to the scores in these scoring matrices, it
is equivalent to multiply the original probabilities by ab,
where a is the log-based used in the log-odd function.
A simple mechanism to obtain a scaled-up version of

a scoring matrix is: (a) taking the antilog of the scoring
matrix and g, where g is the gap costs, i.e. the equivalent
log-odd of a gap matching probability; (b) multiplying
these antilog values by b factor such that their mini-
mum log-odd value should be greater than or equal to
zero; (c) performing log-odd operation on these scaled-
up values.
When these scaled-up scoring matrices are used, the

Smith-Waterman’s algorithm must be modified.
Instead of setting sub-alignment scores to zeros when

they become negative, these scores are set to b when
they fall below the scaled-up factor (b).
Using scaled-up scoring matrices will eliminate the

need for signed number representation in our following
algorithm designs. However, if there is a need to obtain
the alignment score based on the original scoring
matrices, the score can be calculated as follows: (i) load
the original score matrix and gap cost to each cell on an
r-mesh as similar to the one described in Section; (ii)
configure cells on the diagonal path to use their

corresponding matching score from the matrix and
other cells representing gap insertions or deletions to
use gap cost; (iii) calculate the prefix-sum of all the cells
on the path representing the alignment using Theorem
1.
Having the adder/subtrator units and the switches

ready, the dynamic programming r-mesh, (DP r-mesh),
can be constructed with each cell ci,j in the DP matrix
containing 3 adder/subtractor units and a 3-input max
switch allowing it to propagate the max value of cells ci-
1, j-1, ci-1, j and ci, j-1 to cell ci, j in the same broadcasting
step. Figure 6 shows the dynamic programming r-mesh
construction. The adder/subtrator units are represented
as “+” or “-” corresponding to their functions.
A 1 × n adder/subtractor unit can perform increments

and decrements in the range of [-1,0,1]. As a result, a
DP r-mesh can be built with 1-bit input components to
handle all pair-wise alignments using constant scoring
schemes that can be converted to [-1,0,1] range. For
instance, the scoring scheme for the longest common
subsequence rewards 1 for a match and zero for mis-
match and gap extension.
To align two sequences, ci, j loads or computes its

symbol matching score for the symbol pair at row i col-
umn j, initially. The next step is to configure all the

Figure 6 A dynamic programming r-mesh. Each cell ci, j is a combination of a 3-input max switch and three adder/subtractor units. The “+”
and “-” represent the actual functions of the adder/subtractor units in the configuration.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 7 of 14

adder/subtractor units based on the loaded values and
the gap cost g. Finally, a signal is broadcasted from c0,0
to its neighboring cells c0,1, c1,0, and c1,1 to activate the
DP algorithm on the r-mesh. The values coming from
cells ci-1, j and ci, j-1 are subtracted with the gap costs.
The value coming from ci-1, j-1 is added with the initial
symbol matching score in ci, j. These values will flow
through the DP r-mesh in one broadcasting step, and
cell cn, n will receive the correct value of the alignment.
In term of time complexity, this dynamic programming

r-mesh takes a constant time to initialize the DP r-mesh
and one broadcasting time to compute the alignment.
Thus, its run-time complexity is O(1). Each cell uses 10n
processing units (4n for the 1-bit max switch and 2n for
each of the three adder/subtrator units). These processing
units are bounded by O(n). Therefore, the n × n dynamic
programming r-mesh uses O(n3) processing units.
To handle all other scoring schemes, k × n adder/sub-

tractor r-meshes and n × n max switches must be used.
In addition, to avoid overflow (or underflow) all pre-
defined pair-wise symbol matching scores may have to
be scaled up (or down) so that the possible smallest (or
largest) number can fit in the 1UN representation. With
this configuration, the dynamic programming r-mesh
takes O(n4) processing units.
Longest common subsequence (LCS)
The complication of signed numbers does not exist in
the longest common subsequence problem. The arith-
metic operation in LCS is a simple addition of 1 if there
is a match. The same dynamic programming r-mesh as
seen in Figure 6 can be used, where the two subtractors
units are removed or the gap cost is set to zero (g = 0).
To find the longest common subsequence between

two sequences x and y, each max switch in the DP r-
mesh is configured as in Figure 7. The value from cell
ci-1, j-1 is fed into the North-West processing unit, and
the other values are fed into the North-East unit. Then,
ci, j loads in its symbols and fuses the South-East pro-
cessing unit (in bold) as NS,E,W if the symbols at row i
and column j are different; otherwise, it loads 1 into the
adder unit and fuses N,E,SW. These configurations
allow either the value from cell ci-1, j-1 or the max value
of cells ci-1, j and ci, j-1 to pass through. These are the
only changes for the DP r-mesh to solve the LCS
problems.
This modified constant-time DP r-mesh used O(n3)

processing units. However, this is an order of reduction
comparing the current best constant parallel DP algo-
rithm that uses an r-mesh of size O(n2) × O(n2) [14] to
solve the same problem.

Affine gap cost
Affine gap cost (or penalty) is a technique where the
opening gap has different cost from an extending gap

[38]. This technique discourages multiple and disjoined
gap insertion blocks unless their inclusion greatly
improves the pair-wise alignment score. The gap cost is
calculated as p = o + g(l - 1), where o is the opening
gap cost, g is the extending gap cost, and l is the length
of the gap block. Traditionally, Gotoh use three matrices
to track these values; however, it is not intercessory in
the reconfigurable mesh computing model since each
cell in the matrix is a processing node with local
memory.
To handle affine gap cost, we need to extend the

representation of the number by 1 bit (right most bit).
This bit indicates whether a value coming from ci-1, j or
ci, j-1 to ci, j is an opening gap or not. If the incoming
value has been gap-penalized, its right most bit is 1, and
it will not be charged with an opening gap again; other-
wise, an opening gap will be applied. The original “-”
units must be modified to accommodate affine gaps.
Figure 8 shows the modification of the “-” unit. The
output from the original “-” unit is piped into an n × n
+ 1 r-mesh on/off switch (described in Section), an
adder/subtractor, and a max switch. When a number
flows through the “-” unit, an extending gap is applied.
If the incoming value has not been charged with gap to
begin with, its right most bit (i.e. selector bit denoted as
“s”) remains zero, which keeps the switch in off position.
Therefore, the value with extra charge on the adder/sub-
tractor is allowed to flow through; otherwise, the switch
will be on, and the larger value will be selected by the
max switch. A value that is not from diagonal cells must
have its selector bit set to 1 (right most bit) after a gap

Figure 7 A 4-way max switch. A configuration of a 4-way max
switch to solve the longest common subsequence (lcs). The South-
East processing unit (in bold) configures {NS,E,W} if the symbols at
row i and column j are different; otherwise, it configures{N,E,SW}.
This figure show a configuration when the two symbols are
different.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 8 of 14

cost is applied to prevent multiple charges of an open-
ing gap.
The modification of the dynamic programming r-mesh

to handle affine gap cost requires additional 2 adder/
subtractor units, 2 on/off switches, and one 2-input max
switch. Asymptotically, the amount of processing units
used is still bounded by O(n4) and the run-time com-
plexity remains O(1).

R-mesh on/off switches
To handle affine gap cost in dynamic programming, we
need a switch that can select, i.e. turns on or off, the
output ports of a data flow. The on/off r-mesh switch
can be configured as in Figure 9, where the input
value is mapped into the North-bound (top). The right

most bit of the input is served as a selector bit. The r-
mesh size is n × n+1, where column i fuses with row n
- i to form an L-shape path that allows the input data
from the Northbound to flow to the output port on
the Eastbound. The processors on the last column will
fuse the East-West ports allowing the input to flow
through only if they receive a value of 1 from the
input (Northern ports). Since the selector bit travels a
shorter distance than all the other input bits, it will
arrive in time to activate the opening or closing of the
output ports.
This r-mesh configuration uses (n × n + 1), i.e., O(n2),

processing units to turn off the flow of an n-bit input in
a broadcasting time.

Dynamic programming back-tracking on r-mesh
The pair-wise alignment is obtained by following the
path leading to the overall optimal alignment score, or
the end of the alignment. In the case of the Needleman-
Wunsch’s algorithm, cell cn, n holds this value; and in
the case of the Smith-Waterman’s algorithm, cell ci, j

with the maximum alignment score is the end point.
The cell with the largest value can be located in O(1)
time on a 3-dimension n × n × n r-mesh through these
steps:
1. Initially, the DP matrix with calculated values are

stored in the first slice of the r-mesh cube, i.e. in cells ci,
j,0, 0 <i, j ≤ n.
2. ci, j,0 sends its value to ci, j, i, 0 ≤ i, j ≤ n, to propa-

gate each column of the matrix to the 2D r-meshes on
the third dimension.
3. ci, j, i sends its value to c0, j, k, i.e. to move the solu-

tion values to the first row of each 2D r-mesh slice.
4. Each 2D r-mesh slice finds its max value c0, r, k

where r is the column of the max value in slice k
5. c0, r, k sends r to ck,0,0, i.e. each 2D r-mesh slice

sends its max value column number m to the first 2D r-
mesh slice. This value is the column index of the max
value on row k in the first slice.
6. The first 2D r-mesh slice, ci, j,0, finds the max value

of n DP r-mesh cells whose row index is i and column
index is ci0,0 (i.e. value r received from the previous
step). The row and column indices of the max value
found in this step is the location of the max value in the
original DP r-mesh.
These above steps rely on the capability to find the

max value from n given numbers on an n × n r-mesh.
This operation can be done in O(1) time as follows:
1. initially, the values are stored in the first row of the

r-mesh.
2. c0, j broadcasts its value, namely aj, to ci, j, (column-

wise broadcasting).
3. ci, i broadcasts its value, namely ai, to ci, j (row-wise

broadcasting).

Figure 8 A configuration for selecting a min value. A
configuration to select one of the two inputs in 1UN notation using
the right most bit as a selector s. When s = 1 the switch is turned
on to allow the data to flow through and get selected by the max
switch. When the selector s = 0, the on/off switch produces zeros
and the other data flow will be selected. ε = o - g, o ≥ g, is the
difference between opening gap cost o and extending gap cost g.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 9 of 14

4. ci, j sets a flag bit f(i, j) to 1 if and only if ai >aj;
otherwise sets f(i, j) to 0.
5. c0, j is holding the max value if f(0, j), f(1, j),..., f(n -

1, j) are 0. This step can be performed in O(1) time by
ORing the flag bits in each column.
The location of the max value in the DP r-mesh can

be obtained in O(1) time because each step in the pro-
cess takes O(1) time to complete.
To trace back the path leading to the optimal align-

ment, we start with the end point cell ce, d found above
and following these steps:
1. ci, j, (i ≤ e, i ≤ d), sends its value to ci, j+1, ci+ 1, j, ci

+1, j+i. Thus, each cell can receive up to three values
coming from its Noth, West, and Northwest borders.
2. ci, j finds the max of the inputs and fuses its port to

the neighbor cell that sent the max value in the previous
step. If there are more than one port to be fused, (this
happens when there are multiple optimal alignments), ci,
j randomly selects one.
3. ce, d sends a signal to its fused port. The optimal

pair-wise alignment is the ordered list of cells where
this signal travels through.
Each operation in the back-tracking process takes O(1)

time to complete, and there are no iterative operations.

Therefore, the back-tracking steps requires n3 proces-
sing units and takes O(1) time.

Progressive multiple sequence alignment on
r-mesh
In this section, we start by describing a parallel algo-
rithm to generate a dendrogram, or guiding tree, repre-
senting the order in which the input sequences should
be aligned. Then we will show a reworked version of
sum-of-pair scoring method that can be performed in
constant time on a 2D r-mesh. Finally, we will describe
our parallel progressive multiple sequence alignment
algorithm on r-mesh along with its complexity analysis.

Hierarchical clustering on r-mesh
The parallel neighbor-joining (NJ) [12] clustering
method on r-mesh is described here; other hierarchical
clustering mechanisms can be done in a similar fashion.
The neighbor-joining takes a distance matrix between
all the pairs of sequences and represents it as a star-like
connected tree, where each sequence is an external
node (leaf) on the tree. NJ then finds the shortest dis-
tance pair of nodes and replaces it with a new node.
This process is repeated until all the nodes are merged.

Figure 9 An n × n + 1 n-bit on/off switch. By default, all processing units on the last column (column n + 1) configure {NS,E,W}, and fuse
{NSEW} when a signal (i.e. 1) travels through them. All cells on the main anti-diagonal cells of the first n rows and columns fuse {NE,S,W}, cells
above the main anti-diagonal fuse {NS,E,W}, and cells below the main anti-diagonal fuse {N,S,EW}. Figure 9(a) shows the r-mesh configuration on
a selector bit of 1 (s = 1) and Figure 9(b) shows the r-mesh configuration on a selector bit of 0 (s = 0).

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 10 of 14

Followings are the actual steps to build the
dendrogram:
1. Initially, all the pair-wise distances are given in form

of a matrix D of size m × m, where m is the number of
nodes (or input sequences).
2. Calculate the average distance from node i to all the

other nodes by ri =
∑m

1 Dij

m−2
.

3. The pair of nodes with the shortest distance (i, j) is
a pair that gives minimal value of Mij, where Mij = Dij -
ri - rj.
4. A new node u is created for shortest pair (i,j), and

the distances from u to i and j are: diu = Dij

2 + (ri−rj)
2

, and
dj,u = dij-diu.
5. The distance matrix D is updated with the new

node u to replace the shortest distance pair (i,j), and the
distances from all the other nodes to u is calculated as
Dvu = Div + djv - Dij.
These steps are repeated for m - 1 iterations to reduce

distance matrix D to one pair of nodes. The last pair
does not have to be merged, unless the actual location
of the root node is needed.
Step 1 and 4 are constant time operations on an m ×

m r-mesh, where each processing unit stores a corre-
sponding value from the distance matrix. Since the pro-
gressive multiple sequence alignment algorithm only
uses the dendrogram as a guiding tree to select the clo-
sest pair of sequences (or two groups of sequences), the
actual distance values between the nodes on the final
dendrogram mostly are insignificant. Consequently, the
values in distance matrix D can be scaled down without
changing the order of the nodes in the dendrogram. In
addition, if these values are not to be preserved, the cal-
culations in step 4 can be skipped.
Before proceeding to step 2, we should reexamine

some facts. First, the maximum alignment score from all
the pair-wise DP sequence alignments are bounded by
b2, where b is the max pair-wise score between any two
residue symbols. An alignment score of b2 occurs only if
we align a sequence of these symbols to itself. b+1 ≤ n
is the number of bits being used to represent this value
in 1UN. Similarly, the maximum value in distance
matrix D generated from these alignment scores are also
bounded by b2. Thus, the sum of n of these distance
values are bounded by b4. These facts allow us to calcu-
late the sums in step 2 in O(c) time using an n × n r-
mesh as in Theorem 1. In this case, c is constant, (c =
4). There are n summations to calculate, so the entire
calculation requires n such r-meshes, or n3 processing
units, to complete in O(1) time.
In step 3, each processing unit computes value Mij

locally. The max value can be found using the same
technique described in Section in constant time.
Similarly, step 5 is performed locally by the processing

units in the r-mesh in O(1) time. Since this procedure

terminates after m - 1 iterations, the overall run-time
complexity to build a dendrogram, (or guiding tree), for
any given pair-wise distance matrix of size m × m is O
(m) using O(m3) processing units.

Constant run-time sum-of-pair scoring method
The third step [step (iii)] of the progressive MSA algo-
rithm is following the dendrogram, built in the earlier
step, to perform pair-wise dynamic programming align-
ment on two pre-aligned groups of sequences. The
dynamic programming alignment algorithm in this step
is exactly the same as the one in step (i); however, quan-
tifying a match between two columns of residues are no
longer a simple constant look-up, unless the hierarchical
expected probability (HEP) matching scoring scheme is
used [39]. The most popular quantifying method is the
sum-of-pair (SP) method [40], or its variations as seen
in [5-7,41]. This quantification is the sum of all pair-
wise matching scores between the residue symbols,
where each paired-score is obtained either from a sub-
stitution matrix or from any scoring scheme discussed
earlier. The alignment at the root of the tree gets n resi-
dues for every pair of columns to be quantified. Thus,

there are m(m−1)
2

lookups per column quantification,

i.e. m(m−1)
2

lookups or each DP matrix cell calculation.

The sum-of-pair is formally defined as:

sp(f , g) =
|f |∑
i=1

|g|∑
j=i+1

s(fi, gj) (1)

where f is a column from one pre-aligned group of
sequences and g is a column from the other pre-aligned
group of sequences. fi and gj are residue symbols from
columns f and g, respectively, and s(fi, gj) is the matching
score between these two symbols fi and gj. For example,
to calculate the sum-of-pair of the following two col-
umns f and g:

Column f :

⎧⎨
⎩
A
C
T

⎫⎬
⎭

and

Column g :

⎧⎨
⎩
G
T
T

⎫⎬
⎭

we will have to score 15 residue pairs:(A,C), (A,T), (A,
G), (A,T), (A,T), (C,T), (C,G), (C,T), (C,T), (T,G), (T,T),
(T,T), (G,T), (G,T), (T,T). Since the matching between
residue a to residue b is the same as the matching
between residue b to residue a, these pairs become (A,
C), 3(A,T), (A,G), 3(C,T), (C,G), 3(G,T), 3(T,T). These

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 11 of 14

redundancies occur since the set of symbols represent-
ing the residues is small (1 for gap plus 20 for protein
[or 4 for DNA/RNA]). Thus, if we combine the two col-
umn symbols with their number of occurrences, the
sum-of-pair method can be transformed into a counting
problem and can be defined as:

sp(f , g) =
T∑
i=1

ni(ni − 1)
2

s(i, i) + ni
T∑

j=i+1

nj × s(i, j) (2)

where f, g are the two columns, T is the number of
different residue symbols (T = 4 for DNA/RNA and T =
20 for proteins), s(i,j) is the pair-wise matching score, or
substitution score, between two residue symbols i and j,
and ni and nj are the total count of symbols/types i and
j (i.e. the occurrences of residue symbols/types i and j),
respectively. Since residues from both column f and g
are merged, there is no distinction in which column the
residue are from. Since T is constant, the summations
in Equation remain constant, regardless how many
sequences are involved.
Thus, the sum-of-pair score of the two columns given

above will be:

3(3−1)
2 s(T, T) + [s(A,C) + s(A,G) + 3s(A,T) + s(C,G) + 3s(C,T) + 3s(G,T)]

This scoring function can be implemented on an array
of m processing units as follows. First, map each residue
symbol into a numeric value from 1 to T. Next, m resi-
dues from any two aligning columns are assigned to m
processing units. Any processing unit holding a residue
sends a 1 to processing unit pk, where k is the number
represents the residue symbol it is holding. pk sums the
1’s it receives. The sum-of-pair score can be computed
between the pairs of processing units containing a sum
larger than 0 calculated from previous steps. All of these

steps are carried out in constant time. There are n2 pos-
sible pair-wise column arrangements of two pre-aligned
groups of sequences of max length n. Thus, the sum-of-
pair column pair-wise matching scores for two pre-
aligned groups of sequences can be done in O(1) using
m × n2 processing units.

Parallel progressive MSA algorithm and its complexity
analysis
Progressive multiple sequence alignment algorithm is a
heuristic alignment technique that builds up a final mul-
tiple sequence alignment by combining pair-wise align-
ments starting with the most similar pair and
progressing to the most distant pair. The distance
between the sequences can be calculated by dynamic
programming algorithms such as Smith-Waterman’s or
Needle-Wunsch’s algorithms (step i). The order in
which the sequences should be aligned are represented
as a guiding and can be calculated via hierarchical clus-
tering algorithms similar to the one described in Section
(step ii). After the guiding tree is completed, the input
sequences can be pair-wise aligned following the order
specified in the tree (step iii). In the previous Sections,
we have described and designed several r-meshes to
handle individual operations in the progressive multiple
alignment algorithm. Finally, a progressive multiple
sequence alignment r-mesh configuration can be con-
structed. First, the input sequences are pair-wise aligned
using the dynamic programming r-mesh described pre-
viously in Section. These m(m−1)

2
pair-wise alignments

can be done in O(1) using m(m−1)
2

dynamic programming
r-meshes, or in O(m) time using O(m) r-meshes. The
latter is preferred since the dendrogram [step (ii)] and
the progressive alignment [step (iii)] each takes O(m)
time to complete. Then, a dendrogram is built, using
the parallel neighbor-joining clustering algorithm

Table 1 Summary of progressive multiple sequence alignment components

Component input size processors run-time

2-input max switch 1 - bit 1 1 broadcast

4-input max switch 1 - bit 4 1 broadcast

2-input max switch n - bit n 1 broadcast

4-input max switch n - bit 4n 1 broadcast

on/off switch n - bit n ×n +1 1 broadcast

adder/subtractor n k ×n, k ≤ n 1 broadcast

DP(const. scoring) 2 sequences, max length = n O(n3) 1 broadcast

DP (general scoring) 2 sequences, max length = n O(kn3), k ≤ n 1 broadcast

DP back-tracking n × n n × n × n O(1)

Neighbor-Joining m × m O(m3) O(m)

Sum-of-pair 2 pre-aligned groups of m sequences m × n2 O(1)

MSA(const. scoring) m sequences, max length = n O(m × n3) O(m)

MSA m sequences, max length = n O(m × n4) O(m)

This Table summarizes all the parallel components developed in this study along with their time and CPU complexity.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 12 of 14

described earlier, from all the pair-wise DP alignment
scores from step (i). Lastly, [step (iii)], for each pair of
pre-aligned groups of sequences along the dendrogram,
the sum-of-pair column matching scores are pre-calcu-
lated for the DP r-mesh initialization before proceeding
with the dynamic programming alignment. There are m
- 1 branches in the dendrogram leading to m - 1 pair-
wise group alignments to be performed. In terms of
complexity, the progressive multiple sequence alignment
takes O(m) time using O(n) DP r-meshes to complete
all the pair-wise sequence alignments [step (i)] - (or O
(1) time using m(m−1)

2
DP r-meshes). Its consequence

step, [step (ii)], to build the sequence dendrogram takes
O(m) time using O(m3) processing units. Finally, the
progressive step, [step (iii)], takes O(m) time using a DP
r-mesh. Therefore, the overall run-time complexity of
this parallel progressive multiple sequence alignment is
O(m). The number of processing units utilized in this
parallel algorithm is bounded by the number of DP r-
meshes used and their sizes. The general DP r-mesh
uses O(n4) processing units to handle all scoring
schemes with affine gap cost. And step (i) needs m of
such DP r-meshes resulting in O(mn4) ≈ O(n5) proces-
sing units used.
For alignment problems that use constant scoring

schemes without affine gap cost, this parallel progressive
multiple sequence alignment algorithm only needs O
(mn3) ≈ O(n4) processing units to complete in O(m) time.
Table 1 summarizes the r-mesh size and the run-time

complexity of various components in this study, where
the components with “broadcast” run-time can finish
their operations in one broadcasting time. The “DP” r-
mesh is designed to handle all the Needleman-wunsch’s
[10], Smith-Waterman’s [9], and Longest Common Sub-
sequence algorithms.

Conclusions
In this study, we have designed various r-mesh compo-
nents that can run in one broadcasting step, which
enabling us to effectively parallelize the progressive mul-
tiple sequence alignment paradigm. to align m
sequences with max length n, we are able to reduce the
algorithm run-time complexity from O(m × n4) to O(m)
using O(m × n4) processing units. For a scoring scheme
that rewards 1 for a match, 0 for a mismatch, and -1 for
a gap insertion/deletion, our algorithm uses only O(m ×
n3) processing units. Moreover, to our knowledge, we
are the first to propose an O(1) run-time dynamic pro-
gramming pair-wise alignment algorithm using only O
(n3) processing units.

Acknowledgements
This study is supported by the Molecular Basis of Disease (MBD) at Georgia
State University.

This research was also supported in part by CCF-0514750, CCF-0646102, and
the National Institutes of Health (NIH) under Grants R01 GM34766-17S1, and
P20 GM065762-01A1.
The research of Nong was supported in part by the National Natural Science
Foundation of China under Grant 60873056 and the Fundamental Research
Funds for the Central Universities of China under Grant 11lgzd04.

Author details
1Department of Information Technology, Clayton State University, Morrow,
GA 30260, USA. 2Department of Computer Science, Georgia State University,
Atlanta, GA 30303, USA. 3Department of Computer Science, Sun Yat-sen
University, P.R.C.

Authors’ contributions
KN designed parallel models used in this study. YP and GN participated in
designing and criticizing the parallel models and their analysis. All authors
read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Published: 23 December 2011

References
1. Rosenberg MS, (Ed): Sequence alignment - methods, models, concepts, and

strategies University of California Press; 2009.
2. Wang L, Jiang T: On the complexity of multiple sequence alignment. J

Comput Biol 1994, 1(4):337-48.
3. Dayhoff MO, Schwartz RM, Orcutt BC: A model of evolutionary change in

proteins: matrices for detecting distant relationships. Atlas of Protein
Sequence and Structure 1978, 5(Suppl 3):345-358.

4. Henikoff S, Henikoff JG: Amino acid substitution matrices from protein
blocks. Proceedings of the National Academy of Sciences 1992,
89(22):10915-10919.

5. Thompson J, Higgins D, Gibson T, et al: CLUSTAL W: improving the
sensitivity of progressive multiple sequence alignment through
sequence weighting, position-specific gap penalties and weight matrix
choice. Nucleic Acids Res 1994, 22(22):4673-4680.

6. Do C, Mahabhashyam M, Brudno M, Batzoglou S: ProbCons: probabilistic
consistency-based multiple sequence alignment. Genome Res 2005,
15:330-340.

7. Notredame C, Higgins D, Heringa J: T-Coffee: a novel method for fast and
accurate multiple sequence alignment. J Mol Biol 2000, 302:205-217.

8. Nguyen KD, Pan Y: Multiple sequence alignment based on dynamic
weighted guidance tree. International Journal of Bioinformatics Research
and Applications 2011, 7(2):168-182.

9. Smith TF, Waterman MS: Identification of common molecular
subsequences. Journal of Molecular Biology 1981, 147:195-197.

10. Needleman SB, Wunsch CD: A general method applicable to the search
for similarities in the amino acid sequence of two proteins. J Mol Biol
1970, 48(3):443-53.

11. Sneath PHA, Sokal RR: Numerical taxonomy. The principles and practice
of numerical classification. Freeman, San Francisco; 1973, 573.

12. Saitou N, Nei M: The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Oxford University Press; 1987:4:406-425.

13. Lipman D, Altschul S, Kececioglu J: A Tool for multiple sequence
alignment. Proceedings of the National Academy of Sciences 1989,
86(12):4412-4415.

14. Bertossi AA, Mei A: Constant time dynamic programming on directed
reconfigurable networks. IEEE Transactions on Parallel and Distributed
Systems 2000, 11:529-536.

15. Huang CH, Biswas R: Parallel pattern identification in biological
sequences on clusters. Cluster Computing, IEEE International Conference on
2002, 0:127.

16. Lee HC, Ercal F: R-mesh algorithms for parallel string matching. Third
International Symposium on Parallel Architectures, Algorithms, and Networks, I-
SPAN ‘97 Proceedings 1997, 223-226.

17. Lima CRE, Lopes HS, Moroz MR, Menezes RM: Multiple sequence
alignment using reconfigurable computing. ARC’07: Proceedings of the 3rd
international conference on Reconfigurable computing Berlin, Heidelberg:
Springer-Verlag; 2007, 379-384.

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 13 of 14

http://www.ncbi.nlm.nih.gov/pubmed/8790475?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7984417?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15687296?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10964570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21576075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21576075?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/7265238?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/5420325?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22121496?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22121496?dopt=Abstract

18. Liu Y, Schmidt B, Maskell DL: MSA-CUDA: multiple sequence alignment
on graphics processing units with CUDA. Application-Specific Systems,
Architectures and Processors, IEEE International Conference on 2009, 0:121-128.

19. Sarkar S, Kulkarni GR, Pande PP, Kalyanaraman A: Network-on-Chip
hardware accelerators for biological sequence alignment. IEEE
Transactions on Computers 2010, 59:29-41.

20. Raju VS, Vinayababu A: Optimal parallel algorithm for string matching on
mesh network structure. International Journal of Applied Mathematical
Sciences 2006, 3:167-175.

21. Raju VS, Vinayababu A: Parallel algorithms for string matching problem
on single and two-dimensional reconfigurable pipelined bus systems.
Journal of Computer Science 2007, 3:754-759.

22. Takefuji Y, Tanaka T, Lee K: A parallel string search algorithm. Systems,
Man and Cybernetics, IEEE Transactions on 1992, 22(2):332-336.

23. Oliver T, Schmidt B, Nathan D, Clemens R, Maskell D: Using reconfigurable
hardware to accelerate multiple sequence alignment with ClustalW.
Bioinformatics 2005, 21(16):3431-3432[http://bioinformatics.oxfordjournals.
org/content/21/16/3431.abstract].

24. Oliver T, Schmidt B, Maskell D, Nathan D, Clemens R: High-speed multiple
sequence alignment on a reconfigurable platform. Int J Bioinformatics Res
Appl 2006, 2:394-406[http://portal.acm.org/citation.cfm?id=1356527.1356532].

25. Huang X: A space-efficient parallel sequence comparison algorithm for a
message-passing multiprocessor. Int J Parallel Program 1990,
18(3):223-239.

26. Aluru S, Futamura N, Mehrotra K: Parallel biological sequence comparison
using prefix computations. Journal of Parallel and Distributed Computing
2003, 63(3):264-272[http://www.sciencedirect.com/science/article/B6WKJ-
48CFNBJ-3/2/e9cbdc3abeab30a9b1912cd5d7802331].

27. Dally W, Towles B: Route packets, not wires: on-chip interconnection
networks. Journal of Parallel and Distributed Computing 2001, 684-689.

28. Tan G, Feng S, Sun N: Parallel multiple sequences alignment in SMP
cluster. HPCASIA ‘05: Proceedings of the Eighth International Conference on
High-Performance Computing in Asia-Pacific Region IEEE Computer Society;
2005, 426.

29. Luo J, Ahmad I, Ahmed M, Paul R: Parallel multiple sequence alignment
with dynamic scheduling. In ITCC ‘05: Proceedings of the International
Conference on Information Technology: Coding and Computing (ITCC’05).
Volume I. Washington, DC, USA: IEEE Computer Society; 2005:8-13.

30. Miller R, Prasanna VK, Reisis DI, Stout QF: IEEE Trans. Computers Parallel
computations on reconfigurable meshes.

31. Shi H, Ritter GX, Wilson JN: Simulations between two reconfigurable
mesh models. Information Processing Letters 1995, 55(3):137-142[http://
www.sciencedirect.com/science/article/B6V0F-3YYTDS7-15/2/
1443b1ec225f2536c578ed52f1143cfa].

32. Pan Y, Li K, Hamdi M: An improved constant-time algorithm for
computing the Radon and Hough transforms on a reconfigurable mesh.
Systems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transactions
on 1999, 29(4):417-421.

33. Bourgeois AG, Trahan JL: Relating two-dimensional reconfigurable
meshes with optically pipelined buses. Parallel and Distributed Processing
Symposium, International 2000, 0:747.

34. Trahan JL, Bourgeois AG, Pan Y, Vaidyanathan R: Optimally scaling
permutation routing on reconfigurable linear arrays with optical buses.
Journal of Parallel and Distributed Computing 2000, 60(9):1125-1136[http://
www.sciencedirect.com/science/article/B6WKJ-45F4YHC-X/2/
7749ae137af49ed1a8b374762b7d0d67].

35. Nguyen KD, Bourgeois AG: Ant colony optimal algorithm: fast ants on the
optical pipelined r-mesh. International Conference on Parallel Processing
(ICPP’06) 2006, 347-354.

36. Cordova-Flores CA, Fernandez-Zepeda JA, Bourgeois AG: Constant time
simulation of an r-mesh on an lr-mesh. Parallel and Distributed Processing
Symposium, International 2007, 0:269.

37. Vaidyanathan R, Trahan JL: Dynamic reconfiguration: architectures and
algorithms. Kluwer Academic/Plenum Publishers; 2004.

38. Gotoh O: An improved algorithm for matching biological sequences.
Journal of Molecular Biology 1982, 162(3):705-708[http://www.sciencedirect.
com/science/article/pii/0022283682903989].

39. Nguyen KD, Pan Y: A reliable metric for quantifying multiple sequence
alignment. Proceedings of the 7th IEEE international conference on
Bioinformatics and Bioengineering (BIBE 2007) 2007, 788-795.

40. Carillo H, Lipman D: The multiple sequence alignment problem in
biology. SIAM Journal of Applied Math 1988, 48(5):1073-1082.

41. Katoh K, Misawa K, Kuma K, Miyata T: MAFFT: a novel method for rapid
multiple sequence alignment based on fast Fourier transform. Nucleic
Acids Research 2002, 30(14):3059-3066.

doi:10.1186/1471-2164-12-S5-S4
Cite this article as: Nguyen et al.: Parallel progressive multiple sequence
alignment on reconfigurable meshes. BMC Genomics 2011 12(Suppl 5):S4.

Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

Nguyen et al. BMC Genomics 2011, 12(Suppl 5):S4
http://www.biomedcentral.com/1471-2164/12/S5/S4

Page 14 of 14

http://www.ncbi.nlm.nih.gov/pubmed/15919726?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15919726?dopt=Abstract
http://bioinformatics.oxfordjournals.org/content/21/16/3431.abstract
http://bioinformatics.oxfordjournals.org/content/21/16/3431.abstract
http://portal.acm.org/citation.cfm?id=1356527.1356532
http://www.sciencedirect.com/science/article/B6WKJ-48CFNBJ-3/2/e9cbdc3abeab30a9b1912cd5d7802331
http://www.sciencedirect.com/science/article/B6WKJ-48CFNBJ-3/2/e9cbdc3abeab30a9b1912cd5d7802331
http://www.ncbi.nlm.nih.gov/pubmed/22119199?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/22119199?dopt=Abstract
http://www.sciencedirect.com/science/article/B6V0F-3YYTDS7-15/2/1443b1ec225f2536c578ed52f1143cfa
http://www.sciencedirect.com/science/article/B6V0F-3YYTDS7-15/2/1443b1ec225f2536c578ed52f1143cfa
http://www.sciencedirect.com/science/article/B6V0F-3YYTDS7-15/2/1443b1ec225f2536c578ed52f1143cfa
http://www.sciencedirect.com/science/article/B6WKJ-45F4YHC-X/2/7749ae137af49ed1a8b374762b7d0d67
http://www.sciencedirect.com/science/article/B6WKJ-45F4YHC-X/2/7749ae137af49ed1a8b374762b7d0d67
http://www.sciencedirect.com/science/article/B6WKJ-45F4YHC-X/2/7749ae137af49ed1a8b374762b7d0d67
http://www.ncbi.nlm.nih.gov/pubmed/7166760?dopt=Abstract
http://www.sciencedirect.com/science/article/pii/0022283682903989
http://www.sciencedirect.com/science/article/pii/0022283682903989
http://www.ncbi.nlm.nih.gov/pubmed/12136088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12136088?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Optimal pair-wise sequence alignment by dynamic programming
	Existing parallel implementations
	Reconfigurable-mesh computing models - (r-mesh)

	Parallel pair-wise dynamic programming algorithms
	R-mesh max switches
	R-mesh adder/subtractor
	Constant-time dynamic programming on r-mesh
	Smith-Waterman’s and Needle-Wunsch’s algorithms
	Longest common subsequence (LCS)

	Affine gap cost
	R-mesh on/off switches
	Dynamic programming back-tracking on r-mesh

	Progressive multiple sequence alignment on r-mesh
	Hierarchical clustering on r-mesh
	Constant run-time sum-of-pair scoring method
	Parallel progressive MSA algorithm and its complexity analysis

	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References

