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Abstract

Background: Microarrays are a powerful tool for transcriptome analysis. Best results are obtained using high-quality
RNA samples for preparation and hybridization. Issues with RNA integrity can lead to low data quality and failure of
the microarray experiment.

Results: Microarray intensity data contains information to estimate the RNA quality of the sample. We here study
the interplay of the characteristics of RNA surface hybridization with the effects of partly truncated transcripts on
probe intensity. The 35" intensity gradient, the basis of microarray RNA quality measures, is shown to depend on
the degree of competitive binding of specific and of non-specific targets to a particular probe, on the degree of
saturation of the probes with bound transcripts and on the distance of the probe from the 3"-end of the transcript.
Increasing degrees of non-specific hybridization or of saturation reduce the 3'/5" intensity gradient and if not taken
into account, this leads to biased results in common quality measures for GeneChip arrays such as affyslope or the
control probe intensity ratio. We also found that short probe sets near the 3-end of the transcripts are prone to
non-specific hybridization presumable because of inaccurate positional assignment and the existence of transcript
isoforms with variable 3" UTRs. Poor RNA quality is associated with a decreased amount of RNA material hybridized
on the array paralleled by a decreased total signal level. Additionally, it causes a gene-specific loss of signal due to
the positional bias of transcript abundance which requires an individual, gene-specific correction. We propose a
new RNA quality measure that considers the hybridization mode. Graphical characteristics are introduced allowing

bias in probe intensities is advised.

assessment of RNA quality of each single array (‘tongs plot’ and ‘degradation hook’). Furthermore, we suggest a
method to correct for effects of RNA degradation on microarray intensities.

Conclusions: The presented RNA degradation measure has best correlation with the independent RNA integrity
measure RIN, and therefore presents itself as a valuable tool for quality control and even for the study of RNA
degradation. When RNA degradation effects are detected in microarray experiments, a correction of the induced

Background

Measurement of gene expression is based on the as-
sumption that an analyzed RNA sample closely repre-
sents the amount of transcripts in vivo. Several effects
can distort the abundance of RNA transcripts during ex-
traction and preparation before RNA analytics using, e.g.,
microarrays: The first problem concerns the degradation
of the RNA in vitro [1-4]: The quality of purified RNA is
variable and after the extraction during storage rather
unstable (see [5] and references cited therein). Especially
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long mRNA fragments up to 10 kb are very sensitive to
degradation through cleavage of RNAses introduced by
handling with RNA samples. Moreover, transcripts show
stability differences of up to two orders of magnitude
in vivo, raising the possibility that partial degradation
during cell lysis could cause a variable extent of bias in
quantification of different transcripts [6]. The second
problem concerns amplification of RNA in samples ana-
lyzed on microarrays giving rise to the decrease in the
length of products that are reverse transcribed and amp-
lified using T7 polymerase [7,8]. The multiple rounds of
in vitro transcription that are used to generate samples
from small amounts of RNA thus induce a decrease in
transcript yield and length.
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The screening of nearly three thousand public avail-
able GeneChip array data suggests that there is notice-
able degradation effect in the majority data files and that
2% of the files were even so severely degraded that their
worth was questionable [9]. Working with low-quality
RNA may strongly compromise the experimental results
and lead to erroneous biological conclusions. It is there-
fore recommended that the highest quality RNA be used
for analyses. However, in some cases, such as human
autopsy samples or paraffin embedded tissues, high
quality RNA samples may not be available [10-12]. It is
therefore important to understand how RNA quality
affects the interpretation of the results and also how reli-
able current quality measures are at indicating RNA
quality issues. The assessment of RNA integrity is a crit-
ical first step in obtaining meaningful gene expression
data. A second step comprises developing methods to
quantify degradation and, most importantly, to correct
the induced degradation bias in the data and thereby
provide more coherent expression measures.

Several RNA quality measures are established based
on conventional wet lab techniques such as gel optical
density measurement or denaturating agarose gel-
electrophoresis (see refs. [2,5] for a review). More novel
lab-on-chip gel electrophoresis techniques like Agilents
Bioanalyzer became now state of the art. In combination
with sophisticated analysis algorithms processing the
shape of the electropherogram (and, particularly, the
28 S/18 S rRNA ratio) they provide accepted integrity
measures such as the DegFac-RQS (degradation factor
RNA quality scale) [6] or the RIN (RNA integrity num-
ber) [13] which have been validated independently using
qRT-PCR [5].

Importantly, microarray intensity data itself contains
information about the RNA quality used for
hybridization due to the 3'/5'-gradient of transcript
abundance [14]. On microarrays of the GeneChip-type
this gradient is typically measured using either specially-
designed control probes or exploiting the specifics of the
Affymetrix probe design which is based on a set of about
one dozen, surface-attached 25-mers interrogating dif-
ferent positions along each transcript. Both options esti-
mate transcript abundance at close and more distant
positions towards the 3'-end based on the hybridization
signal [15,16].

Although proven in many applications, these measures
are based on probe intensities which, in general, are
non-linear functions of transcript abundance [17-20].
The signals can be strongly distorted by effects not
related to transcript concentration such as saturation
and non-specific background hybridization. Intensity-
based RNA quality measures are therefore potentially
prone to systematic errors which, in worst case, can pro-
vide diametrically opposed information in assessing
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apparently good RNA quality in samples with largely
degraded RNA (see below). Moreover, the important
task of correcting microarray signals for RNA degrad-
ation effects remained unsolved at least in single chip
applications to our best knowledge. A linear correction
model requiring both expression and RNA quality data
from a series of arrays has recently been published [4].

This publication addresses the following tasks to over-
come these problems: Firstly, we adapt non-linear
hybridization theory based on a physico-chemical model
of probe/target binding to the special case of truncated
transcripts due to RNA degradation. We will show that
our approach consistently explains previous observations
such as the effect of RNA quality on transcript intensity
level [4] and correlations between probe intensity and
probe position along the transcripts and their effect on
expression measures [21]. Analysis of the probe signals
in terms of this model enables us to define unbiased (in
the frame of the hybridization model used) measures of
RNA integrity. Secondly, we compare these new mea-
sures with established ones. We demonstrate that meth-
ods such as affyslope or the RNA-integrity control
probes can provide systematically false information on
RNA quality. Thirdly, we propose a simple correction
method which aims at removing the degradation bias
from the probe intensities and which can be integrated
into standard preprocessing pipelines. Details of the
methods used are summarized in the Methods section at
the end of the paper or shifted into the supplementary
text provided as Additional file 1.

Results and discussion

3'-biased transcript coverage of microarray probes after
RNA amplification and degradation

Affymetrix expression microarrays typically use a 3'-
biased probe location which is motivated by the specifics
of target preparation prior to hybridization. The prepar-
ation step applies in vitro transcription (IVT) protocols
according to the Eberwein method [22]. It starts with
first-strand ¢cDNA synthesis from source mRNA using
T7 oligo(dA) primers followed by second strand cDNA
synthesis [7,8]. The double-stranded cDNA fragments
are subsequently transcribed into amplified antisense
RNA (aRNA) which, after labeling, is finally hybridized
on the arrays.

First-strand ¢cDNA polymerization is primed at the
3’-end of mRNA and proceeds towards the 5'-end (see
Figure 1). Due to incomplete polymerization this
method produces truncated transcripts of variable
length which are however characterized by a common
3'-start site with respect to the respective fragment of
source mRNA [14] (to avoid confusion we will strictly
refer to the 3'- and 5'-ends of the source mRNA and
not to that of the product aRNA). In consequence, the
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Figure 1 The 3'-bias of transcript abundance can be caused by in vitro transcription (left part) and degradation (right part) of source
mRNA. Left part: Specific targets hybridize to the probes along the interrogated transcript with decreasing frequency due to incomplete
amplification starting at the primers attached to the 3"-poly-A motif of source mRNA. In contrast, cross-hybridization of non-specific targets is not
associated with the 3-end of the transcripts giving rise to uniform coverage. Right part: Degradation of source mRNA due to RNases from both
ends (a and b) and/or fragmentation at randomly chosen positions (c) also result in a 3-enriched length distribution of amplified RNA giving rise
to a similar coverage of the probes as shown in the left part. aBRNA fragments are shown in 3'— 5" direction (from left to right) in contrast to
convention to agree with the probe numbering used (k=1, 2...) and the intensity decays introduced below.
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resulting distribution of transcript lengths gives rise to a
3'-enriched, decaying towards the 5'-end coverage of
the probes of the probe sets interrogating the respective
transcript with increasing probe index (see also the next
section; for convenience we will count the probes in dir-
ection towards the 5'-end in contrast to Affymetrix
counting the probes in the opposite direction). Subse-
quent fragmentation of these aRNA targets into pieces
of typically a few hundred bases before hybridization
leaves the 3'-bias of probe coverage unaffected.
Importantly, the decaying coverage of the probes is
expected to apply to specific (S) but not to non-specific
(N) hybridization. In the S-hybridization mode the
probes bind the aRNA fragments of complementary se-
quence transcribed from mRNA transcripts which they
intend to detect. In the N-hybridization mode the probes
bind aRNA fragments of partly complementary sequence
originating however from mRNA transcripts not refer-
ring to the interrogated gene. Trivially, these non-
specific transcripts lack a common start position with

respect to the intended target and, as a consequence,
they, on the average, uniformly cover the probes of each
probe set (see Figure 1la). Specific hybridization com-
petes with non-specific one. Both hybridization modes
contribute to the measured probe intensities. The conse-
quences of different probe coverages for the measured
signal will be discussed below.

Also degradation of mRNA, e.g. upon storage, can
produce 3’-biased probe coverages of fragmented aRNA
by endonuclease activity that cuts RNA internally, or by
means of exonucleases [23]. In the first case, the poly(A)
tail is removed by a deadenylase activity, followed by
two mechanisms that degrade the mRNA: either decap-
ping followed by a 5'-to-3" decay or a 3'-to-5" decay.
Once the mRNA poly(A) tail is removed, reverse tran-
scription reaction will not proceed, resulting in low con-
centrations of truncated transcripts (see Figure 1b).
Several studies have identified RNA degradation to be a
major cause of microarray expression measure variability
[4,6,9-12].
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Probing transcript abundance using genechip arrays
With only 25 base-pairs, Affymetrix has considerably
shorter probe sequence lengths than competing man-
ufacturers of high-density microarrays such as Illu-
mina or Agilent, who employ probe lengths between
50 and 80 bp. Small probe lengths reduce the specifi-
city for probe/target binding with negative conse-
quences for the signal to noise ratio of the probe
intensities. Affymetrix compensates the decrease in
single probe signal quality by targeting each transcript
with several probes forming a so-called probe set.
We here focus on Affymetrix 3’-expression arrays
which use typically 11 to 16 probes per set to interro-
gate transcripts preferentially near their 3'-end (see
Figure 1 for illustration).

The probes of each set cover transcript lengths
which largely exceed the length of the individual
probes. This design is well suited to study length-
dependent alterations of transcript abundance due to
RNA degradation and imperfect amplification.
Figure 2a shows that the majority of probe sets start
(first probe with index k=1) within the first L; =100-
200 nucleotides nearest to their 3'-end and end at
position L;; =250-600 for the Ilast probe (index
k=11). Only about 5% of all probe sets are located
beyond the range of 600 nucleotides. Within this
range, the sets can be roughly classified into ‘low (i.e.,
more 3°) L; and low L;;" (LL), low L; and high (i.e.,
more 5°) L;;” (LH) and ‘high L; and high L;;” (HH)
sets where low refers to distances close to the 3" end
and high refers to distances farther towards the 5’
end (see Figure 2a). The mean length of the covered
transcript range (AL=L;; - L;) nearly linearly
increases with the position of the 11™ probe up to
L1~ 600, and then it remains virtually constant AL
~460 (Figure 2b). Hence, short probe sets with AL
<300 accumulate near the 3" end of the transcripts
whereas more distant probe sets typically cover a
wider length range of  the transcripts
(350 < AL < 600).

The mean position of all probes on the array with
a given index k=1...11 linearly correlates with k to a
good approximation (Figure 2c). The obtained slope
characterizes the mean distance between two neigh-
bored probes. It can be interpreted as the probe sen-
sitivity per index increment and depends on the
probe design of the particular array type,

<L>array - <L1>array _ <L>array
<k>array -1 <k>array

(AL)= (1)

<...>gamay denotes averaging over all probes of the
array. The approximation in the right part assumes a
vanishing intercept in good agreement with the data
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(see Figure 2c). Additional file 1 provides an overview
over selected probe design characteristics of different
GeneChip types. It shows that the mean position of
the first and of the last probe in the probe sets can
strongly vary between the different chip types giving
rise to a wide range of <AL > -values which can
change between about 25 and about 60 nucleotides
per index increment. These differences refer in first
instance to arrays of older and newer generations
(e.g., the human genome HGU95a and HG133a arrays
and the mouse genome MG74a and MOE430a arrays,
respectively). On the other hand, the average span
covered by the probe sets is relatively constant for all
chip types considered.

Affymetrix GeneChip arrays include a small num-
ber of control probe sets designed to estimate the
RNA quality in terms of the 3'/5" bias. They target
the 3" end, the 5-end and the middle (m) of rela-
tively long transcripts coding, e.g., beta-actin and
glyceraldehyde-3-phosphate dehydrogenase (GADPH)
using 20 probes per set. Figure 2a and b shows that
the 3'- and the 5" probe sets of the controls together
cover the range of about 700 nucleotides between
L,p=281 and L,y=378 for the 3'-probe sets and
Ly0=942 and L,;p=1104 for 5'-probesets of GADPD
and beta-actin, respectively.

Intensity-based degradation metrics

In this section we discuss the consequences of the
3’-enriched probe coverage on the observed probe in-
tensities. In the following we will subsume the 3'-bias
of probe coverage as ‘degradation effect’ independent
of its origin (IVT amplification or degradation) for
the sake of convenience. Let us first define the probe-
specific and the mean degradation ratio averaged over all
probes of the array,

Sgk
dgA,k = S[ : ] and d :<dg,k>au probes , all genes (2)
[ g] target
respectively, which characterize the decrease of the

transcript concentration due to the degradation effect.
[Sgltarget is the (true) expression degree of a selected
gene g given as the total concentration of the target
transcripts in the hybridization solution independent of
their length. It refers to the target concentration in the
absence of degradation and presumes that RNA pro-
cessing proceeds without 3'/5" bias. Contrarily, [Sgy]
denotes the apparent expression degree reported by
probe with index k=1,.. Ny designed to interrogate
target g. It is given as the concentration of the RNA
fragments which specifically bind to this probe. It
consequently refers to the probe coverage which
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Figure 2 (See legend on next page.)
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(See figure on previous page.)

Figure 2 Probe and probe set characteristics of the RAE230 GeneChip array: Panel a correlates the position of the 11* (nearest the 5'
end of the transcripts) and of the 1th (nearest the 3’ end) probe of each probe set and shows the respective number distributions.
Most probe sets accumulate in the LH (low Ly, high Ly;) and LL ranges whereas only a few sets are found in the HH range. Panel b shows the
coverage size of the probe sets (AL=L;;- L) as a function of the position of the 1 1™ probe set together with the respective number
distributions. The mean AL value nearly linearly increases until ky; 2600 and then it remains virtually constant with AL ~460. The most probe
sets cover a transcript range of 400 — 550 nucleotides. The open circles refer to the 3™- and 5'-control probe sets. The boxplot in part ¢ correlates
the probe index k with the probe position L. The median position per index (see the horizontal bar in each box) nearly linearly increases with k.
The slope provides the < AL > —value of the array which characterizes the probe sensitivity per index increment (~ 50 nucleotide positions per

index increment).

decays with increasing distance of the probe to the 3'-
end of the target. Angular brackets <...> i probes de-
note averaging over all probes of the array. One expects
[Slgk < [Sgltarget and thus dg<1 owing to the 3'-
enrichment after incomplete amplification and degrad-
ation of the fragments. The probe specific degradation
index, dg, thus characterizes the loss of mRNA ma-
terial at a given probe position along the transcribed
region of the gene. The mean degradation index d
averages the single probe effects over all probes. It
estimates the total loss of RNA probed by the micro-
array in a given preparation prior to hybridization.

The probe intensity measured in the microarray
experiment is given to a good approximation by the
hyperbolic function [18,19,24-27]

ngs xwg’s—i—XE*N xwg’N
1 (XES+XEN)

with p =g,k (3)
where M is the maximum intensity upon complete satur-
ation of the probes and O is the optical background. The
probe index p =gk subsumes the gene and probe index
explicitly used in Eq. (2). The superscript P=PM, MM
specifies the probe type and h=S, N the hybridization
mode (specific and non-specific, see below). wg’h is the
survival factor characterizing the removal of probe-bound
targets in the post-hybridization washing step [26,28,29].
The binding strengths of a selected probe due to specific
and non-specific hybridization are directly related to the
concentrations of the respective RNA species present in the
hybridization solution

Ig: Mx +0

) S N t P,S PSS /1-P,S P.S
. (d5 XXz +d x Xs) r;‘;g (1(5. xw,_ KXWy

fin = (dy %X +d x X))

P.S

W._.
and rgf=—>~ (saturation)
ng’

) for x> >> xN (specific)

(KETNXWI;’N / Kg"wag?N> for x5 << xN(non — specific)

XPS=[S,] xKPS= dyx [S,]
and XpN = dx[N]

P,S
target X KP

chip X KN (4)

respectively. Kg’s and Kg’N are the respective equilib-
rium constants for target/probe binding. The degrad-
ation factors in Eq. (4) consider the reduction of
the concentrations [Sglarget and [N]en;, after incom-
plete amplification and/or degradation (see Eq. (2)).
Non-specific hybridization is related to the total amount
of RNA used for hybridization [30]. [N]uyp is conse-
quently reduced by a factor given by the mean degrad-
ation factor d.

The probe-specific degradation index d, defines
the decrease of transcript concentration after amplifi-
cation and degradation (Eq. (2)). In the next step we
define the apparent degradation index as the intensity
ratio of probes located at different position along the
target sequence, for example near its 5'- and 3'-end
of one selected target,

I
app _— 5
r5r3v = E (5)

where the intensities are given by Eqgs. (3) and (4) with
the respective degradation ratios ds and dy
respectively.

Let us consider two special cases if the probes
hybridize either far from saturation in the linear range

(Xg’s, Xg"N<<1) or in the range of saturation of specific

hybridization (Xg's > 1 > XE’N). The apparent deg-

radation index becomes

(linear range)
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respectively. The lower case x defines the hybridization
strengths at ‘ideal’ transcript concentrations (see Eq. (4)
with d=d,=1: xg’s = [S]arger X Kg"s X wg’S and XE’N =
Nl X KE’N X wg"N) and r3%, = dy/dy denotes the
‘true’ relative degradation index between 5’ and 3’
probes, respectively. Eq. (6) shows that the apparent deg-
radation index is proportional to the true one

P o ry ) in the special situation of dominating spe-
cific hybridization (x5> >x) far from saturation only. It
however scales with the ratio of the specific binding and
washing constants of the 3'- and 5’-probes, which might
be larger or smaller than unity depending on the
sequences of the particular probes (see [29] for details).
At dominating non-specific binding or saturation one
gets apparent degradation indices which are completely in-
dependent of the true one. Their values again depend on
the probe sequences and can be larger or smaller than
unity. Hence, the use of intensity-based degradation

metrics raises problems because they reflect the
degradation bias of transcript abundance in special situa-
tions only.

On the other hand, two intensity-based degradation
measures are well established for quality control of
GeneChip arrays: (i) The slope of a linear function fitted
to the so-called ‘RNA degradation plot, ri8°. This RNA
degradation plot displays the mean logged intensity aver-
aged over all probes with the same index k, taken from
one array, as a function of k [16]. (ii) The intensity ratio
reomrel of special control probe sets targeting the 5'- and
the 3'-end of relatively long transcripts such as beta-
actin and GADPH. A threshold of the 3'/5"-signal intensity
ratio of the GADPH controls less than 3 (in logarithmic
scale log;o 3 =0.48) is recommended for good quality RNA
[31,32].

In view of the discussed problems of intensity-based
degradation measures we will revise these estimates and
judge their suitability for determining RNA quality. Large
values of r§9%¢ and/or ri/s* near unity are generally
thought to indicate small degradation bias and thus good
RNA quality. Note that reciprocal values of these mea-
sures are often used in practice estimating the respective
3'/5 -ratios. Here we consequently use 5'/3"-ratios to en-
sure direct comparability between the various measures.

In summary, probes located nearer to the 3'-end of
the interrogated transcripts potentially shine brighter
than more distant probes due to the 3'-enrichment of
probe coverage giving rise to expected ‘true’ intensity
ratios rs/3- < 1. However, this rule applies only to condi-
tions of specific hybridization far from saturation. RNA
quality measures based on the 5'/3'-intensity ratio con-
sequently require consideration and evaluation of the
hybridization mode of the chosen probes. Moreover, the
potential dependence of the probe intensities on the de-
gree of degradation gives rise to systematic errors of the
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estimated expression degree of the transcripts which
requires appropriate correction.

The 3™-intensity bias depends on the hybridization-mode
The so-called hook method transforms the PM and MM
intensities of GeneChip arrays into a smoothed delta-
versus-sigma summary plot of characteristic shape
where delta and sigma are the difference and the sum of
the logged probe intensities after affinity correction. Its
visual inspection allows the simple and straightforward
detection of five hybridization regimes with increasing
sigma (see [33,34], Eq. (14) and Figure 3), namely the N-
(virtually only non-specific hybridization contributes to
the signals), mix- (combination of non-specific and
specific hybridizations), S- (predominantly specific
hybridization), sat- (saturation range; the relation be-
tween intensity and transcript concentration becomes
progressively non-linear) and as- (the intensity reaches
its asymptotic saturation level) regime.

We here complement the hook representation by two
modifications allowing to assess the degradation of the
RNA-transcripts in a chip-specific fashion. These so-
called ‘degradation hook’ and ‘tongs plot’ estimate the
3’-enrichment of the probes and thus their degradation
level in dependence on the hybridization mode. They de-
pict differences between the Sigma-values of selected
subsets of probes taken from the 3'- and 5'-ends of the
probe set,

AXgy g5 = <ZP>53' - <Zp>ss'
(degradation hook)

AXg = <ZP>S — <Zp>pset (tongs plot)
(7)

15y
ith (Z,). == k
W < p>s 3 k=i
1
and X = 3 (logl™+logIy™)

as a function of sigma, <Zp>pset' These plots use the same

abscissa as the hook curve and they also smooth the noisy
data using a running window of 500-1000 probes. The
subscript s =s3’, s5” denotes a subset of three consecutive
probes within the probe set of size N nearest to (s3',
i=1) or most distant from (s5', i=Nps-2) the 3'-end of
the transcript, or centred about its middle probe (s = m).
Figure 3 shows the hook curves for two selected
microarray hybridizations of differently degraded RNA
together with the respective degradation hook (panel
above) and tongs plot (panel below). The degradation
hook shows essentially the same shape as the standard
hook. The curves reflect however different effects: The
standard hook plots the mean logged intensity difference
between paired PM and MM probes. It consequently
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Figure 3 Hook- and degradation hook (above) and tongs-plot (below) of two selected chip hybridization taken form the human body
index data set (muscle, GEO accession numbers GSM176301 in part a and skin, GSM175967 in part b) referring to large and smaller
degradation effects, respectively. Note that all plots use the same abscissa scaling (2, see Eq. (7)) which is related to the expression degree of
the respective probes. The hook curve reveals the changing hybridization mode with increasing sigma: non-specific (N), mixed N and S (mix),
specific (S), saturation (sat) and asymptotic (as) ranges. The degradation hook and the tongs-plot reveal the mean 3"/5-intensity bias of the
probes. The three branches of the tongs plot refer to three probes nearest to the 3-end (upper branch), nearest to the 5-end (lower branch) and
located in the middle in-between (middle branch). Note that the different branches split maximally in the S-range of hybridization whereas no

(a, 'height’ of the hook, see Eq. (

maximum is prone to increasing error.

bias is observed in the N-range as predicted by theory (lines, see Egs. (1

curves are calculated using the formulae given in the methodical section using the parameters given in the figure. The hook dimensions

8); B, 'width' of the hook; >(0), ‘start’ point; M, ‘end-point) are very similar for both arrays whereas the
logarithmic 3™ and 5" degradatlon levels (Eq. (24)) are markedly different. The size of the moving window is decreased towards the right end of
the tongs plot to compensate the reduced number of probe sets in saturation range. As a consequence, the part of the curves beyond of the

6) and (21) for the hook and tongs plot, respectively). The theoretical

estimates the intensity penalty of one mismatched base
pairing in the respective probe/target-duplexes. Contrar-
ily, the degradation hook judges the logged mean inten-
sity difference between probes located nearer and farther
to the 3’end of the transcripts, and thus the 3'/5'-bias
of the probe intensities in the probe sets due to the deg-
radation effect.

Interestingly, the different hybridization modes analo-
gously affect the intensity differences in the standard
and the degradation hook as well. For example, upon
non-specific hybridization both, the PM/MM difference
and the 3'-bias essentially disappear because both
effects, the MM-penalty and the 3'/5'-bias, require
duplexing of the probes with the intended targets.
Non-specific binding doesn’t meet this criterion be-
cause the binding of non-specific transcripts is indiffer-
ent with respect to the mismatched pairing of the
middle base of the MM probes and with respect to
the degradation bias as well (see also Figure 1 for il-
lustration). Vice versa, both hook-versions show their

maximum in the S-range because specific binding is
associated with the intended intensity penalty of the
MM-probes and of probes located more distant from
the 3'-end, respectively.

Note that the two standard hook plots shown in panel
a and b of Figure 3 are of virtually equal height owing to
the similar MM-penalty (o =0.83 — 0.85) whereas the re-
spective degradation hooks markedly differ in this re-
spect (Ayss-=0.57 and 0.29, respectively) revealing
marked differences in the degradation level between
both samples. Comparison of the heights of both hook-
types shows that strong degradation can affect the probe
intensities nearly by the same order of magnitude as one
mismatched base pairing.

The tongs plots explicitly estimate the intensity bias at
three positions of the probe sets and thus it illustrates
the progression of degradation with increasing probe
index. The AXY curves of all three subsets (s=3', 5’
and m) degenerate in the N-hybridzation range indicat-
ing the absence of the 3'-bias for non-specific binding
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as discussed above (see also Eq. (6) for x° < <x™). In
the mix-range the AX-curves split into three branches
which progressively diverge with increasing sigma and
thus with increasing contribution of specific hybri-
dization. The ‘opening of the tongs, ie. the split be-
tween the 3'- and 5'-branches, reaches its maximum
in the S-range of hybridization in parallel with the
maximum of the hook curve and of the degradation
hook. Subsequently, the different branches start to con-
verge as predicted for the range of saturation (see Eq. (6)).
Both, the experimental degradation hook and the tongs
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plot are well described by theoretical curves based on the
Langmuir-model of array hybridization (see Materials and
Methods section, Eq. (21)). The split parameter Ayss-
characterizes the height of the degradation hook, or
equivalently, the ‘tongs opening’ serving as a measure of
the maximum vertical difference between the 5'- and the
3'-branches of the tongs, respectively. Aysz- s estimates
the 5'-depletion of probe coverage in terms of the logged
concentration increment between the targets covering the
5'- and 3’-probes (Eq. (24)). The examples shown in
Figure 3a and b refer to relatively strong and weak
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depletion of targets with 5'/3’-concentration ratios of
deongs = 10°%7 =027 and 10°% =051, respectively (see Eq.
(24)). This analysis shows that degradation can reduce the
transcript concentration to less than one third of the initial
transcript abundance.

Figure 4 shows a collection of tongs plots taken from
the RatQC dataset [10] characterizing the level of deg-
radation of rat liver RNA under two conditions, namely
after incubation of fresh tissue (panel a) or after thawing
frozen tissue (b). With incubation time the opening of
the tongs increases indicating progressive degradation of
the RNA. The time dependence reveals that RNA deg-
radation in thawed tissue proceeds much faster: Particu-
larly, its degradation level after 50 min exceeds that of
incubated fresh tissue after 300 min in units of the tongs
opening parameter, Ayss- (Figure 4c). It has been
argued that freezing disrupts tissue structure, rendering
the tissue highly sensitive to RNA degradation whereas
autolysis of fresh liver tissue appeared to be a much
slower process [10].

In summary, the 3'/5'-bias of probe intensities essen-
tially disappears for probes which hybridize predomin-
antly non-specifically and it markedly decreases for
probes which are strongly saturated with specific tran-
scripts. The 3'/5'-bias consequently provides a suited
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metrics for RNA-quality only in the linear range of spe-
cific hybridization in agreement with the theoretical pre-
dictions made in the previous subsection.

Short 3'-probe sets are prone to non-specific’
hybridization

In the next step we selected the probe sets from the
non-specific and specific hybridization ranges of the
hook curve and calculated their frequency histograms as
a function of L; and L,,,, the position of the nearest
and of the most distant probe from the 3'-end in each
probe set.

Figure 5 shows the distribution of the fraction of probe
sets of either hybridization range normalized with re-
spect to the total number of probe sets in the respective
group. Probe sets which cover the range near the 3’-end
with L; <100 and L, <500 are more prone to non-
specific hybridization than probe sets located at larger dis-
tances from the 3’-end with L;>100 and L., > 500
which are more affected by specific hybridization on the
average. The relative difference of the fractions in both
groups is large: For example, the fraction of N-hybridized
probe sets exceeds that of S-hybridized ones by about 50%
at small L., < 300. Vice versa, at large L, > 700, the S-
hybridized fraction considerably exceeds the N-fraction.
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The observed distributions are very similar for the differ-
ent arrays of the Rat-QC data set showing that the
positional-dependent variation of the hybridization mode
is virtually insensitive to the degree of RNA-degradation.

We suspect that the increased fraction of non specific
hybridization towards the 3’ end of the transcripts is
caused by inaccurate assignment of the 3'-transcript end
upon probe design and/or by variations of the 3'-end of
the transcripts, e.g. due to effects such as alternative
polyadenylation as discussed previously [35,36]. Alterna-
tive polyadenylation leads to transcript isoforms with
differences in the 3" UTR length. In these situations the
‘true’ 3'-end of the transcript can be located at L3" >0
and all probes at positions closer to the apparent tran-
script end, L3’ >L >1, will hybridize exclusively non-
specifically owing to the absence of specific transcripts.
In consequence, the mean fraction of non-specific
hybridization of probes at small L will exceed that of spe-
cific hybridization on relative scale, as observed. A very
similar plot as shown in Figure 5 for the rat genome array
RG230A was obtained for alternative array types such the
Human Genome U133 Plus 2.0 (see Additional file 1).

An alternative option that potentially explains the in-
crease of the relative contribution of N-hybridization
near the 3'-end can be sought in depletion of the re-
spective targets in solution due to the high number of
probes with partly overlapping probe sequences in this
L-range. In consequence, a larger number of probes can
be thought to compete for each transcript-fragment than
at larger distances L. This competition for the same tar-
get can deplete its concentration in solution. Such target
depletion effectively reduces the binding affinity of the
respective probes for specific binding [37]. In conse-
quence this change can increase the relative contribution
of non-specific hybridization as observed in this L-range.
On the other hand, it has been shown that depletion is
clearly governed by the binding affinity of the probes
which exponentially affects the abundance of targets
whereas the accumulation of partly overlapping probes
near the 3'-end can be assumed to affect target concen-
trations in a linear and thus much weaker fashion. We
therefore suspect that target depletion is, if at all, of sec-
ondary importance for explaining the high relative con-
tribution of non-specific hybridization at small L.

In summary, we found a biased distribution of specific
and non-specific hybridization along the targeted tran-
scripts: Non-specific binding is more heavily weighted
near the 3'-end, presumably owing to its inaccurate as-
signment and to transcript isoforms with variable 3’
UTR lengths.

Positional dependent intensity decays
The degradation hook and the tongs plot shown in
Figure 3 highly resolve the 3'-bias of probe intensities
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in dependence on the hybridization mode. These plots
allow classifying each probe set into one of five differ-
ent hybridization regimes within a microarray experi-
ment. However, this approach only coarsely resolves
the positional bias along the transcripts by collecting
together three probe intensity values at two or three
selected positions only (3, 5" and m). In this subsec-
tion we describe an orthogonal method which uses a
more coarse graduation of the hybridization mode
while highly resolving the 3’-bias with respect to the
probe position. Particularly, we select two groups of probe
sets taken either from the N- or the S-hybridization
range of the hook curve. We then calculated the logged
mean intensities of the selected PM-probes as a func-
tion of two alternative arguments, namely their probe
index k in the probe set or their probe distance L rela-
tive to the 3'-end given in units of the number of
nucleotides,

log Ih(k):<log Ig>’p:k and

log Ih(L)=<log I§> with h = SN (8)

Lp—r+sL

respectively. The angular brackets denote averaging ei-
ther over all probes with the same index k or over all
probes with the same absolute position within a win-
dow L-8L <L, <L +3L.

Figure 6a shows the obtained intensity profiles for
the example shown in Figure 3a. The mean intensity
due to specific hybridization markedly decays with in-
creasing distance of the probes from the 3'-end of the
transcripts whereas the intensity due to non-specific
binding is much smaller and remains virtually constant,
as expected. The decay due to specific hybridization
can be approximated with a distant-dependent degrad-
ation index, dg’S:dS(L) which is given by an ‘exponen-
tial plus constant’ decay law in analogy with Eq. (10)
(see below) after insertion into the hyperbolic Langmuir
isotherm (see Egs. (3) -(4)) and normalization (Eq. (9.).
The obtained curves well describe the intensity decay in
the intermediate L-range and its flattening at small and
large L-values (see dotted curve b in Figure 6a).

This approach attributes the flattening of the decay
near the 3'-end to the saturation of the probes with
bound transcripts. However this effect becomes rele-
vant usually at large intensity values only (log I(3")
~log M >4; see Figure 3). The observed mean initial
intensity values of the decays are however much smal-
ler (log I(3") ~3). We conclude that another effect and
not saturation causes the flattening of the decays at
small L-values. The decrease of the relative contribu-
tion of specific hybridization near the 3'-end discussed
in the previous subsection well explains the observed
trend: Non-specific hybridization still adds a small
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(See figure on previous page.)

decays in part b in addition use a constant d.. > 0.

Figure 6 Positional dependent intensity decays in relative and absolute scale. Panel a) Mean intensity decays of specifically and
non-specifically hybridized probes (Eq. (8)) referring to the data shown in Figure 3a. The circles denote index-based averages which are plotted
as a function of the mean position per index (left part). The decays are normalized according to Eq. (9) (right part of the figure). The dotted
curves in part a are theoretical ones using different functions: Exponential plus constant (a) and exponential (b) intensity decays which consider
saturation without initial shift (Eq. (10) with xo=0); exponential plus constant (right part above) and exponential (right part below) decays with
initial shifts (Eq. (10) with xo=0). Panel b and ¢) Representative decays are taken from the Rat-QC (b) and the RNeasy cleanup (c) data sets. The index-
scaled decays in the left part and the L-scaled decay in the right part of panel c are fit using simple exponential decays (d..=0) whereas the L-scaled

residual contribution to the specific decays due to im-
perfect decomposition of the different hybridization
modes. The decrease of the contribution of specific
binding presumably due to inaccurate assignment and
transcript isoforms then effectively increases the rela-
tive weight of non-specific binding and adds a con-
stant component to the decays at small distances
from the 3’end which in consequence flattens the ini-
tial decay.

To account for this effect we pursue a simple ap-
proach which neglects saturation and normalizes the
decays with respect to their maximum intensity level
near the 3" end of the transcripts,

d"(x)=1"(x)/1"(3)
with x=Lk,L and h=N,S 9)

The obtained degradation index due to non-specific
hybridization is given by a constant, d¥(x) ~ 1, to a good
approximation (Figure 6). The degradation decays due
to specific hybridization are well described using a
‘shifted exponential plus constant’ functions of the form,

— X0
Ak

d(x)=d*(x) &~ (1 — dY ) xexp (— X >—i—d§O (10)
as illustrated by the dotted curves in Figure 6. The
obtained decay length A characterizes the mean slope of
the 3’-bias in units of the number of probes (\;) or
nucleotides (\;) after which the variable contribution of
the intensity decays to 1/e of its initial value. The con-
stant d¥, defines the residual constant intensity level at
large distances from the 3’-end. The shift-parameters
Xo=ko, Lo account for the potential flattening of the
decay at small arguments discussed above. Both decay
constants are linked via the < AL > —value, i.e.

A ~ AL-(AL) (11)

Panel b and c of Figure 6 show selected examples
taken from the rat-QC and the RNeasy cleanup data
sets which refer to different array types (RAE 230A and
HG-U133A, respectively). With decreasing RNA quality
the decays become steeper paralleled by increasing

absolute values of the limiting intensity levels but almost
constant initial shift parameters Lo~ 150 — 200 and
ko=1- 2. Index- and nucleotide-based length scales give
rise to similar trends (compare the right and the left parts
in Figure 6b and c). The L-scale in units of nucleotides is
associated with a slightly more flat and smaller asymp-
totic level than the relative k-scale using the probe indi-
ces as argument. Note that about 95% of the probes of
the arrays are positioned with similar frequencies in the
range 100 <L < 600 whereas only less than 5% of them
are found at larger distances, however with a broad dis-
tribution over the range 600 < L <2800 (Figure 2). Most
of the more distant probes refer to the probe indices
k=10, 11. This assignment effectively compresses the
asymptotic region to the last two probes with indices
k=10 and 11. As a consequence the decays in relative
k-scale can be described with sufficient accuracy using a
‘single exponential’ decays (Eq. (10) with dX =0) where
the values d(10) and d(11) roughly refer to the limiting
decay level obtained in the fits using the L-scale, d%.

The L-decays of specifically hybridized probes obvi-
ously behave differently for L > 600 showing a less pro-
nounced loss of intensity than for L < 600. The origin of
this difference is unknown. The standard error of the ex-
perimental decays roughly agrees with the symbol size
(k-dependencies, left part of Figure 6b and c) or it
slightly exceeds line thickness (L-dependencies, right
part of Figure 6b and c). The small oscillations in the
decays and the relative increase at L > 600 thus reflect
systematic effects presumably due to differences of the
probe properties in the different subensembles of probes
referring to each data point such as their binding affinity
and also their degradation degree. Recall that the num-
ber of probes drastically decreases at L>600 which
makes this range less relevant for correcting purposes of
the majority of probes. We exclude this range therefore
from curve fitting.

Our fits show that the values of the decay parameters
systematically depend on the chosen decay function and
strongly correlate each with another. To illustrate this
correlation we show fits with variable d% but constant
AL =150 in Figure 6b (right part) and fits with constant
d: =0 but variable \; in Figure 6c (right part). The
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values of the variable parameters d% and \; systematic-
ally decrease with progressive degradation. Both options
equally well describe the decaying part of d(L) in the
range 100 < L < 600.

To obtain a robust decay characteristic we substitute
the exponential fit functions (Eq. (10)) by a simple two-
point estimate

log dk=<log Is>k:1o,11 - <log IS>1<:1.2 (12)

This logged degradation ratio characterizes the in-
tensity decay in the index-range Kyt~ Keng =2-10, or
equivalently, in the positional range Lgi-Lena=<L> 15 -
<L > 1911 ~150-550 which comprises the majority of
more than 95% of all probes. The degradation ratio can be
transformed into estimates of the decay length of the expo-
nential decays: A ~ 8/ In d*and A ~ 8-(AL)/In d~.

Please note that the decay function defined in Eq. (10)
estimates the fold change of transcript abundance at
position x and xo, to a good approximation, i.e.

d(x) = [S]/[Sl

The degradation ratio (Eq. (12)) consequently esti-
mates the mean fold change of transcript abundance
reported by the probes positioned near the 5'- and
3’-ends of the probed range. It represents an alternative
estimate of the tongs opening parameter introduced
above, d* oc diongs = 107Yss5 (Eq. (22)). Figure 4c shows
the time course of RNA degradation in the Rat QC ex-
periment using the tongs opening (panel c) and the d*
(panel d) parameters. Both measures strongly correlate
(see insertion in Figure 4d) and essentially reflect the
same degradation behaviour of the samples studied.

In summary, the effect of degradation can be described
as a function of the probe position in terms of a ‘shifted
exponential decay plus constant’-function using either
the probe index or the ‘absolute’ probe position as argu-
ment. This information can be further condensed into a
single degradation ratio parameter characterizing the
fold change of transcript abundance over the length of
the DNA region interrogated by the probes.

(13)

3'/5"-controls are affected by the hybridization mode
It was previously shown that the 3'/5" intensity ratios of
special control probe sets interrogating long transcripts such
as GADPH and beta-actin might not represent a sufficient
measure of the degradation bias at small expression degrees
because non-specific binding leads to an underestimation of
the 3'/5'-bias [34]. Here we show that the controls are often
prone to saturation which also leads to the systematic
underestimation of the 3'/5-bias (see also Eq. (6)).

In the first step we estimated the hybridization regime
of the GADPH and beta-actin controls of the rat-QC
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and tissue data sets using modified hook plots (Figure 7).
They depict the logged PM-intensity ratio of the 3'- and
5'-probe sets of the controls (A5, Eq. (25)) along the
horizontal coordinate and either the sigma coordinate of
each probe set (£, Eq. (14)) or the mean sigma of both
probe sets (X720, Eq. (25)) along the vertical coordin-
ate axis. In the former plots, each control (GADPH and
beta-actin) thus provides two data points per array refer-
ring to the 3'- and 5'-probe sets, respectively (see green
and blue dots in Figure 7). In the latter plots both data
points are merged together to illustrate the mean inten-
sity trend of the controls as a function of the degrad-
ation index.

To judge the hybridization mode we also depict the
sigma coordinates of the non-specific background inten-
sity (N, red dots) and of the asymptotic saturation level
(as, black dots) obtained from the standard hook analysis
of each of the arrays. Recall that the sigma-values of the
N- and the as-mode limit the range of possible probe in-
tensities. They consequently constitute an intrinsic
metric allowing to assign the probes to one of the five
possible hybridization modes as indicated in the figure
(see also Figure 3 and ref. [33,34]). It turned out, that
small values of the degradation index (A2 < 0.2) are
often associated with sigma-values near the asymptotic
saturation limit of the intensities especially in the tissue
data set. We argued above that intensity-based degrad-
ation measures are not suited to exactly estimate the
degradation level in the saturation limit of the probes. In
best case they underestimate the true degradation level;
in worst case the intensity ratios become meaningless.

It has been recommended that good-quality samples
should have a 3'/5" signal ratio for GADPH and beta-actin
of no more than three, or in our notation of AL
<log(3)=047 [31]. We display this threshold as the ver-
tical orange line in both parts of Figure 7. It conse-
quently divides the data points of each data set into
(apparently) bad and good ones for A" > threshold and
AS?E! < threshold, respectively.

The 3'/5'-intensity ratio of the probe sets is how-
ever not a constant for a given RNA-quality level. In-
stead it depends on the hybridization mode (see above
and Eq. (6)). Particularly, the 3'/5'-intensity ratio re-
ferring to a constant RNA-quality level follows the
degradation hook shown in Figure 3: It is maximal in
the S-hybridization range and vanishes near the
N- and as-ranges of hybridization. We plot represen-
tative degradation hook curves in Figure 7 (see the or-
ange curves; note that the x- and y-axes are exchanged in
comparison with Figure 3) which are calculated using the
threshold value of good RNA-quality (Ays 5 =047, see
Egs. (14) and (24)) the mean sigma-levels in the N- and
as-ranges of the respective data sets. Hence, the deg-
radation hook illustrates that the threshold value of the
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Figure 7 Hybridization and RNA-quality characteristics of the GADPH and beta-actin control probe sets in the tissue (left) and rat-QC
(right) data sets. Each data point refers to one array of the respective series. The abscissa provides the degradation level in units of the logged
3'/5"- mean intensity ratio of the respective control data sets. The vertical axes plot either sigma coordinates of the 3" (green dots) and 5™ (blue dots)
probe sets of the controls, or their mean (dark blue circles). The red and black dots mark the respective sigma-levels of non-specific binding and of
saturation, respectively. The vertical orange lines indicate the constant quality threshold separating good (to the left) and poor (to the right) apparent RNA
quality. The ‘threshold” hooks (orange) refer to the same quality threshold. They however explicitly consider its decrease in the N- and sat-ranges of
hybridization. Application of the constant threshold thus produces false positives together with true positives and true negatives (see also Figure 12).
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3'/5 -intensity ratio strongly decreases in the mix- and
sat-ranges due to the progressive effects of non-specific
hybridization and of saturation, respectively. It conse-
quently defines a variable, sigma-dependent threshold-
curve which allows to differentiate between bad and good
RNA quality data independent of the particular
hybridization mode of the respective probes. In other
words, it is more appropriate to apply this variable 3'/5"-
‘threshold hook’ for quality assessment beyond the linear
hybridization range instead of using a constant threshold
value of the 3'/5 -intensity ratio.

For example, a large fraction of the GADPH- and
beta-actin intensity ratios of the tissue data set meet the
constant quality criterion, A5%/ar® < threshold = 0.47, in-
dicating apparently good RNA quality (Figure 7, right
part). Consideration of the hybridization-dependent
‘threshold hook’ divides this region further into true

control

positive estimates (A3”/5"" < hookyeshola) and false posi-
tives (hooKehreshod < ASTET®! < threshold), where the lat-
ter data are located between the curved and linear
thresholds as shown in Figure 7. We estimated a positive
predictive value for GADPH controls of about 0.48
which reflects overestimation of RNA-quality for about
50% of all 677 arrays of the tissue data set (see Methods
section). Note also that strong saturation of the probes
can completely prevent detection of poor RNA-quality
samples because the respective intensity ratio levels off
to AT = (.

The mean sigma coordinates (z52nl of the Rat-QC
data set are found approximately halfway between the
respective N- and as- levels indicating that the controls
are predominantly hybridized in the S-range (Figure 7,
left part). Application of a constant quality threshold
seems appropriate for this data.
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The sigma (i.e. logged mean intensity values) values of
both data sets studied clearly indicate the decrease of the
mean intensity of the controls with decreasing RNA qual-
ity due to the loss of material assumed, e.g. in Eq. (13). In
consequence, the hybridization regime of the controls can
shift with changing RNA-quality. Note also that GADPH
is associated with slightly larger probe signals than beta-
actin in both data sets. Beta-actin controls are conse-
quently less prone to saturation than GADPH controls.

In summary, control probes can overestimate RNA-
quality if one uses a constant threshold criterion because
the true threshold level strongly decays for saturated
probes. The problem can be fixed either by using an in-
tensity dependent ‘threshold’ hook or by using alterna-
tive RNA-quality estimates such as the degradation ratio
(see above).

Affy-slope is affected by absent probes

A widely applied metric for RNA quality is the ‘RNA
degradation plot’ provided with the R package affy
[15,16]. The RNA degradation plot displays the mean
log intensity averaged over all probes with the same
index k of one microarray as a function of the probe
index, k=1,... Ny The slope of the regression line
then provides a summary measure to characterize the
mean degree of RNA-degradation in a chip-specific fash-
ion. Note that the affy-slope parameter originally does
not intend to serve as an absolute RNA quality measure
per se but instead, represents a relative measure for
comparing RNA quality between different chips in a par-
ticular series of measurements.
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However, the affy-slope degradation plot is virtually
identical with the reciprocal positional dependent deg-
radation index introduced above in Eq. (9) (MK ex-
cept the fact that it considers all probes of the array
whereas our approach separately averages over the
N- and S-subensembles referring either to the S- or
N-hybridization regimes, respectively. The affy-slope
estimates are expected to underestimate the degrad-
ation level owing to the inclusion of predominantly
non-specifically hybridized probes (so-called absent
probes) which do not respond to RNA quality as
shown above. More importantly, the chip-to-chip
variability of the fraction of absent probes (%N; as
determined by methods such as MAS5 or hook; see
ref. [34] for comparison) is expected to affect the
affy-slope measures by factors which are not or only
weakly related to RNA quality.

To illustrate this effect, a series of affy-slope curves re-
ferring to different degradation levels are shown in
Figure 8a. Panel b of the figure plots our degradation
profiles d°(k) of the specifically hybridized probes for the
same arrays. Both presentations provide similar trends
for the microarrays with similar %N-values. However,
affy-slope and our degradation plot provide different
results for arrays with marked differences of %N, as
expected. Particularly, affy-slope tends to underestimate
the slope for large %N values and thus to overestimate
RNA quality.

To generalize this result we studied the mean 5'/3'-
intensity ratios of different subsets of probes taken
from the 677 array hybridizations of the human tissue
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Figure 8 RNA degradation plot of all probes (panel a) and degradation profile of specifically hybridized probes (b) for microarrays
selected from the human tissue data set. Panel a shows the plots obtained using the affy package [16] whereas the curves in panel b are
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(see Eqg. (10)). The slopes of most of the curves rank in the same order in both panels,

except the two curves of steepest slope which reverse order in both parts of the figure owing to the different percentage of absent probes. The
percentage of absent probes are %N =40% (GSM175845), 69% (GSM176301), 50% (GSM175850) and 53% (GSM176120) as determined by the
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data set (Additional file 1). We found that the affyslope-
measure systematically increases with the amount of spe-
cific hybridization and with decreasing amount of absent
probes per array. The more detailed evaluation of the
functional relation between the ‘true’ degradation index
estimated in the S-hybridization regime and the apparent
one obtained from all probe sets predicts a linear de-
pendence between the apparent and the true degradation
ratios where the slope is expected to decrease with in-
creasing %N (Additional file 1). Theory also predicts that
the apparent 5'/3'-ratio directly varies with the fraction
of specifically hybridized probe sets in agreement with
the tissue data set.

Hence, the apparent degradation ratio derived from
the simple affy-slope intensity measures is strongly
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modulated by the fraction of non-specifically hybridized
‘absent’ probes leading potentially to the systematic over-
estimation of RNA quality. Contrarily, the proposed use
of specifically hybridized probes largely removes this bias
from the data and provides a reliable measure of the
degradation degree which can be consistently compared
between different arrays.

Array-degradation metrics correlate with RIN

The RNA Integrity Number (RIN) provides a numerical
value for the assessment of RNA quality based on the
electropherogram trace of a RNA sample captured with
the Agilent Bioanalyzer [13]. The RIN is widely used and
its scale ranges from 1 to 10 (most to least degraded). A
RIN-cutoff of RIN27 is recommended for obtaining
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good-quality RNA for microarray analysis [32]. Figure 9a
compares our d“ degradation measure with the RIN
reference values obtained in the ratQC experiment. Both
measures correlate strongly, however, the two samples
and incubation conditions result in different slopes of
the regression lines. In other words, each microarray
degradation parameter does not unambiguously trans-
form into one RIN-value especially at larger degradation
levels. Instead, the two different samples and incubation
conditions reflect a bimodal relation between the two
types of measures: each RIN value splits into two d“
options and vice versa. Note also that correlation coeffi-
cient between RIN and our improved d“-degradation
measure exceeds that between RIN and affyslope
(r=0.95 vs 0.92, RatQC fresh) owing to the reasons dis-
cussed in the previous subsection.

In panel b of Figure 9 we re-plot the d* degradation
parameter as a function of the mean transcript length
measured independently using the Bioanalyzer [10]. The
two branches of the d* -vs-RIN plot merge into one
within the error limits. This result confirms that our
microarray-based degradation measure more directly
relates to the mean transcript length and thus to the state
of the mRNAs that the microarray experiment intends to
quantify. The RIN however represents an alternative in-
tegrity measure capturing a series of electropherogram
features that are indicative also for additional properties
of the RNA solution such as the ratio of larger to smaller
molecules and how far the degradation process has pro-
ceeded [10]. The correlation of the 5'/3" ratios of the
degradation controls with the RIN-numbers reveals
subtle differences compared with the behavior of the d*
parameter (Figure 9c). Particularly, the hybridization
control-measures taken from the ‘fresh’ samples are vir-
tually independent of degradation at RIN < 7 whereas for
RIN > 7 both treatments give rise to similar behavior of
the controls. Recall that the GADPH and beta-actin con-
trols cover a slightly wider range of the transcripts (from
about 200 to about 1000 nt, see Figure 2b) than the d*
degradation ratio which probes the range from about 100
to about 550, on the average (see Figure 2c). This differ-
ence presumably explains the smaller values of the con-
trol ratios at larger expression degrees. More
importantly, the d* parameter is calculated as the average
over a large number of probes. Presumably both types of
parameters respond differently to changes of the length
distribution of the transcripts due to degradation. Below
we address this issue more in detail.

The regression line between the d* parameter and the
5'/3’-intensity ratio of the controls allows to transform
the quality threshold of the latter ratio into a d* thresh-
old (Figure 9d, see orange lines). We replot these thresh-
olds into panel a and ¢ of Figure 9: The RIN threshold is
clearly more restrictive assigning more samples to bad
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RNA-quality than the threshold of the microarray-based
control probes.

Degradation reduces total transcript abundance

We so far estimated RNA quality in relative units using
suited 5°/3"-intensity metrics which reflect the decrease
of transcript abundance with increasing distance from
the 3'-end. Trivially, this effect is expected to reduce the
total amount of mRNA used for hybridization. The de-
crease of the mean intensity of the control probe sets
with increasing degradation ratio as shown in Figure 7
confirms the decrease of the total amount of the respect-
ive specific transcripts with progressive degradation. Fig-
ure 7 also shows the non-specific intensity level of each
of the arrays studied (red dots), which tends to decrease
with increasing degradation.

non-specific background level
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Figure 10 Hook-hybridization characteristics of the arrays of
the ratQC data set. (a) The width of the hook curves [ increases
with progressive degradation indicating the decrease of the non-
specific background due to the loss of material (see Eq. (18)). Log d
is the mean degradation index (Eq. (2)) and K the slope of the
regression line. The mean level of specific hybridization changes
only weakly with degradation (b). The fraction of absent probes is
virtually unaffected by degradation (c). All parameters are estimated
using the hook method [33,34].
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The hook method enables the independent estimation of
the mean levels of non-specific ‘background’ hybridization
and that of specific expression using the simple summary
measures [ (see Eq. (18)) and ¢ (Eq. (19)) which are based
on large ensembles of probe sets on each array. Particu-
larly, the width of the hook curve [ has been shown to re-
late to the total amount of RNA material [30,34]. The
width of the hook curves clearly decreases with progressive
degradation. The observed decrement indicates that the
amount of RNA material decreases by about 40% in the
Rat-QC experiment (see Figure 10a).

The degree of specific binding drops upon degradation,
however to a considerable smaller degree than the amount
of non-specific binding (Figure 10b). This discrepancy sur-
prises because naively one expects that the loss of material
similarly affects specific and non-specific binding on the
average, i.e. "~ d°. The mean hybridization levels of spe-
cific and non-specific binding are however directly related
also to the respective mean binding constants, <K >
and < KN>, respectively (Eq (4)). We have previously
shown, that the decrease of RNA-material used for
hybridization increases the specific binding constant due
to weaker bulk hybridization and vice versa [30]. In conse-
quence, this so-called up-down effect will partly compen-
sate the decrease of the concentration of specific
transcripts giving rise to the smaller decrease of the spe-
cific hybridization strength upon RNA degradation.

Part c of Figure 10 depicts the percentage of absent
probes detected on each of the arrays. It remains essen-
tially unaffected by RNA degradation. This result shows
that the loss of material does not affect the detection
threshold of the array experiment for specific binding.

RNA-quality scaling of gene expression

It has been previously found that, although moderate
levels of RNA degradation are tolerated by differential
expression analysis, beyond a threshold especially long
targets provide erroneous expression results [10,38]. Sys-
tematic large-scale microarray analyses reveal that the
expression values of up to 30% of all genes probed on an
array significantly correlate with degradation quality
measures such as the 3'/5'-ratios of control genes
[4,21]. The observed correlations can be well explained
on the basis of the results presented here: For example,
it is found that the expression values of weakly expressed
genes negatively correlate with the quality of their tran-
scripts [4]. The authors explain this ‘...the worse the
quality the stronger the signal. . -effect by either the en-
richment of low quality RNA in the low signal range due
to nonspecific hybridization or by compensating effects
due to chip-to-chip normalization. The former interpret-
ation disagrees with our results presented in the previ-
ous subsection. We found that progressive degradation
dilutes the sample and this way decreases the amount of
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nonspecific hybridization. On the other hand, the
observed negative correlations also mean ‘.. .the better the
(apparent) quality the weaker the signal...” in agreement
with our results: For low intensity signals the 3'/5’-ratio
indeed improves with decreasing intensity suggesting bet-
ter RNA-quality. We demonstrated that this trend is how-
ever caused by the increasing amount of nonspecific
hybridization and not by improved RNA-integrity.

Considering also correlations between 3'/5'-quality
measures and signal values (called LEV, ‘labeling exten-
sion values’), Lee et al. [21] found that LEV are typically
small at low expression values but step-wisely increase
beyond a certain expression threshold. The authors
hypothesized that the positional 3°/5"-bias is less notable
for low abundant transcripts due to inefficient reverse
transcription. However, according to our results, the
observed trend can be explained by the dominance of
non-specific hybridization lacking positional 3'-bias at
small expression levels. These two examples demon-
strate advantages of model-based expression analysis
using physico-chemical hybridization theory compared
with simple correlation analysis.

The final aim is therefore to use the degradation
model for correcting the 3'-probe intensity bias to pro-
vide (largely) unbiased probe signals for downstream
analysis. One expects that the loss of RNA material in
general and particularly, RNA-fragments probed far
away from the 3'-end, systematically decreases the ap-
parent expression degree extracted from microarray
probe intensities. In the Methods-section we propose a
simple algorithm which corrects the raw probe inten-
sities for the positional-dependent 3'/5'-bias. It makes
use of the mean intensity decay-function of specifically
hybridized probes and of the degree of specific
hybridization of the particular probe which it intends to
correct. Our approach corrects the 3'/5'-bias on the
level of raw probe intensities.

In the supplementary text (Additional file 1) we com-
pare two correction metrics based either on the absolute
probe position (‘L-correction’) or on the relative probe
position (‘k-correction’) relative to the 3’-transcript end.
The k-correction applies the same factor to all probe sets.
Their mean intensity is effectively scaled solely by the de-
gree of specific hybridization (see the Methods section).
Contrarily, the L-correction applies a specific factor to
each probe-set depending on the mean absolute position
of the respective probes. The comparison of both correc-
tion methods shows that probe sets located on the average
nearer to 3'-end of the transcript are corrected to a less
degree using their absolute position than probe sets
located more distant from the 3'-transcript end. Hence,
the L-correction is more specific with respect to each par-
ticular probe set. On the other hand, the k-correction is
more robust with respect to outliers.



Fasold and Binder BMC Genomics 2012, 13:186
http://www.biomedcentral.com/1471-2164/13/186

Conclusions

Amplification of RNA-material using primed in-vitro
transcription protocols and degradation of RNA during
extraction, storage and processing of the samples affects
RNA-quality in microarray experiments with conse-
quences for expression estimates and their interpretation.
We systematically analysed the effect of varying RNA
quality on microarray probe intensities using a physico-
chemical hybridization model and propose (i) new mea-
sures to assess RNA quality and (ii), a simple method to
correct probe intensities for the degradation bias.

Particularly, it is shown that

— poor RNA quality is associated with a 3'-bias of
transcript abundance which affects only the probe
signal due to specific hybridization;

— estimation and correction of the signal bias of each
particular probe requires consideration of its
hybridization mode (specific, non-specific or a
superposition of both) and of the positional effect of
probe intensity along the respective gene due to
truncated transcripts. The former issue is solved by
applying a modified ‘hook’-approach of data analysis
based on Langmuir hybridization theory. The latter
effect is taken into account by estimating the mean
positional intensity decay on each array as a
function of either the probe index or the probe’s
distance to the 3’ end of its target transcript.

— RNA quality is estimated in terms of the 3'/5'-
intensity gradient of specifically hybridized probes.
In addition to appropriate quality numbers (such as
‘tongs opening’-parameter and the degradation ratio)
we introduce graphical characteristics allowing
assessment of RNA quality of each single array
(‘tongs plot’ and ‘degradation hook’). The parameters
have a well defined physical meaning related to the
fold change of transcript abundance along the genes.
‘Poor” RNA quality is characterized roughly by a
decay of the mean specific signal by a factor of less
than 0.5 between probes near the 3'- end and probes
located about 600 nt away.

— our approach improves established RNA-integrity
measures such as ‘affyslope” and the 3'/5"-intensity
ratio of degradation control probe sets. Both
methods are prone to overestimate RNA quality if
the signals are dominated by non-specific
hybridization (affyslope) and/or saturation
(controls). Our microarray-based quality estimate
correlates well with the RNA integrity number
(RIN) which, in addition, is affected by more
complex properties of RNA degradation not
uniquely related to transcript length.

— short probe sets near the 3’-end are prone to non-
specific hybridization presumable because of
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uncertainties in 3'UTR length owing to inaccurate
assignment of the 3’-end and transcript isoforms.

— poor RNA quality is associated with a decreased
amount of RNA material hybridized on the array
paralleled by a decreased total signal level.
Additionally, it causes a gene-specific loss of
signal due to the positional bias of transcript
abundance which requires an individual, gene-
specific correction. The former total effect can
decrease the overall signal level of an array by the
factor of 0.5 -0.7 in the case of poor RNA quality
(RIN < 7). The latter local effect can be more
pronounced with a penalty in expression
measures by a factor of 0.3-0.4 or even less in
worst cases.

Our study proposes new degradation measures to
judge RNA quality. The basic difference to previous
ones is the explicit consideration of the hybridization
mode to largely reduce the influence of non-specific
hybridization. Based on the physico-chemical mechan-
isms of probe hybridization we propose a correction
method which aims at removing the degradation bias
and thus enables to use the full ensemble of probes
in downstream analysis without loss of information.

The tongs visualizations and the degradation measures
are implemented in the Bioconductor package AffyRNA-
Degradation. Probe distance files are available under the
website http://www.izbi.uni-leipzig.de/downloads_links/
programs/rna_integrity.php.

Methods

Data

Affymetrix microarray raw intensity data (CEL-file format)
were downloaded from the public repositories Gene
expression omnibus (http://www.ncbinlm.nih.gov/geo) or
Array Express (http://www.ebi.ac.uk/microarray-as/ae/).
We studied the following data sets:

The Human tissue dataset (GSE7307, see supplemen-
tary text for the detailed list of samples used) com-
prises 677 samples taken from over 90 distinct tissue
types hybridized to Affymetrix HG-U133 plus 2.0
arrays.

The RatQC (rat quality control) dataset (E-MEXP-
1069) from ref. [10] was generated to systemically ex-
plore how RNA quality affects microarray results. It
consists of 36 rat liver RNA samples hybridized to
Affymetrix RAE230A expression arrays. The progres-
sive change in RNA quality was generated either by
thawing frozen tissue or by ex vivo incubation of fresh
tissue. Each sample was characterized by the RNA in-
tegrity number (RIN) and mean transcript length in
ref. [10].
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The RNeasy data set consists of five pairs of HG-U133A
GeneChips which were hybridized with RNA extracted
from ovarian cancer samples and processed in two differ-
ent ways namely with and without a cleanup step using
RNeasy reagents [3]. The RNeasy cleanup should lead to
good-quality RNA whereas lack of the cleanup step should
yield poorer-quality RNA. The RNeasy data set was used
in previous work aiming at judging RNA-quality from
microarray data [39,40].

Probe set definitions were applied as proposed by
Affymetrix by using standard CDEF-files. Absolute probe
positions with respect to the intended 3'-end of the
transcript, Ly, (as used, e.g. in Eq. (8)) were determined
from the target sequences provided by Affymetrix for
each transcript (see www.affymetrix.com) by aligning
the probe sequences to the respective transcript se-
quence. The position of each probe L, (p=1, 2...) is
then defined as the number of nucleotides counted
between the 3'-end of the transcript and the first
(i.e. nearest) base of the 25meric probe sequence.

Degradation hook and tongs plot

The so-called hook method aims at characterizing the
hybridization of a particular microarray in terms of qual-
ity control and expression analysis (see [33,34,41] for a
detailed description). This single-chip method applies to
microarrays of the GeneChip-type containing pairs of
perfect match (PM) and mismatch (MM) probes. The
method processes PM and MM probe intensities after

sequence correction (I"™< and MM respectively)
using the transformations
A= <AP>mov and X = <ZP>pset
with  Ap,=log IgM’m" — log III;/IM"CO”
1 M MM,
and Zp:i (log L7 +log I 'C"") (14)

<...> pset denotes averaging over each probe set of usu-
ally 11 PM/MM probe pairs addressing the same tran-
script (log =log is the decadic logarithm) and < ... > oy
is the moving average over a sliding window of about
1000 probes for smoothing. Plotting the data into
A-versus-X coordinates provides the hook curve which
enables decomposition of the probe signals into contri-
butions due to specific and non-specific hybridization by
simple visual inspection.

In analogy with Eq. (14) we define the modified ordin-
ate values

-X

A%s = (Tp)g
ALy )5 = <Zp>3’ - <Zp>5'

and

(15)

where < ... > denotes averaging over subsets of three
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probes from the respective probe set located either
nearer its 3'-end (s=3'), 5'-end (s=5") or in the
middle (s=m), and subsequent smoothing using a
sliding window of appropriate size. The so-called
tongs-plot shows the three positional-dependent values
AY3, AYs and optionally AX, as a function of the
hook-abscissa ¥ whereas the ‘degradation hook’ plots
A3 5-versus- X.

The two-species Langmuir hybridization isotherm pre-
dicts the theoretical hook-curve which was previously
used to fit the experimental curves and to extract charac-
teristic chip-related parameters. It provides a ‘mean’
hybridization isotherm implicitly characterizing the con-
centration dependence of the probe signals. Here we
modify the hook formalism to take into account the ef-
fect of incomplete transcript amplification and degrad-
ation in terms of the degradation ratios defined in Eq.
(2). For the detailed derivation of the hook equation in
the absence of degradation and the detailed discussion of
the used parameters see refs. [33] and [34]. The theoret-
ical expressions for the ‘degradation” hook and the tongs-
plot are obtained analogously.

In short, insertion of Egs. (3) and (4) with P =PM and
MM and wg’hzl into Egs. (14) and (15) provides the
theoretical expressions of the hook coordinates for the
subset s of probes taken from the probe sets,

(Ap), = A(Rs)= log{(Ry+1)/(Rsx10""+1)}
- log{BPM(Rs) /BMM(RS)}and
(%y), = Z(R)=2""+  log{ (Ry+1)

1
x(Rgx107%+1)} —Elog{BPM(RS)xBMM(RS)} (16)
with the saturation terms

BPM(R,)= 1410 (BH8stat) (R 41} and
BYM(R,)= 1410 (FH38t) L (R . 107 41)

Eq. (16) expresses the hook-coordinates as a function
of the probe-specific S/N-ratio,

R.— <dp>s . XPM?S o <dp>s . [S]target
ST d XPM,N - d [N]

I(PM,S >
< P chip

' I(PM,N >
< P chip

It scales with <dp>s/d, the probe specific 3'-bias of the
actual transcript abundance averaged over the subset s
and divided by the mean degradation index of the selected

chip

(17)
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chip, d. The standard version of the hook (Eq. (14)) is
described by Eq. (16) with <dP>s /d =1 because averages
are calculated over all probes of each probeset (s = pset).

The vertical and horizontal dimensions of the hook
curve and its start coordinates are defined as

<I<PM‘S>
~log | lchip o < PM,N>
a =~ log <KPM‘S> , B~ <log d+(log X, hip
P chip

and =59 =log M+ <log ng~N> (18)

C

1
hip+ og d

respectively. Note that the width and the start coordin-
ate of the hook curve, p and X, change with the mean
degradation index d (see also Eq. (2)) whereas the height
of the hook o doesn’t depend on degradation.

The mean expression index characterizes the mean ex-
pression level of present probes of the chip,

o= (s,

~<log (R)+log XI[:/[’NHog dg/{,s> (19)

chip

The ordinate values of the degradation plots are
obtained by inserting Eq. (16) into Eq. (15),

A%(R) =2(Rs*) —Z(R) and
AZsl/sZ(R) = z“(Rsl) - Z(Rs2)

One gets after explicit consideration of Eq. (16)

1 (Ra+1)x(Rgx107+1)
AY =1
s1/s2(R) 5 og (Rep+1) x (Rga x107%41)
1 . B™(Rq; ) x BMM(Ry;)
2 %8 B*™M(R2) ¥ BY'"™(Rs)

(21)

where AX(R) refers to the special case ry=1. The
parameters

(S
<[S]>chip

AYz s =Yy —Ys =log Egiz

with s=3",5".m and

Y, = log r,=log

(22)

define the 3'-bias of transcript abundance (see also Eqs.
(17) and (6)). Particularly, Aysy 5 provides the logged
fold change of the probe specific transcript concentra-
tions between probes located nearer the 3'- and
5’-ends of the transcript. The mean transcript concen-
tration averaged over all probes can be estimated as the
geometric mean over the 3" and 5’ transcript concen-
trations,
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(23)

if one assumes uniformly distributed probes along the
relevant transcript regions. With [S], ... &~ ([S])y and

Eq. (2) one gets

log d~ —0.5-Ay; )5 (24)
Hence, the mean amount of RNA (Eq. (2)) is directly
related to the 3'/5'-difference of transcript abundance.
Typical examples of the hook curve (A-versus-%, Eq. (16),
thick curves), the degradation hook (AXj3 5 -versus-%,
Eq. (21), thin curves) and the tongs-plot ((AX-versus-%,
Eq. (21), panel above) as predicted by theory are shown in
Figure 11 for different degradation levels. Increasing

e N

decreasing
tongs plot

RNA-quality

3!

AY3'IS‘

5l

decreasing
RNA-quality

degradation hook I
3'/5'

standard

/ hooks

-log d= 0.5

W
< /03

T L T v ¥
05 l 1,0 1.5 20 25 30 35
logM

Figure 11 Theoretical hook curve (Eq. (16), thick curves),
degradation hook (thin curves) and tongs plot (panel above;
Egs. (20) and (21)) for different degradation levels log d. With
increasing degradation the positive and negative amplitudes of the
tongs plot (the tongs opening Aysys) and the height of the
degradation hook increase, accompanied by the shift of its
increasing branch towards the left which widens the curves
(parameter B). The curves are calculated with ys=—ys=0.1, 0.3 and
0.5, respectively. The dotted curves in the part above are calculated
neglecting the saturation term in Eq. (21). The geometrical meaning
of selected parameters is indicated by arrows (see text).
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degradation increases the opening of the tongs and widens
the hook. Both changes are governed by the degradation
ratio d and r, and their logarithmic transformations
(see Egs. (2), (18), (22) and (24)). The widening of the
hook by —log d reflects the decrease of the mean tran-
script concentration due to incomplete amplification and
degradation. This trend is equivalent with the decrease of
the mean level of non-specific background hybridization
which in turn increases the mean binding constant of
specific binding [30]. The consequences of this so-called
up-down effect are discussed above.

Threshold hook
The threshold hook represents a special version of the
degradation hook described in the previous subsection. It
defines a threshold of the 3'/5-intensity ratio of the
probe sets used to assess RNA-quality such a GADPH or
beta-actin. The threshold hook accounts for the fact that
the probe signals are affected by non-specific binding
and by saturation. Both effects give rise to an intensity-
dependent threshold for estimating good RNA-quality.

In the first step one transforms the intensity values of
the control probes into hook coordinates

control __

3+5 (< lOgIPM>3' probeset + < logIPM>5' probeset)
logdgg/rl;rol EAfc‘)'f)/n;'ml: <10gIPM > 3 probeset <logIPM > 5 probeset

(25)

In contrast to the standard hook (Eq. (14)) we here
use only the intensities of PM-probes.

In the second step, one calculates the threshold hook as
a Az 5-vs-2Z3-/5--plot under the condition that both, the
5'- and 3'-probes hybridize according to the hyperbolic
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Langmuir isotherm (see Eq. (3) with wg =1), however using
different specific binding activities due to the different deg-
radation indices of the respective transcripts, ds <ds-
(Eq. (4)). The delta-value is expressed as a function of
sigma using the degradation hook-formalism described in
the previous subsection after neglecting the MM-probes
(use Eq. (16) with o = —0). The start and end point of the
threshold hook are taken from the standard hook analysis
which provides these data with relatively high accuracy.

The obtained hook curve thus describes the ‘trajectory” of
a pairing of 3'/5-probe sets upon changing expression de-
gree of the respective transcript (see Figure 12a for illustra-
tion). Note that the delta-coordinate directly provides the
apparent logged degradation ratio (A5 =-log(r5)3), see
Eq. (5)) whereas the ‘true’ degradation index is given by the
height parameter used in the fits (Ayss- = log(r£5), see
Eq. (22)). The latter true degradation index is adjusted in
such a way that the maximum value of the apparent deg-
radation ratio agrees with the empirical RNA-quality
threshold of the chosen control probe. Hence, the threshold
hook transforms the constant RNA-quality threshold into a
variable one which depends on the hybridization mode of
the controls. In consequence, different data points residing
along one hook curve refer to identical true degradation
levels irrespective of their different delta coordinates char-
acterizing their apparent degradation level.

The application of a constant threshold instead of the
variable one will cause false quality estimates. We esti-
mated the error of the 3'/5'-intensity ratio of the
GADPH-control taken from the tissue data set as ex-
ample: Figure 12b shows the hook-coordinates of the
GADPH control probe sets of the 677 samples of the tis-
sue data set (dots, see Eq. (25)). The threshold hook and
the horizontal line provide the true and the apparent

hybridization mode:
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Figure 12 Threshold hook for estimating good RNA quality using control probe sets. (a) Constant (apparent) and variable (threshold hook)
RNA quality threshold. The true threshold depends on the hybridization regime and vanished upon non-specific hybridization and upon
saturation. (b) Error estimates of GADPH-controls taken from the tissue data set (see text).
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(false) thresholds for good RNA quality in terms of the
logged 3'/5 -intensity ratios, Az'/5' < Athreshold- Lhe con-
stant threshold is assumed to agree with that of the hook
curve in the range of specific hybridization. It conse-
quently forms the tangent of the hook-curve at its max-
imum referring to the S-range of hybridization. The
hook curve describes Auyeshola Under the realistic as-
sumption of saturation whereas the constant threshold
neglects this effect. As a consequence, data located be-
tween both thresholds (coloured in blue) define false
positives (FP) with respect to the constant threshold
whereas data below the hook and above the line are true
positives (TP, red) and true negatives (TN, orange), re-
spectively. The number of false negatives (FN) is zero
because the hook threshold remains below the constant
one. The positive predictive value (PPV =TP/(TP + FP))
and the specificity (SP=TN/(FP+TN)) are 0.48 and
0.79, respectively, meaning that less than 50% of the
3'/5" controls properly estimate the quality of RNA in
terms of good and degraded one. This particular ex-
ample assumes that the 3'/5" signal ratio for GADPH
for good RNA is of no more than 3, or in our notation
Az 5 <log(3) ~0.5.

Correcting the 3'/5' bias of pobe intensities

RNA quality affects the probe intensities of each probe by
two factors: (i) the probe position with respect to the
nominal 3'-end of the transcript, L (or, alternatively, the
probe index in the probe set, k) and (ii), the hybridization
regime. The specific hybridization regime below satur-
ation is particularly prone to biased intensities as opposed
to non-specific hybridization and specific hybridization in
the asymptotic saturation range. Our approach aims at
correcting raw probe intensities which subsequently can
be preprocessed using any method available.

Firstly, we estimate the degree of specific, unsaturated
hybridization in terms of the relative amplitude of the deg-
radation hook with respect to its maximum reached in the
S-range of hybridization, f*(y)= A 35 (v)/AY 55
using the logged PM-probe intensity averaged over each
probe set as argument, i.e. y = <logIPM>. Secondly, we es-
timate the decay function of the probe intensity for specif-
ically hybridized probes, ds(x) (x=k, L), defined in
Egs. (9) and (10), for the respective array.

Then, the correction function

Clx,y)= d*(x) £ (y)+d" (x) x (1 — £(y)) (26)

is defined as weighted sum of the decay functions due to
specific and non-specific hybridization where the latter
is set to unity, d¥(x) = 1. Note that for saturated probes
beyond the maximum of the degredation hook d™(x)=1
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can be interpreted as the apparently absent 3'/5'-bias in
the asymptotic range of hybridization.
The biased probe intensities are corrected according to

P,x—corr__ 7P
Ip - Ip/C(X? Y) (27)

Hence, each probe intensity is rescaled according to
its position (x=k or L) and the hybridization mode of
its probe set according to y. Consequently, probe in-
tensities taken from the non-specific hybridization range
remain uncorrected. With increasing degree of specific
hybridiztaion the probes are progressively scaled up with
increasing distance from the 3'-end of the transcript.
The maximum correction applies to probe sets in the
S-hybridzation range. MM probe intensities are scaled
using the mean logged MM-intensity of the probe set as
argument. In the supplementary material (Additional file 1)
we compare and discuss both options of using relative
and absolute probe positions.

The 3'/5" correction algorithm is implemented in R and
builds upon the popular affy package [16]. The respective
program and data are available under http://www.izbi.
uni-leipzig.de /downloads _links/programs/rna_integrity.php
and as Bioconductor package AffyRNADegradation.

Additional file

Additional file 1: Supplementary text addressing the probe
positional characteristics of different gene chip types; the apparent
degradation index for combined specific and non-specific probe
signals and the correction of the 3'/5' bias of pobe intensities and
gene expression values (L-versus-k positional scaling).
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