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Abstract

Background: The gene composition of bacteria of the same species can differ significantly between isolates.
Variability in gene composition can be summarized in terms of gene frequency distributions, in which individual
genes are ranked according to the frequency of genomes in which they appear. Empirical gene frequency
distributions possess a U-shape, such that there are many rare genes, some genes of intermediate occurrence, and
many common genes. It would seem that U-shaped gene frequency distributions can be used to infer the
essentiality and/or importance of a gene to a species. Here, we ask: can U-shaped gene frequency distributions,
instead, arise generically via neutral processes of genome evolution?

Results: We introduce a neutral model of genome evolution which combines birth-death processes at the
organismal level with gene uptake and loss at the genomic level. This model predicts that gene frequency
distributions possess a characteristic U-shape even in the absence of selective forces driving genome and
population structure. We compare the model predictions to empirical gene frequency distributions from 6 multiply
sequenced species of bacterial pathogens. We fit the model with constant population size to data, matching U-
shape distributions albeit without matching all quantitative features of the distribution. We find stronger model fits
in the case where we consider exponentially growing populations. We also show that two alternative models
which contain a “rigid” and “flexible” core component of genomes provide strong fits to gene frequency
distributions.

Conclusions: The analysis of neutral models of genome evolution suggests that U-shaped gene frequency
distributions provide less information than previously suggested regarding gene essentiality. We discuss the need
for additional theory and genomic level information to disentangle the roles of evolutionary mechanisms operating
within and amongst individuals in driving the dynamics of gene distributions.
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Background
The gene content of genomes of closely related bacteria
can differ significantly. For example, pair-wise compari-
sons of genome sequences from isolates of the same spe-
cies often do not share a substantial fraction of their gene
content [1-10]. When a large number of genomes within a
species or closely related group of bacteria are sequenced,
the gene content variability can be summarized as a gene
frequency distribution: given G sequenced genomes, some
genes are found in a fraction 1 ≤ k ≤ G of all genomes.

Empirically, such gene frequency distributions possess a
characteristic U-shape, such that there are many genes
which only appear in one genome, fewer genes which
appear in 2 ≤ k ≤ G - 1 genomes, and many genes which
appear in all genomes. Genes within each of these three
categories have been labeled accessory, character and core
genes, respectively [11]. It is tempting to conflate gene fre-
quency with relative essentiality, but is it valid? For exam-
ple, is it necessarily true that a gene that appears in all
genomes in a sample should be classified as a “core” gene?
Could such a gene have become common through neutral
processes that diminish variability, and occasionally, lead
to fixation of types? Likewise, should a gene which appears
in only one genome in a sample be considered as “acces-
sory” to the function of that organism? Could such a gene
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have become rare via a neutral path toward extinction, or
have been recently introduced to a lineage without signifi-
cant effect on individual fitness?
Here, we argue that a suitable null model is necessary

with which to deduce how much weight be given to gene
frequency data as a means to generate hypotheses regard-
ing essentiality. For example, a recently proposed neutral
theory of biogeography and biodiversity has proved use-
ful in clarifying when and how species abundance distri-
butions in ecology can provide information about
selective processes in complex communities [12-15].
Hence, in this manuscript we ask: is it possible to recapi-
tulate findings of U-shaped gene frequency distributions
in the absence of selective forces driving genomic and
population composition? We answer this question in the
affirmative by proposing a simple and analytically tract-
able neutral model of genome evolution that explicitly
accounts for gene composition of genomes. In this
model, genomes undergo birth-death processes in a neu-
tral sense and also acquire and lose genes which we term
“gene transfer”. The model differs from most previous
efforts to analyze genome evolution [16,17] by self-con-
sistently treating the dynamics at two scales: population
level drift and genomic level change (for an exception,
see [18] whose model we address in the Results and Dis-
cussion). Analysis of the current model leads to the fol-
lowing major results.
First, we find that gene frequency distributions derived

from this model possess a characteristic U-shape for a
robust range of model parameters. Hence, we propose
that prevalence of a gene does not necessarily imply its
essentiality, and that gene frequency distributions may be
more limited than previously acknowledged in generating
inferences regarding essentiality. Second, we estimate the
best fit parameters for a given empirical gene-frequency
distribution of sequenced genomes and in so doing find a
reasonable correspondence between our neutral model
and data from six distinct bacterial species with sequenced
genomes from multiple isolates. However, our model
assuming constant population sizes predicts gene fre-
quency distributions with systematically fewer rare genes
than the empirical distributions. Hence, we show that
assuming other types of population dynamics (such as
exponentially growing populations) can change the model
predictions in line with empirical data, providing a basis
for investigating the role of population dynamics in shap-
ing gene frequency distributions. Further, we extend the
model to include a rigid and flexible core in the genome,
and show that other assumptions about genome structure
are consistent with gene frequency data. Finally, we show
that a recently proposed gene diversity index - genomic
fluidity [19] - is a natural parameter emerging in the neu-
tral models of genome evolution described here. Whereas
previously this parameter was entirely statistical in nature,

we discuss here how genomic fluidity can be seen as a
proxy for the relative importance of gene uptake in shap-
ing the gene composition of genomes between species. In
so doing, we discuss how other observations could be
combined with gene frequency distributions to improve
inferences regarding evolutionary mechanisms shaping
genome composition.

Results and discussion
A neutral model of genome evolution combines birth-
death events with gene transfer events
We propose the following neutral model of genome evolu-
tion, see Figure 1. Consider a population consisting of N
organisms in which each organism has a genome consist-
ing of M unique genes. The dynamics consist of a
sequence of reproduction and gene transfer events. In a
reproduction event, one of the N organisms (chosen at
random) dies, and is replaced by offspring of one of the
other organisms (chosen at random). The offspring gen-
ome is identical to the parent genome. Note that there are
still N organisms after the event and hence, this step is
equivalent to a birth-death event of the Moran model
[20,21]. In a gene transfer event, one of the N organisms
acquires a gene from the environment. We assume that
this gene is new, i.e., a gene that has not been present in
the population before, and hence, this step is comparable
to a mutation event in the infinitely many alleles model of
population genetics [20,21]. In the model, gene transfer
events do not affect birth and death rates of the individual
(e.g. [22] present evidence for the neutrality or near-neu-
trality of transferred genes). We also assume that the
acquisition of the new gene induces the loss of another
gene in the genome, so that the organism’s genome still
consists of M genes after the event. We utilize a constant
value of M to facilitate mathematical analysis and note
that bioinformatic based estimates of total gene counts
vary approximately 10% between genomes of the same
species, as considered here.
Individual birth-death events cause genetic drift in the

population as the number of organisms having a parti-
cular gene fluctuates over time. Genetic drift has the
tendency to reduce the genetic diversity in the popula-
tion. Indeed, when the last organism carrying a particu-
lar gene dies, this gene disappears from the population,
and has no opportunity of re-entering the population.
Gene birth-death events, on the other hand, maintain
the genetic diversity in the population. New genes enter
at low frequency due to “gene transfer” events. These
transfer events may be due to uptake of genes from the
environment, insertion of genes via viruses, or conjuga-
tion with other individuals. In our model, individual
birth-death events and gene transfer events have asso-
ciated rate parameters: we denote by r the rate of repro-
duction per individual, and by s the rate of gene
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transfer per individual. Intuitively we expect that varia-
bility in gene composition of genomes should increase
when gene transfer rate s increases relative to the indi-
vidual reproduction rate r, and vice-versa. Further, we
expect that gene frequency distributions will tend
toward U-shaped distributions because of the tension
between gene transfer (which would favor increasing
rarity of genes) and individual birth-death (which would
favor increasing commonness of genes, due to neutral
drift). We evaluate this prediction of U-shaped distribu-
tions in the following section.

Neutral model of genome evolution predicts U-shaped
gene frequency distributions
The distribution of genes over genomes can be charac-
terized in detail for the neutral model of genome evolu-
tion described above. For example, the gene frequency
distribution can be computed explicitly, see Additional
file 1: Appendix S1. To describe the solution, we con-
sider a sample of G genomes taken from the population,
and we denote the average number of genes appearing
in k of the G genomes by gk. The gene frequencies pre-
dicted by the neutral model of genome evolution are

gk =
Mθ

k
G!

(G− k)!

(θ)G−k

(θ)G
, (1)

with

θ =
Nσ

Mρ
and (θ)k = θ(θ + 1) . . . (θ + k− 1),

where θ is an effective gene transfer rate. The distribu-
tion in Eq.(1) appears in solutions to allele distributions
in the infinitely many alleles model of population genet-
ics [20,21].
As the number of genes M in a genome and the num-

ber of genomes G in the sample are given by the data,
the gene frequencies gk are parametrized by the dimen-
sionless parameter θ which combines the effects of both
gene transfer and birth-death processes. Hence, different
combinations of N, r and s lead to identical gene fre-
quency distributions. In particular, the predicted distri-
bution is insensitive to accelerating simultaneously gene
transfer and reproduction, because the distribution

depends on the ratio
σ

ρ
, and not on r and s individually.

Moreover, an increase of the ratio
σ

ρ
, the relative rate of

gene transfer, can be compensated by a smaller popula-
tion size N, increasing the intensity of genetic drift.
Note that although in practice the sample size G is
much smaller than the population size N, Eq. (1) is also
valid for G = N, i.e., it can be used to compute the

A B

Figure 1 Graphical illustration of a neutral model of genome evolution. A population of N = 4 organisms is shown, with genomes
consisting of M = 3 genes. Colors denote different gene identities. We chose small values for N and M for illustrative purposes; realistic values
are, e.g., N ~ 108 and M ~ 2000. (A) In a birth-death event an organism dies and is replaced by offspring of another organism. The offspring
genome is identical to the parent genome. (B) In a gene transfer event a gene of one of the organisms is replaced by a gene from the
environment. We assume that this new gene has not been present in the population before.
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(empirically inaccessible) gene frequency distribution of
the entire population.
We plot Eq. (1) for cases where θ = 0.03, θ = 0.3 and

θ = 3 in Figure 2. As anticipated, the weight of the gene
frequency distribution shifts from the common genes
for small values of θ (left panel) to the rare genes for
larger values of θ (right panel). The gene frequency dis-
tributions have a U-shape for a robust range of para-
meters. The U-shape is generic so long as θ <1; for θ >1
the distribution is monotonically decreasing. As shown
in Additional file 1: Figure S1, the gene frequency distri-
bution changes when sampling more genomes, but the
characteristic U-shape remains. These observations for
the neutral model of genome evolution show that U-
shaped frequency distributions do not require invoking
selection at the genome level. Further, the observations
suggest that findings of prevalent genes need not be an
indicator of essentiality in the absence of other informa-
tion about gene function.

Comparing empirical gene frequency distributions of
multiply sequenced bacterial species to model
predictions
We collect and analyze empirical gene frequency distribu-
tions from 6 species of bacterial pathogens: B. anthracis,
E. coli, Staph. aureus, Strep. pneumoniae, Strep. pyogenes
and N. meningitidis. Gene frequency distributions were
compiled by applying an automated genomic pipeline to
remove the impact of curation bias and to normalize com-
parisons between species [23]. Hence, what we compile
are frequency distributions of clusters of homologous
genes (for details, see [19,23]), which we denote, for sim-
plicity, as “genes” in this manuscript. We find that the
empirical gene frequency distributions have a characteris-
tic U-shape in that there are many genes which only
appear in a single genome, many genes which appear in all
genomes, and fewer genes that appear in an intermediate

number of genomes (see Figure 3). This characteristic
U-shape is robust to reasonable changes in the values of
identity and coverage utilized for comparing genes in our
genomic pipeline. Notice that the gene frequency distribu-
tion is on a log scale, hence the U-shape is in fact highly
pronounced, in that there may be 50 times as many genes
that appear in all genomes than appear in half the
genomes.
The neutral model of genome evolution can be fit to

data using Eq. (1). To do so, we determine the parameter
θ that minimizes the distance between the predicted and
empirical gene frequency distribution (see Materials and
Methods). We find that the neutral model is in reason-
able correspondence with data (see Figure 3). First, both
data and predictions have a U-shape. Next, model predic-
tions agree well with observations for the total number of
core genes. These predictions are made with a single free
parameter, θ. On the other hand, the model underpre-
dicts the number of rare genes and overpredicts the
number of genes in the intermediate part of the distribu-
tion. In particular, the model predicts a gk ~ 1/k depen-
dence for the peak at small k, whereas the data are closer
to a steeper gk ~ 1/k2 dependence. In the next section we
show that this deviation can be partially remedied by
dropping the assumption of a constant population size.
Finally, it is important to note that although our model
assumes constant M, we find that there is approximately
a 10% difference in total gene content within the gen-
omes of each of the six species.
Predictions for the observed pan and core genome size

in a sample of genomes can also be obtained. In the past,
the pan genome size has been defined as the number of
genes in all genomes of the population. Similarly, the
core genome size has been defined as the number of
genes found in every genome in the population. However,
we and colleagues have previously shown that estimating
pan and core genome sizes are unreliable because they
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Figure 2 Gene frequency distributions for neutral model of genome evolution (model A). Genome size M = 2000 and sample size G = 20.
Gene transfer parameter θ: in left panel, θ = 0.03; in middle panel, θ = 0.3; in right panel: θ = 3
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depend on observations of rare genes and genomes,
respectively, which are difficult to find in samples pre-
cisely because they are rare [19]. Here, we define the
observed pan and core genome size as the number of
unique genes found in all sample genomes and the num-
ber of genes common to all sample genomes, respec-
tively. As we derive in Additional file 1: Appendix S1, the
model predicts that the pan genome size increases loga-
rithmically with sample size, and that the core genome
size decreases as a power law (with exponent -θ). The

prediction that gene diversity grows without bound is
unsurprising, because we assumed an infinite gene pool
(and we caution that gene diversity cannot increase to
infinity in reality). Nevertheless, we expect the logarith-
mic (power-law) dependence of pan (core) genome size
also to hold for a finite gene pool (as long as the gene
pool is much larger than the set of genes observed in the
sample). These findings are corroborated by the data,
which exhibit the same qualitative behavior, see Addi-
tional file 1: Figure S2. Notice that we used the value for

1 5 9 13
10

1

10
2

10
3

10
4

B. anthracis

N
um

be
r 

of
 g

en
es

1 5 10 15
10

1

10
2

10
3

10
4

E. coli

1 5 10 15 19
10

1

10
2

10
3

10
4

Staph. aureus

N
um

be
r 

of
 g

en
es

1 10 20 26
10

1

10
2

10
3

10
4

Strep. pneumoniae

1 5 10 14
10

1

10
2

10
3

10
4

Strep. pyogenes

Number of genomes

N
um

be
r 

of
 g

en
es

1 5 8 12
10

1

10
2

10
3

10
4

N. meningitidis

Number of genomes

Figure 3 Data comparison for neutral model of genome evolution (model A). Comparison of gene frequency distributions with predictions
of the simplest model: the population size is assumed to be constant and all genes are governed by the same gene transfer process. The
model has one parameter, the gene transfer parameter θ. Black circles: data; red line with squares: model
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s obtained from Figure 3 in the pan and core genome fits
of Additional file 1: Figure S2, so that these fits have no
additional free parameters.

Estimating gene transfer parameters from model fits
We can utilize parameters estimated from gene fre-
quency distribution fits to also estimate underlying
mechanistic parameters driving genome evolution, albeit
with caveats that we discuss below. Note that the esti-
mated values for θ are in the range 0.1 <θ < 0.5 (see
Table 1). For example, with M ≈ 2000, then the product
Ns/r should be on the order of 103. Conventional esti-
mates of effective population size are approximately 107 -
109 [24,25], suggesting that gene uptake is on the order
of s/r ≈ 10-4 - 10-6, approximately once per tens of thou-
sands or million divisions. Assuming bacteria that divide
once per hour, then s ≈ 10-4 - 10-6 hr-1. In this model, s
represents gene transfer. Here, we consider one mechan-
ism for such gene uptake - natural uptake of DNA from
the environment - and evaluate whether or not empirical
parameters associated with transformation are consistent
with inferred estimates of s. Natural transformation rates
vary widely depending on strain type, sequence homol-
ogy, and physiological conditions. Empirically estimated
DNA uptake rates are generally reported as transforma-
tion frequencies, �, defined as the proportion of colony
forming units (CFUs) that have taken up a segment of
DNA of interest at the end of some experimental time
period, T. We developed a simple model that estimates s
directly from � and T (see Materials and Methods). We
find that application of this method yields estimates of
gene uptake rate for pathogens in laboratory environ-
ments that bracket the value predicted from our model.
For example, DNA damaged Helicobacter pylori cells
exhibit � ~ 10-4 - 10-8 in a T = 2.5 hr experiment [26]
Hence, s ~ 10-4 - 10-9 hr-1. Likewise, naturally competent
Neisseria gonorrhoeae cells exhibit transformation fre-
quencies � ~ 10-3 of total cells after T = 4 hr, though

values range from � ~ 10-2 - 10-7 [27]. These values yield
uptake rates of s ~ 10-4 hr-1 with a range of s ~ 10-3 -
10-8 hr-1. In both cases, these estimates are consistent
with our estimate of gene transfer rates in the multiply
sequenced pathogens considered here. However, there
remains substantial disagreement as to whether the
lower, effective number derived from certain population
genetic models or the much larger, census number is a
better estimate of effective population size [25]. Hence,
without species-specific information, we caution that
direct estimates of either gene transfer rate or effective
population size should be treated with skepticism, even if
estimates of their combined effect is more robust. More-
over, as we show in the next section, the value of θ is sen-
sitive to assumptions about population history. Indeed,
there is no reason to expect that the population structure
and selective effects of genes are as simple as assumed
here, providing additional caution to overly rigid inter-
pretations of estimates of either N or s.

Population structure strongly impacts gene frequency
distributions
The current neutral model of genome evolution assumes
a fixed population size N. This is a common, but likely
unrealistic, assumption as bacterial populations can
undergo large and fast size fluctuations. In this model,
the introduction of novel genes is decoupled from the
history of population size or structure, so that we can
select an arbitrary population size or structure and then
superimpose the introduction of novel genes on top of
the resulting history of individual births and deaths. To
illustrate this point, we consider how an exponentially
growing population affects the gene frequency distribu-
tions gk. Specifically we denote the population size his-
tory as

N(t) = N0eα(t−t0), (2)

Table 1 Overview of model fits

fitting error fluidity

G M ΔA ΔB ΔC ΔD �obs ϕ
pred
A ϕ

pred
B ϕ

pred
C ϕ

pred
D

B. anthracis 13 5523 80 21 78 13 0.08 0.09 0.08 0.09 0.08

E. coli 15 4576 98 58 47 2.6 0.25 0.30 0.25 0.29 0.25

Staph. aureus 19 2651 29 16 21 4.3 0.16 0.19 0.16 0.19 0.16

Strep. pneumonia 26 2095 42 21 30 4.3 0.23 0.32 0.24 0.30 0.23

Strep. pyogenes 14 1786 26 10 25 7.5 0.20 0.24 0.20 0.24 0.21

N. meningitidis 12 2080 53 26 31 2.4 0.28 0.33 0.28 0.32 0.28

Model A assumes a constant population size, and the same gene transfer process for all genes. Model B assumes an exponentially growing population size.
Model C assumes that a part of the genome is shared by all genomes (a rigid core); the other part is subjected to the same gene transfer process as in model A.
Model D assumes two parts in the genomes, governed by different gene transfer rates. We determined for the four models the parameters that minimize the
distance Δ between the empirical and the theoretical gene frequency distribution (see Materials and Methods for the definition of Δ). For each of the 6 bacterial
species analyzed, we report the number of analyzed genomes G, the genome size M (average number of genes per genome), the distance Δ for the model fits,
the genomic fluidity �obs estimated on the data, and the fluidity �pred for the model fits. Recall that model A has one parameter, models B and C have two
parameters, and model D has three parameters.

Haegeman and Weitz BMC Genomics 2012, 13:196
http://www.biomedcentral.com/1471-2164/13/196

Page 6 of 15



with a the population growth rate, t0 the present time
and N0 = N(t0) the present population size. We use a
coalescence approach [20,21] to compute the average
gene frequencies gk, see Additional file 1: Appendix S3.
The solution for the average gene frequency distribution
gk depends on two dimensionless parameters θ0 and b,

θ0 =
N0σ

Mρ
and β =

N0α

2ρ
. (3)

The parameter θ0 is the same as θ for the constant
population size model, except that the population size N
is replaced by the present population size N0; again we
call θ0 the gene transfer parameter. The parameter b is a
rescaled version of the population growth rate a; we call
it the population growth parameter. The constant popu-
lation size model, which we denote by model A, is a one-
parameter model; the variable population size model,
which we denote by model B, is a two-parameter model.
Hence, we expect a richer set of gene frequency distribu-
tions predicted by model B compared to model A.
Additional file 1: Figure S3 shows gene frequency distri-

butions computed for different combinations of the para-
meters θ0 and b. For small b ≤ 1 the distributions closely
resemble the distributions of the model A with constant
population size (a = b = 0, see Figure 2). When increasing
the population growth parameter b, the U-shape becomes
more pronounced. For example, the peak at small k has a
power-law dependence gk ~ k-g with g = 1 for small b and
g increasing for increasing b. The predicted distributions
are often, apart from the peak for the core genes present
in all genomes, almost symmetric (see panels with θ0 =
0.03 or θ0 = 0.3). Notice that very similar distributions can
be obtained for different parameter combinations (e.g.,
compare panel θ0 = 0.03, b = 10 and θ0 = 0.3, b = 100),
which will affect the parameter estimation (see below).
We can fit empirical distributions to this neutral model

of genome evolution (model B). To do so, we determine
the parameters θ0 and b that minimize the distance
between the predicted and empirical gene frequency dis-
tribution. This computation yields estimates for the gene
transfer parameter θ0 and the population growth para-
meter b. As shown in Figure 4, the gene frequency distri-
butions for model B fit the data better than those for
model A (compare with Figure 3). The predictions of
model B are uniformly accurate for the number of rare
genes, the number of genes in the intermediate part of
the distribution and the number of common genes. How-
ever, smaller but systematic deviations remain between
observed and predicted gene frequency distributions. In
particular, the empirical distributions (except for B.
anthracis) are left-skewed, whereas the theoretical distri-
butions have no skew or a small right skew. The
improved fit is also apparent from the distance Δ

between data and model, reported in Table 1, especially
for B. anthracis. The estimate of the gene transfer para-
meter θ0 is an order of magnitude larger in model B than
the estimate of the gene transfer parameter θ in model A.
However, the population size in model B is that of the
present, whereas the population size in model A is the
effective population size over the entire coalescent his-
tory. Hence, differences in gene transfer parameters are
to be expected because they are driven in part by changes
in assumptions about population size. This suggests that
caution must be applied before utilizing θ, θ0, or other
dimensionless gene transfer parameters, to estimate an
effective gene transfer rate without additional informa-
tion that constrains the estimates of both population size
and growth rate. For similar reasons caution should be
applied to the interpretation of the estimates of the
growth parameter b.

Models with an explicit core genome improve fit of
empirical gene frequency distributions
The previous models assume that the gene transfer pro-
cess affects all genes identically. Indeed, each gene pre-
sent in a genome has the same chance to be replaced by
a gene transfer event, and this replacement has no effect
on the reproduction rate. Here we show how to relax
this assumption without prohibitively increasing the
model complexity. To illustrate this, we study a new
model, in which we distinguish two parts in the gen-
omes: one part is governed by the same gene transfer
process as model A; the other part does not undergo
gene transfer and hence, constitutes a rigid core gen-
ome. We term this model C and note that a similar
model has also been proposed in the context of the ana-
lysis of Prochlorococcus genomes [18]. We assume that
this rigid core has the same composition for all gen-
omes. One interpretation of the rigid core is that genes
in this core are essential, and deletion of any of a subset
of genes in the core would be lethal to the individual.
The average gene frequency distribution is given by Eq.
(1), with an additional contribution for the rigid core,
see Additional file 1: Appendix S5. This distribution
depends on two parameters: the fraction l1 of the fluid
part of the genomes, corresponding to l1M genes per
genome, and the gene transfer parameter θ1 for this
part. The rigid core then represents a fraction l2 = 1 -
l1, or l2M genes.
We can determine the parameters for which model C

fits best the empirical gene frequency distributions. The
model fits, shown in Figure 5 (yellow line), are better
than those for model A (Figure 3), but are worse than
those for model B (Figure 4), see also Table 1. Note that
the fitting error ΔB and ΔC of models B and C can be
compared directly, because both models have two
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independent parameters. Model C predicts that about
half of the genome belongs to the rigid core (l1 ≈ l2 ≈
0.5, see Table 2). The other part of the genome is rather
fluid, with estimated gene transfer parameter θ1 ≈ 1 (see
Table 2). This combination of parameters results (except
for B. anthracis and Strep. pyogenes) in a steep dip for the
common (but not core) genes of the frequency distribu-
tions. However, such a dip is not present in the data
(Figure 5).

To weaken the assumption of a rigid core, we consider
another model with an explicit core genome, which we
call model D, in which genes in the core genome retain
some fluidity. More precisely, as for model C, we divide
the genomes into two parts. Both parts are governed by
the gene transfer process of model A, but the genes in
the first part (fraction l1, gene transfer parameter θ1)
are more fluid than the genes in the second part (frac-
tion l2 = 1 - l1, gene transfer parameter θ2 <θ1). Hence,
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Figure 4 Data comparison for model with exponentially growing populations (model B). Comparison of gene frequency distributions with
predictions of the model in which population size is assumed to grow exponentially. The model has two parameters, the gene transfer
parameter θ0 and the population growth parameter b. Black circles: data; blue line with squares: model.
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model D has three independent parameters. The average
gene frequency distribution is equal to the sum of two
distributions (1), with parameters θ1 and θ2, see Addi-
tional file 1: Appendix S5. The predicted distributions
show an excellent agreement with the empirical data
(Figure 5), as can also be seen from the fitting error Δ:
for E. coli and N. meningitidis the error has dropped
tenfold compared to the other models, see Table 1. It is

also interesting to note that the model consistently (for
the 6 bacterial species, although B. anthracis clearly
stands out) predicts genomes with a small part of high
fluidity (l1 ≈ 0.1, θ1 ≈ 10) and a large part of low fluid-
ity (l2 ≈ 0.9, θ2 ≈ 0.1). Moreover, the model with a flex-
ible core genome (model D) predicts the scaling of
sample pan and core genome sizes in close agreement
with the data, see Figure 6. Further, because no
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Figure 5 Data comparison for models with rigid and flexible core genomes (models C and D). Comparison of gene frequency
distributions with predictions of two models which assume that a part of a genome is more susceptible to gene transfer. The genomes in
model C have a rigid core, i.e., some genes cannot be removed from the genomes. The genomes in model D have a flexible core, i.e., theses
core genes can be moved around between genomes, but to a lesser extent than the other genes. Model C has two parameters, whereas model
D has three parameters. Black circles: data; yellow line with squares: model C; green line with squares: model D.
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additional free parameters were utilized in making this
fit, such scaling represents an additional prediction of
each of the models.

Genomic fluidity as a mechanistic summary statistic for
gene frequency distributions
In a previous work [19] we advocated for the use of
robust diversity indices to describe gene variation
between genomes. In doing so we proposed the use of
“genomic fluidity” which captures the average dissimilar-
ity of pairs of genomes from within a group based on
gene content. Specifically, genomic fluidity is equal to
the probability that a randomly chosen gene from one
genome is not found in another genome within the
same group of organisms. For a sample of G genomes it
can be estimated using the following formula:

ϕ =
2

G(G− 1)

G∑
k,�=1
k<�

Uk +U�

Mk +M�

, (4)

where Uk and Uℓ are the number of genes found in
either (but not both) genomes k and ℓ respectively in a
pairwise comparison, and Mk and Mℓ are the total num-
ber of genes found in genomes k and ℓ respectively.
Estimates of genomic fluidity within a sample should
agree with the true value of genomic fluidity within the
population, in part, because they do not depend on the
frequency of rare genomes or genes [19]. Note that
genomic fluidity summarizes gene frequency distribu-
tions, however multiple gene frequency distributions
may be compatible with the same value of genomic
fluidity. Hence, here we ask whether genomic fluidity is
related to the model parameters, θ, θ0, and b, that
underlie the gene frequency distributions presented
here.
For the model with constant population size, the

genomic fluidity � and the gene transfer parameter θ
are intimately linked. For a population in steady state,
we have, see Additional file 1: Appendix S1,

ϕ =
θ

1 + θ
or θ =

ϕ

1− ϕ
. (5)

Hence, genomic fluidity has a one-to-one relationship
with θ, the relative rate of gene uptake to genomic
replacement. When genomic fluidity approaches 1, then
genomes are nearly completely dissimilar, which implies
large gene replacements relative to genome reproduc-
tions (large θ). When genomic fluidity approaches 0,
then processes that promote convergence of genomes
are more important than gene-uptake processes (small
θ). Previously, we advocated for the use of genomic
fluidity on statistical grounds as a means to compare
gene diversity between groups of genomes and as an
alternative to the estimation of pan and core genome
diversity. The constant population size model demon-
strates that genomic fluidity may be indicative of pro-
cesses driving the uptake of genes from the
environment vs. genetic drift.
For the model with exponentially growing population

size, the relationship between the genomic fluidity �
and the parameters θ0 (for gene transfer) and b (for
population growth) is more intricate. Genomic fluidity
increases with the gene transfer parameter θ0 and with
the population growth parameter b, but there is no sim-
ple formula for �(θ0, b) analogous to Eq. (5). However,
the genomic fluidity is useful to clarify the estimation of
the parameters θ0 and b, see Additional file 1: Appendix
S4. Indeed, the different model fits return very similar
estimates for the genomic fluidity (including the models
with rigid and flexible cores), see Table 1. This illus-
trates the robustness of genomic fluidity, confirming our
previous findings [19]. However, this robustness comes
with a trade-off: because very different parameter com-
binations θ0 and b have the same genomic fluidity, we
are unable to infer the gene transfer parameter θ0 and
the gene transfer rate s from the genomic fluidity alone.
This is a very typical finding in dynamic models in that
predictions can be robust even when inferences of exact

Table 2 Parameter values of model fits

model A model B model C model D

θ θ0 b θ1 (l1) θ2 (l2) θ1 (l1) θ2 (l2)

B. anthracis 0.10 6.9 490 0.30 (0.41) 0 (0.59) ∞ (0.03) 0.06 (0.97)

E. coli 0.44 2.1 17 1.77 (0.46) 0 (0.54) 12 (0.15) 0.15 (0.85)

Staph. aureus 0.24 0.87 10 0.92 (0.42) 0 (0.58) 14 (0.07) 0.12 (0.93)

Strep. pneumonia 0.48 1.94 17 1.47 (0.53) 0 (0.47) 41 (0.08) 0.20 (0.92)

Strep. pyogenes 0.33 1.93 23 0.57 (0.68) 0 (0.32) 40 (0.06) 0.20 (0.94)

N. meningitidis 0.50 3.5 30 1.72 (0.52) 0 (0.48) 15 (0.16) 0.19 (0.84)

We determined for each of the four models A, B, C and D the parameters that minimize the distance Δ, see Eq. (6), between the empirical and the theoretical
gene frequency distribution. Here we report the gene transfer parameter θ of the model A fit, the gene transfer parameter θ0 and the population growth
parameter b of the model B fit, the genome fractions l1 and l2, and the gene transfer parameter θ1 of the model C fit, and the genome fractions l1 and l2, and
the gene transfer parameters θ1 and θ2 of the model D fit.
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combinations of mechanistic parameters may not always
be possible from model fits [28].

Conclusions
We have presented a neutral model of genome evolution
that combines birth-death processes at the population
level with gene transfer events at the genome level. We
find that this model generically yields U-shaped gene
frequency distributions. This result suggests that a
gene’s prevalence is insufficient to infer its essentiality
to a species. We compared our model to empirical gene

frequency distributions estimated from sequenced gen-
omes of six bacterial species and found: (i) reasonable
fits to data; (ii) improved fits when assuming non-con-
stant population size or including an explicit core gen-
ome; (iii) despite the qualitative agreement, that there
still remains unexplained aspects of empirical gene fre-
quency distributions, e.g., skewness; (iv) that our neutral
model is remarkably compatible with a previous propo-
sal for a robust gene diversity index - genomic fluidity
[19]. We have also shown that our modelling framework
can easily incorporate more complexity, which not
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Figure 6 Predictions for observed core and pan genome size for model D. We used the parameters l1, θ1 and θ2 obtained from fitting the
gene frequency distribution (see Figure 5) to evaluate the predicted core and pan genome size (see Additional file 1: Appendix S6). Black circles:
data; green line: mean prediction; green shaded region: standard deviation of prediction. The increasing curves are for the pan genome; the
decreasing curves are for the core genome.
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surprisingly gives improved fits. In this sense our model
is also formally related to models of population genetics
in which assumptions of population sizes and dynamics
are meant to evaluate if and when spatial population
structure and even ecological dynamics may alter allele
distributions in identifiable ways [20,21]. In the present
case the excellent fits obtained, e.g., for our flexible core
model (model D), should not be interpreted as an indi-
cation for the validity of its assumptions. Rather, our
analysis shows that gene frequency distributions do not
contain sufficient information for the inference of evolu-
tionary mechanisms underlying the observed distribu-
tions. Moreover, the finding that neutral models can
generically lead to U-shaped gene frequency distribu-
tions suggests the need to incorporate and evaluate ran-
dom processes in the analysis of gene composition and
its dynamics.
Horizontal gene transfer is widely recognized as being

an important mechanism driving genome evolution
[22,25,29-31]. As such, there are many other models of
evolution that address how neutral and selective processes
give rise to variation in the state of genes and genomes
(e.g., [16,17,20,32-35]). Indeed, the central model of popu-
lation genetics in which individuals die and are replaced at
random by other individuals is utilized here [20,21]. How-
ever, in the current model, genetic variation arises via the
uptake of a novel gene. A recent paper also proposed a
model of genome dynamics in which a rigid core was
imposed [18] in order to fit gene frequency distributions
estimated from 9 Prochlorococcus genomes. As shown
here, such a fit may have limited inferential value, since a
rigid core is not necessary in order to model gene fre-
quency distributions. However, prior modeling suggests
multiple avenues by which our model can be unified with
dynamics at different scales. First, we have not considered
horizontal gene transfer within genomes of the same spe-
cies, nor recombination during division, nor of other types
of transduction that may help to explain the finer genetic
structure of bacterial populations [35-37]. Note that
within-species gene transfer makes the acceptor genome
more similar to the donor genome, and therefore reduces
genetic diversity in the population just like genetic drift.
We expect within-species gene transfer to have a smaller
impact on genetic diversity than birth-death events,
although its quantitative effect on the gene frequency dis-
tribution might be different (see [38] for an attempt to
account for within-species gene transfer in a model similar
to ours). Second, we do not include the fitness effect of
mutations, whether neutral, beneficial or deleterious,
which would impact the fixation of novel as well as pre-
existing genes in genomes [16,17]. Including non-neutral
mutational effects would obviously be a departure from
our effort here to describe how much of the information
on gene variation in genomes can be described using

purely neutral models or simple extensions thereof. Note
that although the impact of horizontally transferred genes
on genome fitness remains controversial, there is evidence
that such genes have no, or mild, effects on genome fitness
[22]. Finally, a number of models have taken steps toward
describing how the sizes of groups of genes, protein
domains, proteins, and even categories of proteins (e.g.,
transcription factors) have changed over long evolutionary
scales [32-34,39,40]. These models typically describe the
structure within a genome (e.g., the abundance distribu-
tion of protein domains within different domain classes
[34]), whereas our model describes population structure. It
would seem that some unification of these models may be
possible.
Development of models to predict and characterize gene

composition variation among genomes is motivated by
improvements in sequencing technologies which have
enabled whole-genome sequencing of multiple isolates of
the same bacterial species [41]. However, the gene fre-
quency distribution data upon which we base this model
is subject to two caveats. First, we treated the sequenced
genomes as if they were sampled uniformly from the
population. However, the genomes exhibit phylogenetic
structure which should be taken into account. One option
would be to use the total divergence of the core genes to
correct for the non-uniform sampling (e.g., [42]), although
alternative normalizations are possible. Second, determin-
ing whether two genes are found in a pair of genomes
depends on the use of cutoffs within some comparative
alignment scheme. Different cutoffs can be utilized
depending on whether one is interested in gene homologs,
orthologs, gene families, gene super-families, and so on. If
the cutoffs are set too stringently, then nearly every gene
will appear to be unique. If the cutoffs are set too loosely,
then every gene will appear to be the same as every other.
Prior work demonstrated that there exist metrics of gene
composition dissimilarity (e.g. genomic fluidity) that are
robust to changes in such cutoffs [19]. A unification of the
current model with a sequence-based gene model would
present opportunities to connect more factors (including
mutation and recombination) driving gene variation with
empirical patterns. However, we suggest that caution may
be necessary in moving forward when attempting to utilize
best fit parameters to infer mechanistic rates. In the pre-
sent case, we showed that our neutral model reveals a
well-known phenomenon of having robust predictions
within a parameter space that poses an identifiability pro-
blem [28]. In essence, there are combinations of evolution
parameters that yield similar predictions for gene fre-
quency distributions (see Additional file 1: Figure S5 and
Additional file 1: Appendix S4). Hence, more information
is required concerning actual population size structure
and the nature of gene uptake [43] before we recommend
utilizing our best fits to precisely estimate gene transfer
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rate, effective population size, growth rate and so on. More
generally, fitted parameter values are subject to numerous
simplifying assumptions of the models. Although it is
interesting to compare the order of magnitude of the para-
meter fits with experimental data, one should be cautious
to interpret the parameters too strictly as directly measur-
able quantities.
In this manuscript we presented a purely neutral

explanation for the non-equal distributions of genes
within genomes. The utilization of neutral models in
genetics and ecology have yielded similar results in the
past: in presenting quantitative arguments for when
unequal patterns of appearance imply mechanisms of
selection [12,44,45]. For example, a recent proposal for
a unified theory of biodiversity and biogeography for
forest trees [12] started with a similar dilemma. In that
case, ecologists had observed skewed rank-abundance
relationships such that some tree species were found at
very high abundances and others at very low abun-
dances. Ecologists had by and large assumed that those
trees with greater abundance had a fitness advantage
over trees with lower abundances. However, Hubbell’s
model showed that finding a few common trees and
many rare trees could also be derived without invoking
selection. Hence, in order to determine whether or not
tree species had a fitness advantage in different regions
one needed to look for correlations between traits and
abundance which would not have been expected from a
purely neutral model [46,47]. In the case considered
here, our neutral model shows that the U-shape of gene
frequency distributions provide less information than
previously thought about the fitness benefit of genes.
Instead, we need to find patterns of genome composi-
tion variation that can be explained by neutral models
and identify those patterns or deviations from patterns
that cannot be explained by neutral models - similar
proposals have been advocated in other contexts [48].
Possible examples include the analysis of gene sequences
and correlations amongst those gene present or absent
amongst a set of genomes. In moving forward we sug-
gest the need to continue to build the toolbox of a
quantitative evolutionary genomics specifically adapted
to the mechanisms operating within and amongst
microbes.

Methods
Empirical estimation of gene frequency distributions
The pipeline has been described in detail elsewhere
[19,23]. In brief, it (i) finds genes; (ii) calculates homol-
ogy between all genes within a group of genomes using
a set of cutoffs associated with identity and coverage
(here set at 70% identity and coverage); (iii) applies a
maximal clustering rule to determines groups of homo-
logous genes; (iv) determines a gene presence-absence

matrix of dimension Mtot × G of the total number of
genes Mtot in the group of G genomes. We take row-
sums of this matrix to find the frequency of each of the
Mtot genes, and then take the histogram of these row-
sums to calculate the gene frequency distribution. See
Additional file 2 for the empirical gene frequency distri-
butions of each of the six species analyzed here.

Estimating model parameters given empirical data
The parameter estimation is based on the average gene
frequencies gk. For model A the frequencies are com-
puted using Eq. (1). For model B the frequencies are
computed using the algorithm of Additional file 1:
Appendix S3. For model C and D the frequencies are
computed using the equations of Additional file 1:
Appendix S5. To fit an empirical gene frequency distri-
bution, we determine the model parameters that mini-
mize the distance between the observed distribution gobsk

and the predicted distribution gpredk
. We use the follow-

ing distance function Δ,

	
(
gobsk , gpredk

)
=

1
G

G∑
k=1

(√
gobsk −

√
gpredk

)2

, (6)

i.e., the mean square difference of the square-root
transformed frequency distributions. We use a square-
root transform to balance the different contributions to
Δ. Without this transform large values of gk (i.e., the
tips of the U-shaped distribution at k = 1 and k = G)
are weighed too heavily; with a logarithm transform
small values of gk (i.e., the intermediate part of gene fre-
quency distribution, 2 ≤ k ≤ G - 1) get proportionally
too much weight. The fitted model parameters are
reported in Table 2, and the corresponding distance Δ
in Table 1. See Additional file 3 for Matlab scripts uti-
lized to estimate the best fit parameters for each model.

Estimating gene uptake rates from transformation
frequency
DNA uptake rates are generally presented as transfor-
mation frequencies, i.e., the fraction of colony forming
units (CFUs) which have taken up a marker sequence
relative to the total number of CFUs. Let us denote � as
the transformation frequency in an uptake experiments
in which growing cells are exposed to DNA for a time T
in exponential growth phase. Consider the division rate
of the cells to be r, irrespective of whether they have
taken up the marker sequence or not. Hence, we can
write the dynamics for the population of cells without, s
(t), and with, m(t), the marker sequence: ds/dt = rs-ss
and dm/dt = rm + ss, where s is the gene uptake rate
we would like to estimate. The solutions to these equa-
tions are s(t) = s0e

(r-s)t and m(t) = s0e
rt (1 - e-st), where
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s0 is the initial population of cells. Hence, at the end of
the experiment, � = m(T)/(s(T) + m(T)) or � = 1 - e-sT.
Hence, s can be estimated from the measurement of �

by solving σ = −1
T
log(1− ε).

Additional material

Additional file 1: Appendix. Composed appendix, including text and
figures providing additional information on how to derive gene
frequency distributions, pan and core genome scaling, and calculate
model fits.

Additional file 2: Gene frequency data. Raw data of the number of
genes found in number of genomes for each of the 6 species analyzed
here (in RTF format).

Additional file 3: Model fit scripts. A set of Matlab files to estimate the
best fit parameters for each of the 4 models when given gene frequency
data (in RTF format).
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