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Abstract

Background: African Green Monkeys (AGM) are amongst the most frequently used nonhuman primate models in
clinical and biomedical research, nevertheless only few genomic resources exist for this species. Such information
would be essential for the development of dedicated new generation technologies in fundamental and pre-clinical
research using this model, and would deliver new insights into primate evolution.

Results: We have exhaustively sequenced an Expression Sequence Tag (EST) library made from a pool of Peripheral
Blood Mononuclear Cells from sixteen Chlorocebus sabaeusmonkeys. Twelve of them were infected with the Simian
Immunodeficiency Virus. The mononuclear cells were or not stimulated in vitro with Concanavalin A, with
lipopolysacharrides, or through mixed lymphocyte reaction in order to generate a representative and broad library of
expressed sequences in immune cells. We report here 37,787 sequences, which were assembled into 14,410 contigs
representing an estimated 12% of the C. sabaeus transcriptome. Using data from primate genome databases, 9,029
assembled sequences from C. sabaeus could be annotated. Sequences have been systematically aligned with ten
cDNA references of primate species including Homo sapiens, Pan troglodytes, andMacacamulatta to identify ortholog
transcripts. For 506 transcripts, sequences were quasi-complete. In addition, 6,576 transcript fragments are potentially
specific to the C. sabaeus or corresponding to not yet described primate genes.

Conclusions: The EST library we provide here will prove useful in gene annotation efforts for future sequencing of
the African Green Monkey genomes. Furthermore, this library, which particularly well represents immunological and
hematological gene expression, will be an important resource for the comparative analysis of gene expression in
clinically relevant nonhuman primate and human research.

Background
Nonhuman primates (NHP) are used in many areas of
biomedical research because of their close relationship
to humans. Indeed, for some human diseases, such as
for HCV and HIV infections, they still represent the
only available animal model. Moreover, optimal drug
safety assessment and vaccine development are in many
instances dependent on NHPs. Nowadays, the knowl-
edge of their genome and transcriptome becomes critical
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for an efficient and parsimonious use of these models.
The genome of the Chimpanzee (Pan troglodytes) [1],
Indian rhesus macaque (Indian Macaca mulatta) [2],
Orangutan (Pongo abelii [3], Chinese rhesus macaque
(Chinese Macaca mulatta [4] and Cynomolgus macaque
(Macaca fascicularis [4,5] have been sequenced, and
sequencing of several other NHP genomes is ongoing
[6,7]. The African Green Monkey (AGM) is a widely used
species in biomedical research for studies in the field of
immunology, neuroscience (such as Parkinson’s disease
[8,9], cardiovascular disease [10], cell biology [11-13],
pharmacology [14] and infectious diseases [15-19]. AGMs
are one of the 40 natural hosts of the Simian Immun-
odeficiency Virus (SIV). They are particularly interesting
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models for studying of AIDS as this species is pro-
tected against the disease. Despite chronic infection by
SIV, they generally do not develop any clinical symp-
toms [19,20] and hence are used to identify correlates of
protection [19-21]. AGMs are divided into four species,
named vervet (Chlorocebus pygerythrus), grivet (Chloro-
cebus aethiops), sabaeus (Chlorocebus sabaeus) and tan-
talus ( Chlorocebus tantalus). Among them, the vervet
and sabaeus species have been most extensively studied
[22-27]. Three hundred years ago, AGMs that belonged
to the C. sabaeus species were transferred during slave
trade from West/Central Africa to the Caribbean islands
[28]. The only large breeding centers for AGMs are now
located in these Islands, and the C. sabaeus species is
now becoming the most studied AGM model for SIV
and in biomedical research in general. In the context
of viral infections such as with SIV, one of the main
issues for the development of treatments and vaccines
against human diseases, is to better understand the host
transcriptomic responses of immune cells as the host
immune response is mainly responsible for the outcome
of the infection. Moreover, due to the important amount
of genes expressed in case of activation, immune cells
are relevant for revealing significant parts of the host
transcriptome. So far, research involving AGMs, espe-
cially using gene expression profiling, were limited by the
lack of sufficient gene sequence information and most
studies were dependent on tools developed for human
and more recently macaque species [7,29,30]. This lim-
itation is a major problem since sequenced genes from
AGMs revealed significant nucleotide differences from
the human and even the macaque genomes [31-33], and
more information on AGM gene sequences are therefore
urgently needed. It should be noted however, that the dif-
ference between NHP and humans is higher at the level
of which gene is expressed, rather than at the nucleotide
diversity level [34]. In addition, it has been shown that
NHP cells express additional genes that are not expressed
in humans [35], and we have shown in a previous study
that C. sabaeus express up to 16,000 genes in periph-
eral CD4+ cells, with 990 being specific of the species
[36]. Annotating such sequences is challenging given that
limited information is available and only few hundreds
sequences of C. sabaeus are currently present in the
GeneBank [37] database (Additional file 1: Figure S1). In
this study, we constructed, sequenced and annotated a C.
sabaeus EST (Expression Sequence Tag) library obtained
from Peripheral Blood Mononuclear Cells (PBMC), as a
tool for annotating AGM reference genomes, in order to
allow the generation of technologies dedicated to analyze
the immune responses in this species, as well as pro-
viding immediate valuable information to better under-
stand the molecular and cellular mechanisms involved in
AIDS resistance.

Results
Composition and assembly of the Chlorocebus sabaeus
PBMC EST library
Our aim was to obtain the sequence information for the
genes expressed in C. sabaeus immune cells. In order to
be representative, we collected fresh PBMC from twelve
SIV-infected and four non infected animals. In order to
identify as many distinct transcripts as possible, we in
vitro stimulated these cells or not with Concanavalin A
(ConA), lipopolysaccharides (LPS) and by mixed lympho-
cyte reactions (MLR), as these stimuli upregulate mRNA
expression of many genes. The different stimuli were cho-
sen to activate distinct cellular receptors (T cell receptor,
Toll-like receptors) and stimulate distinct immune cells
(lymphocytes and antigen-presenting cells). Total RNA
preparations from the stimulated and unstimulated cells
were pooled and a cDNA library constructed. Sequences
were obtained and sequence quality filtering showed that
37,787 ESTs were present in the library. They had a mean
length of 563 nucleotides per EST with a standard devi-
ation of 167 nucleotides (Figure 1A). The 37,787 ESTs
have been assembled into 3,853 contigs (overlapping or
embedded ESTs) and 10,557 singletons (not assembled
ESTs). The median number of ESTs per contig was 3 with
some outlier contigs being composed of up to 941 ESTs
(Figure 1B). Themean length of the 14,410 assembled and
singletons ESTs averages at 943 nucleotides (Figure 1C).
The total length represented by our AGM EST library is
about 21.106 nucleotides and the total length of the assem-
bled distinct transcripts 9.106 nucleotides. Since the total
length of the known M. mulatta distinct transcripts cor-
responds to 72.106 nucleotides in the Ensembl database
[38], our AGM sequences represent 12% of theM.mulatta
transcriptome and potentialy a similar fraction of the
AGM transcriptome.

Inter- and intra- species comparisons
We then compared the ESTs to available transcriptomes
of other primate species for annotation purposes and
for quantification of transcript homologs. In order to
get a general as well as a specific view, we used both
the total 37,787 ESTs of the original library and the
assembled distinct transcript library. They were aligned
to available cDNA datasets of the following ten pri-
mate species: Callithrix jacchus (Ouistiti), Gorilla gorilla
(Gorilla),Homo sapiens (Human),M.mulatta,Microcebus
murinus (Mouse lemur), Nomascus leucogeny (Gibbon),
Otolemur garnettii (Bushbaby), P. troglodytes, P. abelii, and
Tarsuis syrichta (Tarsier) (Table 1). We applied stringent
criteria for alignments. Thus, high-quality alignments
have been filtered to only keep for each EST the best align-
ment for each species whichmaps at least 80% of the ESTs.
31,211 of the 37,787 total ESTs and 9,029 of the 14,410
assembled sequences could be aligned on cDNAs of at
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Figure 1 Composition and alignment distribution of the EST library and the assembled distinct transcripts. (A) Distribution of the length of
the 37,787 original ESTs. The median EST length is equal to 618 nucleotides, the mean EST length is 563 nucleotides, and the standard deviation of
the distribution is 167 nucleotides. (B) Distribution of the number of ESTs per contig in the ESTs assembly. The median number of ESTs per contig is
equal to 3 ESTs, the mean number of ESTs per contig is 7 ESTs, and the standard deviation of the distribution is 27 ESTs. (C) Distribution of the length
of the 14,410 distinct transcripts. The median sequence length is equal to 847 nucleotides, the mean sequence length is 943 nucleotides, and the
standard deviation of the distribution is 388 nucleotides. The contribution of the assembled ESTs is shown in red while the contribution of singleton
ESTs is shown in blue. (D) Distribution of the number of matched cDNA reference-mapped for both the 37,787 original ESTs (shown in yellow) and
the 14,410 distinct transcripts (shown in green).

least one species. 29,191 of the total ESTs and 7,985 of the
assembled ESTs have been aligned on at least two cDNA
references. 1,628 of the total ESTs and 135 of the assem-
bled ESTs have been aligned on all the 10 species, while
6,576 of the total ESTs and 5,384 of the assembled ESTs
could not be mapped to any cDNA reference sets and
are then potentially specific to the C. sabaeus transcrip-
tome or highly diverse orthologs (Figure 1D). ESTs of the
total and assembled AGM libraries have also been aligned
to the draft assembly of the M. fascicularis genome [5]
and a sequencing read library of the C. sabaeus genome
[39]. Alignment results have been filtered to only keep for
each EST the 5 best mapped reads when possible of the
C. sabaeus draft scaffold genome, and the best mapped
genomic position on the M. fascicularis draft assembly
genome. Table 2 provides a summary of the results of the
alignments with the 10 cDNA references and the 2 draft
genomes. The highest number of aligned ESTs for both
the original and the assembled ESTs was found for
the H. sapiens (∼80% of the original ESTs and ∼60%
of the distinct transcripts) probably due to the rela-
tively higher degree of investigation of this genome. The

higher frequence as to compared to the ones of NHP
is thus due to the broader sequence information from
human genomes and does not reflect the biological dis-

Table 1 Composition details of the cDNA references

Species Release Number of Number of

name version transcripts genes

C. jacchus Cjacchus3.2.1.63 55,137 32,339

G. gorilla gorGor3.63 35,727 29,216

H. sapiens GRCh37.63 174,598 53,894

M.mulatta MMUL 1.63 44,725 30,247

M.murinus micMur1.63 25,035 25,036

N. leucogeny Nleu1.0.63 31,550 26,526

O. garnettii BUSHBABY1.63 22,804 22,800

P. troglodytes CHIMP2.1.63 41,488 27,116

P. abelii PPYG2.63 31,566 28,088

T. syrichta tarSyr1.63 20,261 20,215

For each species, the release version of the cDNA reference used and the number
of transcripts and genes that composed the cDNA reference are indicated. All
the cDNA references have been retrieved from the Ensembl [38] database.
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Table 2 Alignment results of ESTs on the different cDNA references and genomes

Species name Target type Original ESTs Assembled and singleton ESTs

a.e. m.t. m.g. a.e. m.t. m.g.

C. jacchus cDNA ref. 24,461 (64.73%) 5,951 5,051 5,954 (41.31%) 4,928 4,504

G. gorilla cDNA ref. 23,633 (62.54%) 5,162 4,948 6,008 (41.69%) 4,622 4,527

H. sapiens cDNA ref. 30,117 (79.70%) 9,208 6,529 8,708 (60.43%) 7,316 6,128

M.mulatta cDNA ref. 24,213 (64.07%) 5,439 4,763 5,657 (39,25%) 4,585 4,273

M.murinus cDNA ref. 8,618 (22.80%) 1,770 1,770 1,240 (08.60%) 1,138 1,138

N. leucogeny cDNA ref. 22,600 (59.80%) 4,949 4,749 5,672 (39.36%) 4,389 4,296

O. garnettii cDNA ref. 7,564 (20.01%) 1,431 1,431 930 (06.45%) 861 861

P. troglodytes cDNA ref. 25,196 (66.67%) 5,699 5,156 6,332 (43.94%) 5,012 4,756

P. abelii cDNA ref. 18,904 (50.02%) 4,149 3,989 4,274 (29.65%) 3,415 3,340

T. syrichta cDNA ref. 5,327 (14.09%) 1,348 1,346 908 (06.30%) 854 854

C. sabaeus d. scaf. 37,409 (98.99%) – – 14,139 (98,11%) – –

M. fascicularis d. assem. 35,686 (94,44%) – – 13,392 (92.93%) – –

For both the 37,787 originals ESTs and the 14,410 distinct transcripts, the number of aligned ESTs (a.e.) on the cDNA references (cDNA ref.), draft scaffold genome (d.
scaf.), and draft assembly genome (d. assem.) are indicated. The number of mapped transcripts (m.t.) and mapped genes (m.g.) are also indicated for the cDNA
references.

tances between the species. The C. jacchus, G. gorilla, M.
mulatta, N. leucogeny, P. troglodytes species had relatively
high-proportions of aligned ESTs (∼63% of the original
ESTs and ∼41% of the distinct transcripts), and the M.
murinus, O. garnettii, T. syrichta species had equally low-
proportions of aligned ESTs (∼18% of the original library
and ∼7% of the distinct transcripts). The P. abelii species
had an intermediate proportion of aligned ESTs (∼50%
of the library and ∼30% of the distinct transcripts). We
then performed VennDiagrams betweenAGM and cDNA
of the NHP species showing the highest proportions of
aligned ESTs (M.mulatta,N. leucogeny, P. troglodytes, and
H. sapiens), 31,005 of the 37,787 original ESTs and 8,909

of the 14,410 distinct transcrips could been aligned on at
least one of the cDNA references (Figures 2A and 2B).
23,450 of the original ESTs (62.05%) were shared between
the H. sapiens and M. mulatta species. AGM shared
25,196 sequences (66.67%) with those of M. mulatta,
and 17,743 (46.95%) with the four species. The number
of mapped ESTs on the C. sabaeus and M. fascicularis
draft genomes is highly significant for both the origi-
nal ESTs and the assembled and singletons ESTs, and
almost the totality of the ESTs are commonly mapped
ESTs between the two genomes (Figures 2A and 2B).
Note that the alignment to the draft genomes was
performed using low-specificity alignment parameters
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Figure 2 Inter- and intra- species alignment comparisons. (A) 4-set Venn diagram showing the intersections among the 4 sets of original ESTs
aligned on the H. sapiens,M. mulatta, P. troglodytes, and P. abelii species, and 2-set Venn diagram showing the intersections between the 2 sets of
original ESTs aligned over the C. sabaeus andM. fascicularis species. (B) Idem as A for the distinct transcripts.
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and thus is not directly comparable to the alignments
of the EST libraries. Overall, while giving different spe-
cific alignment information, the number of mapped
transcripts and mapped genes for both the 37,787
originals ESTs and the 14,410 distinct transcripts are
convergent in the number of mapped genes and propor-
tional with the genomic distances that exist among these
species.

Specific comparison with the Macaca mulatta
transcriptome
The M. mulatta species is the closest primate species to
the C. sabaeus for which significant genomic informa-
tion is available. In order to gain additional information
about the transcript fragments that we provide, we anno-
tated them with the particular section positions of the
messenger RNAs available for the M. mulatta species.
We specified for each EST of the assembled library
the positions of the 5’-untranslated region (5’UTR),
coding DNA sequence (CDS), and 3’-untranslated region
(3’UTR) based on the M. mulatta cDNA reference
annotations. Among the 14,410 assembled ESTs, 11,211
could be annotated: 6,244 ESTs with the 5’UTR, 9,657
ESTs with the CDS, and 5,313 ESTs with the 3’UTR.
We report 506 M. mulatta transcripts that have been
mapped to more than 90% by an EST (Additional file 2:
Table S1). CXCL10 (Figure 3) and S100A4 (Additional
file 3: Figure S2) are part of these transcripts and given
as examples.

Quantification of expressed sequences and functional
pathway analysis of the EST library
In order to have a quantitative view of the expressed
sequences of theC. sabaeus PBMC, we identified themost
expressed transcripts in our EST library based on the M.
mulatta homolog transcripts. Based on the 44,725 tran-
scripts of theM. mulatta cDNA reference and the 14,410
ESTs of the original ESTs library, we calculated for each
transcript the number of sequences mapped and obtained
a list of the 50 most expressed M. mulatta ortholog tran-
scripts in our EST library (Table 3). Among these most
expressed transcripts, the hemoglobin beta (HBB) and
alpha (HBA) genes were present, which might reflect a
red blood cells contaminations of the PBMC, as well as
more specific immune-related genes, such as CD74 and
Granzyme B (GZMB). Some EST which correspond to
genes which play an important role in immune responses
against pathogens have been aligned: IRF7 (Figure 4), CD4
(Additional file 4: Figure S3), IFNG (Additional file 5:
Figure S4), IFNGR1 (Additional file 6: Figure S5), IFNGR2
(Additional file 7: Figure S6). For all these transcripts, EST
alignment positions as well as protein domains are given.
Furthermore, in order to identify the over-represented
pathways in our AGM EST library, we performed a

functional canonical pathway analysis based on the list
of the 9,208 H. sapiens transcripts uniquely mapped by
the 37,787 original ESTs. Most of the canonical path-
ways found as statistically significantly over-represented
are related to B and T cell signaling, and immune response
pathways (Table 4). For instance, the “CD28 signaling in T
Helper Cells”, “iCOS-iCOSL signaling in T Helper Cells”,
“B Cell receptor Signaling” (Additional file 8: Figure S7A),
and “T Cell receptor signaling” (Additional file 8: Figure
S7B) pathways belong to the list of pathways found as sig-
nificantly over-represented in our AGM library, as well
as the “Glucocorticoid receptor signaling”, “Role of NFAT
in regulation of the immune response” (Additional file 9:
Figure S8A), “Antigen presentation pathway” (Additional
file 9: Figure S8B), “JAK/STAT signaling”, and many dif-
ferent “Interleukin signaling” pathways. As a result of the
in vitro stimulation of SIV-infected PBMC, the “NF-κB
Activation by viruses” (Additional file 10: Figure S9A)
and “Induction of apoptosis by HIV-1” (Additional
file 10: Figure S9B) pathways are also significantly over-
represented. Consistent with the stimulation by LPS, the
“Interferon Signaling” (Figure 5A) and “Toll-like Recep-
tor Signaling” (Figure 5B) pathways are also found sig-
nificantly over-represented. Finally, ConA is capable of
triggering positive selection in mature T cells by cross-
linking the TCR with high avidity [40,41] and we found 8
pathways corresponding to these functions being induced
(Table 4). The over-representation of gene transcripts
belonging to these pathways of the immune system further
indicates that this library is a valuable resource for profil-
ing global gene expression in AGM immune cells. Overall,
these gene and pathway information are consistent with
what we could expect from an EST PBMC library.

Analysis of the inter-species genomic relationships
Analysis of genomic relationships among species is an
important way for studying evolution of genomic features.
The relationships of the C. sabaeus EST with the 10 above
described primate species for which the cDNA references
were available have been quantified. For each one of the
1,628 ESTs aligned on all the cDNA references, multiple
sequence alignment scores have been computed. Based
on these pairwise alignment scores, an average genomic
distance matrix has been computed (Table 5) and a phy-
logenetic tree constructed (Figure 6A). As it would be
expected, the H. sapiens and P. troglodytes are clustered
together, as it is also the case for the C. sabaeus and M.
mulatta. The G. gorilla, P. abelii, and N. leucogeny were
located between these two clusters, and the C. jacchus,
M. murinus, O. garnettii, and T. syrichta are segregated
from other species. By comparing only to themore related
species, phylogenetic trees have also been computed with
a higher number of AGM ESTs with all the 14,410
assembled transcripts (Figure 6B). Finally, trees have been
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Figure 3 Alignment details for the CXCL10 gene. Alignment details for the C-X-C motif chemokine 10 gene of theM.mulatta species (Ensembl
ID: ENSMMUT00000029391).Assembled ESTs have been aligned at different positions of the gene: (1) Contig2229.

constructed for specific sections of the transcripts: 5’UTR
regions (Figure 6C), CDS sections (Figure 6D), and 3’UTR
regions (Figure 6E). Both the phylogenetic trees restricted
on the CDS and 3’UTR sections show a clusterisation of
the C. sabaeus with the M. mulatta and a strong segre-
gation with other species. Interestingly, the phylogenetic
tree restricted on the 5’UTR sections revealed a different
shape. C. sabaeus and the N. leucogeny species clustered
together, suggesting distinct selective pressures in the
5’UTR as compared to other regions.

Discussion
AGMs have provided useful animal models in biomedical
research for many years [17,42-50]. They are also
becoming a more and more essential model to the study
of human biology and disease, such as neurological disor-
ders [51,52] and AIDS [19,53]. Several studies could not be
conducted so far because of the insufficiency of genomic
resources on this primate [7]. This is a major limitation in
view of the information that new generation technologies
can offer for the progress in development of strategies to
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Table 3 List of the 50most expressedM.mulatta ortholog transcripts in present EST library

Transcript ID Gene symbol Gene description Count

ENSMMUT00000006876 HBB MACMU Hemoglobin subunit beta 941

ENSMMUT00000045385 LOC712934 699

ENSMMUT00000012750 CD74 526

ENSMMUT00000015401 Q3YAP9 MACMU eukaryotic translation elongation factor 1 alpha 1 519

ENSMMUT00000000859 HBA MACMU Hemoglobin subunit alpha 296

ENSMMUT00000017004 LOC712553 257

ENSMMUT00000038286 MTRNR2-like (LOC100499503) 232

ENSMMUT00000005322 B2MG MACMU Beta-2-microglobulin 212

ENSMMUT00000005104 LOC708526 208

ENSMMUT00000043999 RPL3 ribosomal protein L3 208

ENSMMUT00000038271 COX2 MACMU Cytochrome c oxidase subunit 2 194

ENSMMUT00000027050 DRA MACMU Mamu class II histocompatibility antigen, DR alpha chain 191

ENSMMUT00000038268 Q6IYH3 MACMU ATP synthase F0 subunit 6 185

ENSMMUT00000029930 Q3YAP9 MACMU eukaryotic translation elongation factor 1 alpha 1 173

ENSMMUT00000045510 Q9GMG8 MACMU acidic ribosomal phosphoprotein PO 173

ENSMMUT00000023666 LOC710590 155

ENSMMUT00000039116 LOC714576 144

ENSMMUT00000027943 B0Z9V5 MACMU major histocompatibility complex, class I, E 143

ENSMMUT00000038267 Q6IYH2 MACMU cytochrome c oxidase subunit III 135

ENSMMUT00000010560 B5MBT6 MACMU ribosomal protein L13a 133

ENSMMUT00000032800 UBB polyubiquitin-B 133

ENSMMUT00000010558 Q3YAQ2 MACMU ribosomal protein S11 131

ENSMMUT00000011109 ribosomal protein S2 (RPS2) 131

ENSMMUT00000015005 LOC711043 129

ENSMMUT00000020179 GZMB 126

ENSMMUT00000033466 Q6IEB8 MACMU interferon alpha-inducible protein 27 123

ENSMMUT00000038664 LOC719242 123

ENSMMUT00000008204 Q6IUG4 MACMU glyceraldehyde-3-phosphate dehydrogenase 122

ENSMMUT00000029999 RPS20 116

ENSMMUT00000032342 TPT1 116

ENSMMUT00000012806 Q9GMG8 MACMU acidic ribosomal phosphoprotein PO 115

ENSMMUT00000005819 SRGN 107

ENSMMUT00000040341 Q9MXS5 MACMU MHC class I antigen 106

ENSMMUT00000014609 LOC711421 105

ENSMMUT00000004034 LOC710901 104

ENSMMUT00000009232 EEF1G eukaryotic translation elongation factor 1 gamma 103

ENSMMUT00000027208 A2TJ58 MACMU major histocompatibility complex, class II, DP alpha 94

ENSMMUT00000013155 Q6RHR8 MACMU actin, cytoplasmic 1 93

ENSMMUT00000041082 E0WHM2 MACMU MHC class I antigen 92

ENSMMUT00000043841 RPS3 89

ENSMMUT00000022628 A8QWZ5 MACMU MHC class I antigen 86

ENSMMUT00000000617 RPL12 60S ribosomal protein L12 85

ENSMMUT00000018897 RPS6 84

ENSMMUT00000025324 ARHGDIB 79
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Table 3 List of the 50most expressedM.mulatta ortholog transcripts in present EST library (Continued)

ENSMMUT00000011502 A3F8W8 MACMU MHC class II antigen 77

ENSMMUT00000040916 A3F8W8 MACMU MHC class II antigen 76

ENSMMUT00000005540 LOC718964 75

ENSMMUT00000018430 75

ENSMMUT00000041189 A9XN15 MACMU major histocompatibility complex, class I, A 73

ENSMMUT00000015586 Q6UIS1 MACMU Actin beta subunit 72

For each of the 44,725 transcripts of theM. mulatta cDNA reference, we calculated the number of original ESTs mapped, and obtained a list of the 50 most expressed
M.mulatta ortholog transcripts in our EST library. For each of the most expressed M.mulatta ortholog transcript, the Ensembl transcript ID, the gene symbol, the gene
description, and the number of mapped ESTs is given.

prevent or treat human diseases. The growing interest for
this model is shown through the increase of the number of
sequences published in the NCBI nucleotide database for
this species every year (Additional file 1: Figure S1) and
the sequencing of its genome which is underway. Never-
theless, our recent survey (as of January 11, 2012) showed
that while there were 11,413,043 and 225,854 nucleotide
sequences available forH. sapiens andM.mulatta, respec-
tively, there were still only 2,527 nucleotide sequences for
AGM in the databases. The primary goal of this study was
to enhance the development of an AGMgenomic resource
through the construction, sequencing and characteriza-
tion of a PBMC cDNA library of AGM (C. sabaeus).
The results could be used to expand genomic research
activities on this species.
We focused here on the construction of a cDNA library

on blood immune cells (PBMC) in order to get as much
immune defense genes as possible which could help to
the study of several disease mechanisms such as the
understanding of AIDS resistance in AGM. Therefore,
to increase the expression of such genes, the cells were
challenged or not with immune-relevant stimuli (ConA,
LPS, MLR). We also chose to work on both, SIV-infected
and non-infected animals, in order to eventually reveal
new genes that might have a unique role in AIDS resis-
tance in this natural host. The sequencing of the cDNAs
yielded 37,787 ESTs with 14,410 assembled and singletons
ESTs which cover 12% of the transcriptome. For anno-
tation purpose, we aligned the 14,410 cDNA sequences
of our library to the known cDNA libraries of 10 other
primate species including the human one. Of the 31,005
ESTs identified, as many as 6,576 ESTs did not match any
gene reported in the database. This high number of novel
sequences might be due to the fact that the genomes of
the other NHP species are not sufficiently annotated yet.
However, a few of them might be true new gene candi-
dates. Indeed, the stimulation used might have revealed a
number of silent genes only expressed under the condition
of infection.
As one would expect, at the CDS level, the divergence

between C. sabaeus and M. mulatta was lower than

between C. sabaeus and the other primate species. The
gene distance at the non-coding regions was higher than
in the CDS and higher for 5’UTR than 3’UTR. Interest-
ingly, the 5’UTR of C. sabaeus did not cluster any more
with M. mulatta, at least not consistently. This is in line
with the fact that on average, 5’ and 3’ UTRs are less con-
served across species than protein-coding sequences, with
the 5’UTR being the most divergent, but still more con-
served than untranscribed sequences [54,55]. It has been
shown that high differences in the 5’UTR of orthologous
genes correlate with their expression levels [56]. Indeed,
this region is rich in regulatory elements. Changes in the
regulation of gene expression levels play an important role
in phenotypic diversity among closely related organisms
[57,58]. The high distances observed at the 5’UTR region
between the different primate species studied here might
reflect part of these changes (Additional file 11: Table S2).
However, we can not exclude that on one hand, our anal-
yses might have misestimated the gene distance of UTR
or ESTs in general, between the C. sabaeus and other
species, as the length of the ESTs of our library are shorter
(943 nucleotides) than the average length of human and
macaque cDNAs (1,500 nucleotides) in the databases. On
the other hand we might have overestimated this distance
as compared to the rest of the transcriptome because the
genes included in this library are mostly immune-related,
thus among the most known divergent genes [59].
To further analyze the library, we determined the bio-

logical pathways represented by the 14,410 annotated
ESTs. Among more general pathways (protein ubiquiti-
nation pathway, mitochondrial pathway), many pathways
were related to the immune system (T cell activation,
B cell activation) indicating the immune-specificity of
the starting cells. The immune pathways appear well
conserved in AGM, with most of the key components
found in our library under the stimulation condition used
(Figure 5 and Additional file 8: Figures S7, Additional
file 9: Figures S8 and Additional file 10: Figures S9).
Ubiquitously expressed genes, such as ribosomal pro-
teins, housekeeping genes andmitochondrial pathway, are
also included in this library and could be useful when
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Figure 4 Alignment details for the the IRF7 gene. Alignment details for the Interferon regulatory factor 7 gene of theM. mulatta species
(Ensembl ID: ENSMMUT00000009923).Assembled ESTs have been aligned at different positions of the gene: (1) Contig3553, (2) Contig866, (3)
Contig1898. Same legend and nomenclature as in Figure 3.



Tchitchek et al. BMC Genomics 2012, 13:279 Page 10 of 18
http://www.biomedcentral.com/1471-2164/13/279

Table 4 Top 50 canonical pathways found as significantly over-represented in present EST library

Canonical pathway −log(q-value) gena/genb

Protein Ubiquitination Pathway 16.80 148/274 (54%)

Glucocorticoid Receptor Signaling 16.80 148/295 (50%)

Oxidative Phosphorylation 15.00 92/159 (58%)

Mitochondrial Dysfunction 14.00 86/175 (49%)

CD28 Signaling in T Helper Cells 13.70 77/132 (58%)

Regulation of eIF4 and p70S6K Signaling 11.90 69/132 (52%)

Role of NFAT in Regulation of the Immune Response 10.70 97/200 (49%)

EIF2 Signaling 10.60 57/101 (56%)

PI3K/AKT Signaling 10.50 73/140 (52%)

iCOS-iCOSL Signaling in T Helper Cells 10.50 67/122 (55%)

B Cell Receptor Signaling 10.10 83/156 (53%)

Regulation of IL-2 Expression in Lymphocytes 9.70 53/89 (60%)

Integrin Signaling 9.48 104/209 (50%)

PKCθ Signaling in T Lymphocytes 8.93 68/142 (48%)

Hypoxia Signaling in the Cardiovascular System 8.93 46/68 (68%)

CTLA4 Signaling in Cytotoxic T Lymphocytes 8.52 57/98 (58%)

mTOR Signaling 8.51 79/162 (49%)

T Cell Receptor Signaling 8.43 59/109 (54%)

Type I Diabetes Mellitus Signaling 8.32 64/121 (53%)

Production of Nitric Oxide and ROS in Macrophages 8.32 83/187 (44%)

Ubiquinone Biosynthesis 8.05 45/112 (40%)

Molecular Mechanisms of Cancer 7.64 152/377 (40%)

Estrogen Receptor Signaling 7.54 70/136 (51%)

Antigen Presentation Pathway 7.20 30/43 (70%)

Apoptosis Signaling 7.19 53/96 (55%)

G2/M DNA Damage Checkpoint Regulation 7.19 32/49 (65%)

Prostate Cancer Signaling 6.96 49/97 (51%)

Phospholipase C Signaling 6.79 109/260 (42%)

Huntington’s Disease Signaling 6.78 104/238 (44%)

Chronic Myeloid Leukemia Signaling 6.65 54/105 (51%)

Pancreatic Adenocarcinoma Signaling 6.61 59/119 (50%)

IL-8 Signaling 6.60 86/193 (45%)

PI3K Signaling in B Lymphocytes 6.50 69/143 (48%)

Breast Cancer Regulation by Stathmin1 6.49 93/208 (45%)

IL-2 Signaling 6.31 35/58 (60%)

NF-κB Activation by Viruses 6.26 44/82 (54%)

IL-15 Signaling 6.23 39/68 (57%)

T Helper Cell Differentiation 6.15 42/72 (58%)

TREM1 Signaling 6.05 35/66 (53%)

Fcγ Receptor-mediated Phagocytosis in Macrophages 5.98 52/102 (51%)

Pyrimidine Metabolism 5.85 70/213 (33%)

GM-CSF Signaling 5.69 38/67 (57%)

Induction of Apoptosis by HIV1 5.64 37/66 (56%)
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Table 4 Top 50 canonical pathways found as significantly over-represented in present EST library (Continued)

Dendritic Cell Maturation 5.64 78/188 (41%)

NRF2-mediated Oxidative Stress Response 5.63 86/193 (45%)

Purine Metabolism 5.56 117/391 (30%)

fMLP Signaling in Neutrophils 5.50 57/128 (45%)

JAK/Stat Signaling 5.42 37/64 (58%)

HMGB1 Signaling 5.40 51/100 (51%)

IL-4 Signaling 5.40 40/73 (55%)

List of the top 50 canonical pathways found as statistically significantly over-represented in the functional pathway analysis of the EST library. For each canonical
pathway, the associated multiple testing corrected p-value (shown as −log(q-value)) is indicated as well as the ratio between the number gena of genes of the
pathway mapped by the EST library and the total number genb of genes defining the pathway.

using cell lines derived from AGM such as COS-7 and
Vero cells. We studied in more detail genes which are
of major importance for host immune defenses, such as
IFN-γ , IFNGR, CXCL10 and IRF7 [60-62]. For the IFN-γ
receptor (IFNGR), it has been shown in humans that any
variation having a significant impact on IFNGR function
is not tolerated [63]. Therefore, the deletion observed in
the cytoplasmic tail of IFNGR1 in AGM as compared
to macaque might either not have any functional con-
sequence on this pathway or give to this species a yet
unknown evolutionary advantage. Thus, it would be inter-
esting to compare the sequence of AGM IFNGR1 with
other SIV natural hosts in order to evaluate if this might
play a role in AIDS resistance. CXCL10 (or IP-10) is a
chemokine involved in the recruitment of cells of the
immune system to sites of inflammation and is induced
by IFN-α and IFN-γ [60]. Alteration of IP-10 expression
has been associated with inflammatory diseases includ-
ing infectious diseases, immune dysfunction and tumor
development [64,65].We did not find any difference at the
amino acid level between the CXCL10 from C. sabaeus
and the one from M. mulatta. This conservation sug-
gests that any variation having an impact on CXCL10
function could be deleterious. IRF7 encodes a transcrip-
tion factor which plays a role in the activation of virus-
inducible cellular genes, including the type I interferon
genes. The partial sequences from our library did not
show the same mutations that were suggested to play a
role in AIDS-resistance in another SIV-natural host, the
sooty mangabey [66]. The mutations in IRF7 reported
in one SM [66], were however also either not confirmed
when studied in a large number of SM animals or found
to be non-fixed and with no effects on the phenotype even
when present in homozygosity (Johnson Z, Silvestri G,
and Bosinger SE, personal communication). However, as
this is not the same species, the mutations could be at
other sites, or the mechanisms of AIDS resistance might
be different between AGM and sooty mangabey. As our
library was constructed on a pool of cells from 16 different
animals, the sequences obtained are not representative of

the inter-individual variability and need to be verified on
the individual level for further studies.
To our knowledge, this is the first time that abun-

dant genetic information on AGM is given. In this study,
a total of 37,787 ESTs were sequenced, from which
14,410 contigs and singletons were identified, covering
12% of the AGM transcriptome. Moreover, this cDNA
library provides both a large collection of novel transcripts
and a detailed annotation of immune genes. The high
volume of apparently novel AGM sequences suggests that
our data could be a useful resource for future genomic
investigation.

Methods
Construction and sequencing of the EST library
Twelve SIV-infected and four non-infected C. sabaeus
(from Caribbean islands) were used in this study. The
Central Committee for Animals at Institut Pasteur, Paris,
France, reviewed and approved the use and care of ani-
mals. The experiments were performed according to
national and European guidelines. Whole blood was col-
lected from monkeys under anesthesia in heparinized
tubes. PBMC were isolated from whole blood by density
gradient centrifugation using the Lymphocyte Separation
Medium 1077 (PAA Laboratories GmbH) and activated or
not with different stimuli in RPMI-1640 with 10% fetal calf
serum. For ConA activation (from Canavalia ensiformis
(Sigma-Aldrich, St. Louis, MO, USA)): 4.106 of isolated
PBMC were plated with 10μg.ml−1 of ConA for 2, 6, 24,
36 or 72h. For LPS (E.Coli 0111:B4 Sigma (L2630)) activa-
tion: 4.106 of isolated PBMC were plated with 10μg.ml−1

of LPS for 2, 6, 24, 36 or 72 hours. The MLR were done
by mixing 4.106 of isolated PBMC with 4.105 PBMC from
another animal for 2, 6, 24, 36 or 72h. Unstimulated cells
were also kept for further RNA extraction. Total RNA was
extracted from harvested cells by using the RNeasy® Mini
Kit (Qiagen, Courtaboeuf, France) following the manu-
facturer’s instructions. Briefly, cells were lysed in 350μl
of RLT buffer, run over a QiaShredder column (Qiagen)
to ensure homogeneous lysis, and resuspended in 30μl
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Figure 5 Representation of the “Interferon Signaling” and “Toll-like Receptor Signaling” pathways. (A) Representation of the “Interferon
Signaling” pathway. (B) Representation of the “Toll-like Receptor Signaling” pathway. Genes present in the EST library are shown in gray.
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Table 5 Pairwise genomic distancematrix of the 11 primate species

C. sabaeus G. gorilla H. sapiens M. mulatta M.murinus N. leucogeny O. garnettii P. troglodytes P. abelii T. syrichta

C. jacchus 474 445 430 474 804 445 906 442 442 862

C. sabaeus 272 260 140 751 284 856 272 289 832

G. gorilla 103 263 741 191 858 117 200 830

H. sapiens 248 712 173 835 78 176 808

M.mulatta 754 266 873 259 290 842

M.murinus 753 770 734 743 897

N. leucogeny 876 185 224 842

O. garnettii 850 880 1006

P. troglodytes 191 824

P. abelii 859

Pairwise genomic distance matrix computed using the ESTs of the original library and the cDNA references of the 10 primates species for which the cDNA references were available. For pairs of species, the average multiple
alignment score calculated over the 1,628 commonly aligned sequences is given. Scores have been rescaled by multiplication by 104 .
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Figure 6 Evolutionary relationships among primates species. (A) phylogenetic tree of the 11 primate species for which the cDNA references
were available calculated based on the 1,628 common original ESTs. (B) phylogenetic tree of the old world monkeys and human species calculated
based on the 8,788 common assembled ESTs. (C) phylogenetic tree of the old world monkeys and human restricted to the 5’UTR of the transcripts
calculated based on the 1,016 common assembled ESTs. (D) phylogenetic tree of the old world monkeys and human restricted to the coding
sequence of the transcripts calculated based on the 8,024 common assembled ESTs. (E) phylogenetic tree of the old world monkeys and human
restricted to the 3’UTR of the transcripts calculated based on the 2,209 common assembled ESTs.

of sterile water. We added a DNase-RNase free (Qia-
gen) treatment on the column to eliminate any potential
DNA contamination of RNA preparations. The quality
and concentration of RNA was assessed as before [36].
The libraries were plated, arrayed robotically and bacte-
rial clones have their plasmid DNA amplified using phi29
polymerase. The plasmids were end-sequenced by the
Genoscope using BigDye Termination kits on Applied
Biosystems 3730xl DNA Analysers.

EST quality filtering
Poly-A and poly-T tails have been trimmed from the
sequenced ESTs by using the trimest tool [67] (default
parameters have been used) while starting and ending ter-
minal N’s have been trimmed from the sequences using
the trimseq tool [67] (a threshold cutoff parameter of 20%
of Ns in a window of 30 nucleotides has been used).

Assembly of the EST library
Assembly of ESTs into contigs has been performed
using the EGassembler [68] tool. EGassembler aligns
and merges sequence fragments resulting from shotgun
sequencing or gene transcripts fragments in order to
reconstruct the original segment or gene (an overlap iden-
tity cutoff parameter of 80% has been used).

cDNA references and genomes used in this study
TheC. jacchus,G. gorilla,H. sapiens,M.mulatta,M. mur-
inus,N. leucogeny, O. garnettii, P. troglodytes, P. abelii, and
T. syrichta cDNA references have been retrieved from the
Ensembl [38] database. The sequencing of the C. sabaeus
genome is currently in progress as part of an international

collaborative effort at theWashington University Genome
Center [39] and the draft scaffold genome release of this
project has been used in this study. The draft assembly of
the M. fascicularis genome used in this study is available
through the ENA [69] database via accession numbers
from FR874244 to FR874264 [5].

ESTs alignment procedures
Alignment of the ESTs on the cDNA references and on
the M. fascicularis draft assembly genome has been done
using the BLAST tool [70] (an Expect value cutoff param-
eter of 10 has been used). Alignment results have been
filtered to only keep for each EST the best alignment
for each species that has at least a support of 80% with
the EST sequence. Alignment of the ESTs on the C.
sabaeus draft scaffold genome has been performed using
the CBRC-LAST [71] based online tool available on the
website of the Washington University Genome Center
[72].

Functional pathway analysis
The functional pathway analysis of the EST library has
been performed using Ingenuity Pathways Analysis (IPA,
Ingenuity® Systems). IPA examines expressed genes in the
context of known biological functions and pathways, map-
ping each gene identifier in a dataset to its correspond-
ing molecule in the Ingenuity Pathways Knowledge Base
(IPKB). P-values attributed to each pathway representing
the statistical over-representation significance have been
calculated by using the right-tailed Fisher’s exact test and
have been adjusted using the Benjamini-Hochberg Mul-
tiple Testing correction [73]. Over the 9,208 H. sapiens
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transcripts uniquely mapped by the 37,787 original ESTs,
8,579 have been identified by the IPKB and then used in
the functional analysis.

Quantification of the evolutionary relationships and
construction of the phylogenetic trees
Quantification of the evolutionary relationships among
ESTs and EST mapped sequences has been performed
using the Needleman-Wunsch multiple alignment algo-
rithm [74]. Distance among sequences has been calculated
using the Jukes-Cantor method [75] (maximum likeli-
hood estimate) based on the NUC44 scoring matrix.
Phylogenetic trees have been constructed by using the
Unweighted Pair Group Method Average linking method
(UPGMA, group average [76].

Data accessibility
The 37,787 ESTs are available on the dbEST [77] database
via the library entry named “C. sabaeus PBMC EST
Library” (accession: LIBEST 027323) and via Accession
Numbers from JK088433 to JK126219. Each EST entry
has been annotated with its associated contig (for assem-
bled ESTs), its best high-quality mapped transcript with
the corresponding gene for each cDNA reference, its 5
best mapped reads (when available) on the C. sabaeus
draft scaffold genome, and the genomic position of its best
alignment on theM. fascicularis draft assembly genome.

Additional files

Additional file 1: Figure S1. Number of AGM sequences published over
the last years. Progression of AGM sequences published during the last two
decades: this graph shows the number of AGM nucleotide sequences
entered over each 5 year period in the NCBI nucleotide database with the
number of sequences to be published in our EST library.

Additional file 2: Table S1. List of the highly covered Macaca mulatta
ortholog transcripts. List of the 506 M.mulatta ortholog transcripts that
have been highly covered an assembled EST. For eachM.mulatta
transcript, the Ensembl transcript Id, the gene symbol, and the assembled
EST that mapped the transcript at least at 90% are given.

Additional file 3: Figure S2. Alignment details for the S100A4 gene.
Alignment details for the S100 calcium binding protein A4 gene of the M.
mulatta species (Ensembl ID: ENSMMUT00000015358). Assembled ESTs
have been aligned at different positions of the gene: (1) Contig3147. Same
legend and nomenclature as in Figure 3.

Additional file 4: Figure S3. Alignment details for the CD4 gene.
Alignment details for the CD4 gene of the M.mulatta species (Ensembl ID:
ENSMMUT00000018518). Assembled ESTs have been aligned at different
positions of the gene: (1) PP0ADA62YL02FM1. Same legend and
nomenclature as in Figure 3.

Additional file 5: Figure S4. Alignment details for the IFNG gene.
Alignment details for the Interferon-gamma gene of the M.mulatta species
(Ensembl ID: ENSMMUT00000027007). Assembled ESTs have been aligned
at different positions of the gene: (1) Contig3283 (2) PP0ADA26YB24FM1.
Same legend and nomenclature as in Figure 3.

Additional file 6: Figure S5. Alignment details for the IFNGR1 gene.
Alignment details for the Interferon Gamma Receptor 1 gene of theM.
mulatta species (Ensembl ID: ENSMMUT00000016941). Assembled ESTs

have been aligned at different positions of the gene: (1) Contig705 (2)
PP0ADA55YK24FM1. Same legend and nomenclature as in Figure 3.

Additional file 7: Figure S6. Alignment details for the IFNGR2 gene.
Alignment details for the Interferon Gamma Receptor 2 gene of theM.
mulatta species (Ensembl ID: ENSMMUG00000005508). Assembled ESTs
have been aligned at different positions of the gene: (1)
PP0ADA19YK11FM1. Same legend and nomenclature as in Figure 3.

Additional file 8: Figure S7. Representation of the “B cell receptor
signaling” and “T cell receptor signaling” pathways. (A) Representation of
the “B cell receptor signaling” pathway. (B) Representation of the “T cell
receptor signaling” pathway. Same legend and nomenclature as in Figure 5.

Additional file 9: Figure S8. Representation of the “Role of NFAT in
regulation of the immune response” and “Antigen presentation” pathways.
(A) Representation of the “Role of NFAT in regulation of the immune
response” pathway. (B) Representation of the “Antigen presentation”
pathway. Same legend and nomenclature as in Figure 5.

Additional file 10: Figure S9. Representation of the “NF-κB activation by
viruses” and “Induction of apoptosis by HIV-1” pathways. (A)
Representation of the “NF-κB activation by viruses” pathway. (B)
Representation of the “Induction of apoptosis by HIV-1” pathway. Same
legend and nomenclature as in Figure 5.

Additional file 11: Table S2. Genomic distance matrix between the
Chlorocebus sabaeus species and the old world monkeys and humans
species. Genomic distance matrix computed between the ESTs of the
original library and the mapped sequences of 7 old world monkey and
human cDNA references restricted or not to specific regions of the
transcripts (5’UTR, coding sequence, 3’UTR). For each comparing, the
average multiple alignment score calculated over the commonly aligned
sequences (c.a.s.) is given. Scores have been rescaled by multiplication
by 104 .
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