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Abstract

Background: The naid annelids contain a number of species that vary in their ability to regenerate lost body parts,
making them excellent candidates for evolution of regeneration studies. However, scant sequence data exists to
facilitate such studies. We constructed a cDNA library from the naid Pristina leidyi, a species that is highly
regenerative and also reproduces asexually by fission, using material from a range of regeneration and fission
stages for our library. We then sequenced the transcriptome of P. leidyi using 454 technology.

Results: 454 sequencing produced 1,550,174 reads with an average read length of 376 nucleotides. Assembly of
454 sequence reads resulted in 64,522 isogroups and 46,679 singletons for a total of 111,201 unigenes in this
transcriptome. We estimate that over 95% of the transcripts in our library are present in our transcriptome. 17.7% of
isogroups had significant BLAST hits to the UniProt database and these include putative homologs of a number of
genes relevant to regeneration research. Although many sequences are incomplete, the mean sequence length of
transcripts (isotigs) is 707 nucleotides. Thus, many sequences are large enough to be immediately useful for
downstream applications such as gene expression analyses. Using in situ hybridization, we show that two
Wnt/β-catenin pathway genes (homologs of frizzled and β-catenin) present in our transcriptome are expressed in
the regeneration blastema of P. leidyi, demonstrating the usefulness of this resource for regeneration research.

Conclusions: 454 sequencing is a rapid and efficient approach for identifying large numbers of genes in an
organism that lacks a sequenced genome. This transcriptome dataset will be a valuable resource for molecular
analyses of regeneration in P. leidyi and will serve as a starting point for comparisons to non-regenerating naids. It
also contributes significantly to the still limited genomic resources available for annelids and lophotrochozoans
more generally.
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Background
The process of regeneration, or the replacement of lost
body parts, has long captured the interest of biologists.
While early experiments on crayfish [1] and Hydra [2]
demonstrated the remarkable abilities of some animals
to develop lost parts anew, it is also clear that many ani-
mals, including humans, do not possess such abilities.
The ability to regenerate is thought to have been lost
over the course of evolution in many animal lineages
[3-5]. Despite recent advances in knowledge of the mo-
lecular and developmental basis of regeneration in a var-
iety of animal systems [6-8], little is currently known
about the developmental and evolutionary mechanisms
that drive loss of regeneration ability [5]. Understanding
this phenomenon requires a comparative approach and
the identification and development of animal systems
that show variation in regeneration ability among closely
related species.
The naid annelids are among a small number of docu-

mented groups in which regeneration ability varies among
close relatives [5,9-14], making them a good model for
studying the loss of regeneration. Naids (the minimal
clade including both the Naidinae and Pristininae) are a
group of small aquatic oligochaete worms, many of which
can reproduce asexually by fission [15]. Many naids, in-
cluding Pristina leidyi, possess excellent regeneration abil-
ities, being able to regrow both their heads and tails after
amputation. Following amputation, tissues at the wound
site actively proliferate and form a regeneration blastema
(a mass of undifferentiated cells) which ultimately differ-
entiates to give rise to regenerated structures [16]. The
ability to regenerate anteriorly and posteriorly is thought
to be ancestral for the clade. However, recent experiments
indicate that head regeneration ability has been lost at
least three times within the naids, allowing multiple inde-
pendent comparisons between regenerating and non-
regenerating species [9,10,17]. The degree of loss of the
regeneration machinery can vary between lineages, sug-
gesting that different developmental mechanisms may
underlie independent evolutionary losses of regeneration
[10]. Thus, in the naids, evolution has crafted an ideal
experiment for investigating loss of regeneration.
Much recent work on the developmental basis of re-

generation has focused on the role of signaling pathways,
such as the Wnt pathway, in recruiting stem cells and
promoting morphogenesis in regenerated tissues [18-29].
In order to investigate the role of signaling pathways and
other molecules in variation of regeneration ability, gen-
omic resources are needed for the naids. Recent advances
in high-throughput sequencing and bioinformatic ana-
lyses have made transcriptome sequencing feasible for
discovering novel genes in non-model systems.
454 pyrosequencing, with sequence reads now approach-

ing the length of traditional Sanger sequences, is ideal for
transcriptome sequencing in a model that lacks a
sequenced genome [30,31]. While the sequencing depth of
454 is modest compared to that of other deep sequencing
technologies, 454 does offer depth orders of magnitude
above what can be obtained via Sanger sequencing [32]. In
addition, recent versions of the Newbler assembler from
454 allow for assembling sequences from cDNA, grouping
presumptive gene isoforms together. Here, we describe the
sequencing and assembly of a full run of 454 GS FLX
sequencing with Titanium reagents from the regenerating
annelid P. leidyi.

Results and discussion
Genome size estimation
We estimated the genome size of P. leidyi and four other
naid species currently used in comparative regeneration
studies [10]. Using Feulgen densitometry analysis, we
estimated a C-value of 1.37 pg for P. leidyi and C-values
ranging from 0.54 to 1.09 pg for the four other naid spe-
cies (Additional file 1). Previously published estimates
for two naid species are 1.53 and 3.23 pg, and the mean
of values reported for oligochaetes is ~1.6 pg (range:
0.43 to 7.64) [33,34]. Thus, the genome size of P. leidyi
is typical for this group.

Construction of a partially normalized cDNA library
In order to maximize the discovery of genes in P. leidyi,
we constructed a partially normalized cDNA library from
mixed-stage regenerating and fissioning material (Figure 1).
Regeneration and fission are highly similar processes that
are thought to be evolutionarily related in these animals,
with fission hypothesized to have evolved by co-option of
regeneration [16,35]. Although the two processes are devel-
opmentally very similar, several studies have also demon-
strated clear differences between the two [16,35]. We thus
chose to include material from both regeneration and fis-
sion for this study to facilitate future studies of both pro-
cesses. Furthermore, because P. leidyi worms fission
continuously when well fed, we wanted to include fission
material in this transcriptome as it represents a "baseline"
process in these animals.
RNA was extracted from whole worms at multiple

time points between the initiation of regeneration and
its completion and from unamputated worms that were
actively undergoing fission. cDNA was synthesized with
an oligo-dT primer and a MINT full-length reverse-
transcription kit. PCR assays indicated that the dried
Spirulina powder used as food was not metabolically ac-
tive and could not be detected by RT-PCR in the cDNA
sample (Additional file 2).
A portion of the cDNA library was subjected to

normalization using a duplex-specific nuclease (DSN) in
order to avoid repetitive sequencing of highly expressed
genes [36,37]. Normalization efficiency was assayed using



Figure 1 Workflow of cDNA library construction. A mixed-stage
regeneration/fission cDNA library was generated from ~4,500 P. leidyi
worms. Anteriorly and posteriorly regenerating worms were
collected from 0 to 3.5 days after amputation (dotted lines mark
amputation planes; gray terminal masses represent regeneration
blastemas) and actively fissioning worms were also collected (gray
shading marks intercalated head and tail tissue that forms during
fission). Following RNA extraction and cDNA synthesis, a portion of
the pooled cDNA was normalized. The final library sent for
454 sequencing consisted of 2/3 normalized and
1/3 non-normalized cDNA.
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agarose gel smears and qPCR of select highly and lowly
expressed genes (Figure 2). Highly expressed genes from
non-normalized cDNA, visible as distinct bands on the
agarose gel, were absent or greatly reduced in the nor-
malized cDNA sample (Figure 2A). Furthermore, levels
of select genes known to have high (Pl-β-actin and Pl-α-
tubulin) or low (Pl-wnt-1, Pl-otx-2, and Pl-hox-Z) expres-
sion during P. leidyi regeneration, as previously deter-
mined by RT-PCR, were compared between normalized
and non-normalized cDNA samples (Figure 2B). The two
highly expressed genes, Pl-β-actin and Pl-α-tubulin,
showed a reduction in transcript levels of over an order
of magnitude upon normalization, while the proportional
representation of the three lowly expressed genes
increased in the library after normalization. Taken to-
gether, these data indicate successful normalization of
the cDNA library.
The overall amount of cDNA is greatly reduced during

normalization, making PCR amplification necessary to
produce a sufficient quantity of cDNA for 454 sequen-
cing. Because PCR has its own biases, particularly
against large amplicons, we pooled an unamplified, non-
normalized sample with a normalized sample in a 1:2
ratio to increase the representation of longer transcripts
(Figure 1). This pooled cDNA library was used for 454
pyrosequencing.

454 pyrosequencing and transcriptome assembly
The combined cDNA library was sequenced using a 454
GS FLX sequencer with Titanium reagents, producing
1,550,174 sequence reads with an average length of 376
nt. Total sequence output was 583,020,992 nt (Table 1).
The reads from this sequencing effort, collectively re-
ferred to as Pristina454RF (RF = Regeneration/Fission),
have been deposited in the NCBI’s Short Read Archive
(SRA) database [38] under accession # SRX110479.
454 sequence reads were assembled using the Newbler

Assembler v2.3 [31]. Sequence output using the cDNA
option of Newbler v2.3 differs from that of traditional gen-
omic assemblers (e.g. SeqMan NGen 2.0, CAP3, Newbler
2.2) by taking into account the possibility that multiple
isoforms (e.g. alternative splice variants) of a gene may be
present. Overlapping sequence reads are assembled into
contigs, much like traditional assemblers. However, if
multiple isoforms are present, a sequence read may con-
tain a portion that aligns perfectly with the previously
constructed contig and a portion that does not (with the
point of divergence being, for example, an exon-exon
junction). When this occurs, Newbler v2.3 breaks up the
aligned sequences into multiple contigs. Sequences shared
between multiple isoforms are retained as unique contigs,
and any adjacent variant sequences are split off as their
own unique contigs. Thus, a single gene isoform might be
assembled into multiple contigs, and the same contig
might be shared across multiple isoforms. Each putative
isoform identified by Newbler v2.3 is termed an isotig,
and the multiple isoforms for each gene are organized into
isogroups, representing putative gene loci.
Newbler v2.3 identified 95,644 unique isotigs, with a

mean length of 707 nt (Table 1), comprised of 186,015
unique contigs. Newbler grouped these into 64,522
unique isogroups (putative gene loci), and the mean of
the largest isotig from each isogroup is 549 nt (Table 1,
Figure 3). 46,479 of the original sequence reads could
not be assembled with any other sequence and remained
as singletons. In total, 111,201 unigenes (# isogroups + #
singletons) were predicted by Newbler v2.3 (Table 1).
Using the method of Susko and Roger (2004), we esti-
mate that 96.99% of all genes contained within the
cDNA sample are present in the 454 dataset (Table 1)
[39,40]. At this level of sequencing, a new gene is
expected to be discovered with every additional 33.21 se-
quence reads. The collection of isotigs and isogroups
produced by this transcriptome assembly, referred to as
Pristina454RF-N2.3, can be accessed directly at the



Figure 2 Effectiveness of normalization of the cDNA library using duplex-specific nuclease. (A) Agarose gel smears show that
non-normalized cDNA (treated with water) has distinct bands representing highly expressed genes, but these bands are absent in the normalized
sample treated with duplex-specific nuclease (DSN). (B) RT-PCR analysis of transcript levels indicates that representation of the highly expressed
genes Pl-β-actin and Pl-α-tubulin in the library is decreased after normalization with DSN. Representation of three lowly expressed genes, Pl-wnt-1,
Pl-otx-2, and Pl-hox-Z, is increased, consistent with successful normalization. Standard error bars are shown.
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BouillaBase EST Database [41]. General information
about accessing and searching this transcriptome is pro-
vided at the Bely Lab Resources webpage [42].
BLAST analysis of 454 isotigs
After assembly, the 95,644 isotigs were run through the
EST2uni analysis pipeline in order to provide annota-
tions from the UniProt database and create a searchable
online BLAST interface [43]. The largest isotig from
each isogroup was used as a representative for subse-
quent BLAST analyses (Tables 2, 3). 17.7% of isogroups
(11,388/64,522) had a significant BLAST hit (E-value
< e-10) against the UniProt database (Table 2). The vast
majority of these hits matched other animal sequences
(96.1%), though the number matching lophotrochozoan
taxa (the major bilaterian clade that includes annelids)
was low (1.5%), presumably due to a dearth of lophotro-
chozoan sequences in UniProt itself (Table 2).
Table 1 Sequence and assembly output

454 sequencing results

# reads 1,550,174 mean read length 376 nt

# nucleotides 583,020,992

Newbler Assembler v2.3 assembly results

# contigs 186,015

# isotigs 95,644 mean isotig length 707 nt

mean max isotig length 549 nt

# isogroups 64,522

# singletons 46,679

# unigenes 111,201

fraction captured transcripts 0.9699

gene discovery rate 33.21 reads/new gene
BLAST results suggest that our efforts to minimize en-
vironmental contamination were successful. BLAST
searches against the P. leidyi isotig dataset using either a
cnidarian or human 16 S sequence [Hydra magnipapillata:
GenBank:NC_011220|:307-2044; Homo sapiens: GenBank:
FJ794693.1|:1673-3230] retrieve isotigs matching to Pris-
tina 16S as the only hits with any reasonable significance
(E-value < 0.1), suggesting no metazoan contamination.
Furthermore, only a small number of isotigs matched pro-
karyotic genes (1.4%) (Table 2) and BLAST searches of the
P. leidyi isotigs using bacterial 16S RNA from either the
proteobacterium Escherichia coli [GenBank:4924485] or
the cyanobacterium Arthrospira platensis (Spirulina) [Gen-
Bank:FJ798612.1] return a very limited number of isotigs
(only nine, and the same nine, isotigs for both searches; E-
values < e-2). Interestingly, four of these isotigs match 16S
from bacterial genera known to be common endosym-
bionts in animal intestines (gammaproteobacteria
Edwardsiella/Xenorhabdus/Photorhabdus; bacteroidetes
Paenicardinium/Cardinium). Thus, some bacterial
sequences present in the transcriptome may represent the
endemic gut flora of P. leidyi.
To assess how well 5’ and 3’ ends were captured in

our dataset, isotigs with significant BLAST hits were
compared to their counterparts in UniProt (Table 3).
The proportion of isotigs with captured ends (within 10
amino acids of the corresponding end of the UniProt se-
quence) varies with the length of the coding sequence in
UniProt. Isotigs matching shorter UniProt sequences are
more likely to be complete on both the 5’ and 3’ ends
than isotigs matching longer UniProt sequences. 31.7%
of isotigs matching UniProt sequences of less than 250
amino acids are complete on both ends, while only a
single isotig matching UniProt sequences greater than
750 amino acids is complete. In total, 6.5% of isotigs can
be considered complete, 13.0% have captured the 5’ end,



Figure 3 Size distribution of largest isotig from each isogroup. A size distribution of the largest isotig from each isogroup shows that most
isotigs are several hundred nucleotides in length, though some isotigs are as large as several thousand nucleotides.
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16.1% have captured the 3’ end, and 64.3% have no
matches against either end. While we estimate that we
have captured the vast majority of transcripts in the ori-
ginal cDNA library (Table 1) and that there is no strong
bias towards either 5’ or 3’ ends, it is clear that most of
our unigenes consist of only partial transcript sequences.
Further sequencing, either in a high-throughput manner
Table 2 Annotation of isotigs

EST2uni BLAST results

queries 64,522 (max isotig per isogroup)

BLAST hits 11,388 (17.7%, E-value< e-10)

Taxonomic identity of top UniProt hit

Eukaryotes 11,227 98.6%

Animals 10,945 96.1%

Deuterostomia 9,444 82.9%

Ecdysozoa 1,291 11.3%

Lophotrochozoa 174 1.5%

Fungi 110 1.0%

Plants 84 0.7%

Protists 88 0.8%

Prokaryotes 154 1.4%

Viruses 7 0.1%

Total BLAST hits 11,388 100%
or on a targeted basis with genes of interest, will be ne-
cessary to fill in these gaps.
Gene ontology analysis of 454 isotigs
The set of representative isotigs was also subjected to a
Gene Ontology (GO) analysis using Blast2GO in order to
determine whether genes with GO terms relevant to re-
generation research could be identified [44,45]. 11,140 of
the 64,522 representative isotigs were associated with GO
terms. Significant numbers of these were associated with
the Biological Process terms “developmental process”
(27.5% of 11,140 GO-annotated isotigs searched), “signal-
ing” (20.6%), “death” (7.3%), “cell proliferation” (6.6%), and
“growth” (5.2%) (Figure 4). This analysis suggests that our
dataset contains many genes that are likely to be involved
Table 3 Isotig matches to UniProt database

UniProt ref. size

<250 aa 251-500 aa 501-750 aa >750 aa Total

Max isotigs

5’ + 3’ 31.7% 8.2% 1.4% <0.1% 6.5%

5’ only 22.1% 16.6% 11.4% 8.1% 13.0%

3’ only 26.4% 23.5% 15.1% 7.2% 16.1%

neither end 19.8% 51.7% 72.1% 84.6% 64.3%

Total 1383 3384 2578 4156 11,501



Figure 4 Gene Ontology Biological Process designations of isotigs. Representative isotigs were subjected to Gene Ontology (GO) analysis
using Blast2GO. Categories are level 2 Biological Process designations. Proportion on the y-axis was calculated from the total number of
representative isotigs that were annotated with GO terms (11,140).
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in regeneration. Results for Molecular Function and Cellu-
lar Process GO searches are provided in Additional file 3.

Identification of candidate regeneration genes
Using reciprocal BLAST searches between our transcrip-
tome and publicly available sequences, we identified pu-
tative P. leidyi homologues of genes that have been
implicated in regeneration in other regeneration models
(Table 4). The genes listed here are active in a range of
regeneration processes including wound healing, blas-
tema formation, stem cell regulation, and controlling cell
proliferation and morphogenesis [29,46,47]. Some genes
were represented by multiple isogroups, likely indicating
multiple unique homologs in P. leidyi. For example,
there appear to be multiple homologs of wnt and frizzled
in P. leidyi, which is consistent with what is known
about these gene families in other annelids or lophotro-
chozoans more broadly [19,48,49].

Independent confirmation of assembled transcripts
The utility of this transcriptome will ultimately be deter-
mined by whether these assembled sequences can be
independently confirmed and manipulated for further
studies. Because 454 sequencing has a nebulization step
and is not performed using intact transcripts, Newbler
v2.3 is unable to reconstruct with complete accuracy the
actual gene isoforms present in vivo. Therefore, isotigs
should be treated as predicted gene isoforms that require
independent confirmation, such as by PCR assay. Con-
tigs, on the other hand, already are well supported via
the original sequencing and are expected to be true con-
tiguous sequence and thus amplifiable by PCR.
We have used PCR assays to validate contigs and iso-

tigs from our assembly for over 20 genes to date and dis-
cuss here results for two well-characterized isogroups as
examples. One isogroup of interest (isogroup08478) was
identified via BLAST as a member of the piwi-like gene
family, which is implicated in stem cell regulation in sev-
eral systems [53-55,77]. This isogroup consists of two
isotigs, one comprised of three contigs and the other
comprised of only two of the three contigs (Figure 5A,
Additional file 4). We were able to recover by PCR and
confirm by sequencing all three contigs and one of the
isotigs for this isogroup. Another isogroup of interest



Table 4 BLAST results for candidate regeneration genes

Gene name [References] BLAST query Isogroup #

MMP [50-52] AY068367 00684, 55353

PIWI-like [53-56] DQ186986 08478

Nanos [57,58] EF153633 04448

β-catenin [19,20,23] EU296629 01340

Wnt [18,24,25,27] FJ463749 07867, 10773, 21383,
44961, 47307

Frizzled [20,59] AB201956 03233, 13291, 15038,
40749, 49382

GSK3β [60] DQ402057 03101, 07423,
11748, 64463

FGFR [25,61,62] NM_001090663 46357

JNK [63,64] NM_164900 01573

BMP [65-67] EF633689 05943, 26907

Noggin [66-68] EF633690 46857

Hh [69-72] NM_001088313 18046

Patched [70-72] AB504738 38195, 44428

Msx [73,74] AF061271 60588

Dlx [75,76] U59480 00856, 52001, 54688
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(isogroup03233) was identified via BLAST as a frizzled
gene, a major receptor in the Wnt signaling pathway
[59]. The transcriptome assembly for this isogroup is
more complex, as the isogroup consists of six isotigs and
six contigs, with each isotig comprised of a different sub-
set of contigs (Figure 5B, Additional file 4). Although the
Figure 5 Validation of transcript assembly for two isogroups. Contigs
(A) a putative piwi-like gene and (B) a putative frizzled gene. Blue boxes rep
adjacent to each other within the isotig. Short contigs of only a few nucleo
independently confirmed by PCR and sequencing are represented as filled
contigs that were independently confirmed by PCR and sequencing are in
contigs and one isotig for each gene (isotigs 33900 (A) and 19226 (B)) wer
Additional file 4.
genomic order of some contigs remains unclear for this
isogroup, all six contigs and one of the six isotigs were
recovered by PCR and confirmed by sequencing. Thus,
although some isotigs might be constructed as artifacts
of the assembly process, PCR assays demonstrate that
contigs and some isotigs can be independently validated.
This indicates that this 454 transcriptome dataset will be
highly valuable for further regeneration research.
Very limited sequence data were available for P. leidyi

prior to the current sequencing effort, but it is worth
noting that all four developmental genes that were previ-
ously isolated and characterized in this species [10,35]
are present in this transcriptome. BLAST searches
against the 454 dataset using the previously published
gene sequences for Pl-en, Pl-otx1, Pl-otx2, and Pl-nos as
queries retrieved one isotig matching Pl-otx1 and two
isotigs matching each of the other three genes (Figure 6).
Alignment of transcriptome sequences to published
sequences provides validation for the transcriptome as-
sembly for all four genes (Figure 6). However, for Pl-en,
Pl-otx2, and Pl-nos, the two isotigs retrieved are non-
overlapping, indicating the transcriptome sequences
remain unresolved. For Pl-en and Pl-nos, the isotig or
isotigs in the transcriptome cover most of the previ-
ously known sequence (and even extend the known
sequence), but for Pl-otx1 and Pl-otx2 the transcrip-
tome sequences represent only ~1/3 of the previously
known sequence (Figure 6). Thus, although gene rep-
resentation appears to be high in this transcriptome,
and isotigs produced by the assembly are shown for two isogroups,
resent major contigs and V-shaped lines connect contigs that are
tides are omitted in this representation. Contigs that were
blue boxes (as opposed to open boxes) and connections between
dicated by solid V-shaped lines (as opposed to dotted lines). All major
e validated. Nucleotide sequence alignments are provided in



Figure 6 Transcriptome coverage of four previously known gene sequences. All four developmental genes previously sequenced from
P. leidyi are represented in the transcriptome, although coverage is incomplete. Black bars represent previously known sequence for each gene
(GenBank numbers on left) and blue bars represent transcriptome sequences matching to or extending the reference sequence (isotig/contig
numbers on left).
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we expect that further sequencing, either in a high-
throughput manner or on an individual basis, will be
necessary to determine full-length sequences of many
transcripts.

Expression of wnt/β-catenin pathway genes during
regeneration
To further demonstrate the utility of our sequencing ef-
fort for regeneration studies, we examined the expres-
sion patterns of two genes present in the transcriptome,
homologs of frizzled (fz) and β-catenin (β-cat). These
genes were chosen because they are components of the
Wnt/β-catenin pathway, an important cell signaling
pathway implicated in numerous developmental pro-
cesses, including regeneration [18-29]. We identified
from our transcriptome several homologs of fz (a Wnt
ligand receptor) and a single homolog of β-cat (a multi-
functional protein that acts as a transcription factor
when Wnt signaling is activated). We examined expres-
sion of one of these fz homologs, Pl-fzA, and the
homolog of β-cat, Pl-β-cat, by whole mount in situ
hybridization of regenerating and fissioning P. leidyi.
During both anterior and posterior regeneration, Pl-fzA

and Pl-β-cat are expressed strongly and specifically
within the regeneration blastema, the mass of cells from
which the new structures will develop (Figure 7: A-D, F-I).
For both genes, expression becomes detectable at the
wound site between 12 and 24 hours after amputation,
around the time a blastema becomes visible, and expres-
sion then broadens as the blastema grows. Expression
remains high through mid-stages of regeneration, grad-
ually fading as the blastema differentiates. Pl-fzA is
expressed diffusely in much of the blastema but is weak
ventrally and highest in a lateral band on either side of
the blastema at mid-stages of regeneration. Pl-β-cat
shows broad and strong expression throughout the blas-
tema. Consistent with the idea that fission and regener-
ation are evolutionarily related processes, both genes are
also expressed in new tissue developing by fission, in pat-
terns largely similar to those during regeneration (Figure 7:
E, J). In situ hybridizations using control sense probes
yield only light diffuse staining suggestive of probe trap-
ping. Expression patterns of Pl-fzA and Pl-β-cat are dis-
tinct from each other and from those of other genes
investigated in this species, further indicating specificity
of our in situ results.
Our results provide the first expression data for

frizzled or β-catenin genes during annelid regeneration
and strongly implicate Wnt signaling in P. leidyi regen-
eration. They also add to the accumulating data showing
a close developmental relationship between regeneration
and fission in these animals. More broadly, these find-
ings demonstrate that sequences from this transcriptome
can provide new insights into annelid development, set-
ting the stage for future comparative studies of annelid
regeneration.

Applications for further regeneration research
This transcriptome dataset provides a valuable new re-
source for regeneration research in annelids. The work
described here already demonstrates the utility of this
dataset: our GO analysis suggests that a large number of
genes relevant for regeneration research are represented,
our sequence confirmation assays show that putative



Figure 7 Expression of two Wnt/β-catenin pathway genes during regeneration and fission. Whole mount in situ hybridizations of Pl-fzA (A-E)
and Pl-β-cat (F-J) show that both genes are expressed in the developing regeneration blastema as well as in new tissues forming by fission. (A-D)
Following anterior amputation, Pl-fzA expression is not detectable (or only faintly so) before a blastema forms (A: 12 hours post amputation (hpa)), begins
to be expressed in the early blastema (B: 1 day post amputation (dpa)) and persists through mid-stages of regeneration (C: 2 dpa). Pl-fzA is expressed in a
similar fashion during posterior regeneration (D: 2 dpa). (F-I) Following anterior amputation, Pl-β-cat is similarly not detectable (or only faintly so) prior to
blastema formation (F: 12 hpa), begins to be expressed in the early blastema (G: 1 dpa), and persists through mid-stages of regeneration (H: 3 dpa). Pl-β-cat
is also expressed during posterior regeneration (I: 2 dpa). (E, J) During fission, both genes are expressed in developing fission zones (E, J: early fission - stage
B), the transverse regions of tissue from which a new head and tail form (see Figure 1). All panels are lateral views with anterior to the left. Dark gray bars
mark the extent of new tissue, i.e., the regeneration blastema or fission zone. Arrows point to early phase of expression of each gene on day 1.
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transcripts from our assembly can be independently vali-
dated, and our expression studies demonstrate that
genes expressed during regeneration are indeed present
in this transcriptome and can provide new insight into
annelid regeneration.
This transcriptome resource promises to accelerate re-

generation research in P. leidyi and provides a stepping-
stone to studies of regeneration failure in closely related,
non-regenerating naid species. This dataset greatly facili-
tates gene discovery, allowing genes of interest to be
quickly identified and characterized by RT-PCR or in situ
hybridization. Importantly, this resource can also provide
a reference transcriptome for larger, genome-scale stud-
ies, such as high-throughput analyses of gene expression
by microarrays or RNA-Seq [78-80]. Extending these
approaches to closely related regenerating and non-
regenerating naid species holds great promise for eluci-
dating the genetic basis of both regeneration success and
failure.

Conclusions
This transcriptome sequencing project has produced the
first genomic-type sequence data for any of the naid anne-
lids, a promising group for understanding regeneration
loss. This dataset also represents the first regeneration-
based, large-scale sequence database for annelids as a
whole and thus provides a valuable resource for regener-
ation research more broadly. Our approach of using
mixed-stage starting material and combining normal-
ized/non-normalized cDNA pools was successful in pro-
ducing a transcriptome with high gene representation.
Based on BLAST searches for known regeneration genes
and relevant GO analyses matches, we conclude that our
methods captured a significant number of genes that may
be involved in regeneration. This transcriptome resource
enabled gene expression studies that have provided novel
insight into annelid regeneration, yielding the first evi-
dence suggesting that a cell-signaling pathway important
in other regenerating systems, Wnt/β-catenin signaling, is
initiated during annelid regeneration. Thus, this dataset
promises to be instrumental in determining which genes
are involved in regeneration processes in P. leidyi and
will subsequently inform evolution of regeneration stud-
ies in the naids as a whole.
The development of genomic resources for the Lopho-

trochozoa (the large clade of bilaterians including platy-
helminths, annelids, and molluscs, among others) has
lagged considerably behind that of other major groups of
animals. With the advent of less expensive sequencing
technologies and an increased appreciation of the value of
non-traditional model systems, genomic resources for this
group are finally becoming available. Transcriptomes have
recently been generated for a range of lophotrochozoan
taxa [81-87], including the highly regenerative planarians
[88,89]. The growing number of genomic resources for
lophotrochozoans promises to help fuel research on a
broad range of questions in this large and diverse clade.

Methods
Genome size measurement
The genome sizes of five naid species were estimated
using the Feulgen image analysis densitometry method
[90]. Individuals were obtained from laboratory cultures
of the following species: P. leidyi (Carolina Biological
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Supply Company), Allonais paraguayensis (Wards Nat-
ural Science), Dero digitata (originally collected from
Edwards Lake, University of Maryland at College Park,
USA), Dero furcata (Connecticut Valley Biological Sup-
ply), and Paranais litoralis (originally collected from
Herrington Bay, Deale, MD, USA). Fifty or more nuclei
were measured from each sample. The Integrated Op-
tical Density of the sample was converted to a genome
size value (in picograms) using Gallus gallus domesticus
(1.25 pg) as a standard.

Worm culture, sampling, and RNA extraction
To generate material for this sequencing effort, we estab-
lished twelve replicate lab cultures of a single clonal line
of Pristina leidyi (PRIle(cbs)cloneA). Each culture was
initially started with 100 worms and was maintained at
room temperature in 20 cm glass bowls filled with ~1 liter
of commercially purchased Poland Spring Water (PSW).
To ensure purity of the samples, worm cultures were
rinsed frequently to remove algae and debris and cultures
were routinely inspected visually for the presence of
small metazoans (e.g. rotifers). Worms were fed dried
Spirulina powder twice weekly, and water was changed at
least 1-2 times per week.
Possible contamination by the dried Spirulina food

source was assayed via PCR, using cDNA samples
derived from live Arthrospira platensis (Spirulina) as a
reference. RNA was extracted using TRIReagent (Ap-
plied Biosystems), and cDNA was constructed using ran-
dom oligos and Superscript III reverse transcriptase
(Invitrogen). Primers were constructed against the large
subunit of rubisco (rbcL) [GenBank:AY147205.1] and
c-phycocyanin (cpc) [GenBank:AF164139.1] genes of
A. platensis (Additional file 5).
Worms were collected at a range of stages of regener-

ation and fission (Figure 1). For the fission material, 1,000
worms that were actively growing and fissioning were col-
lected and starved for 24 hours. To generate regenerating
material, 3,485 worms were amputated anteriorly and pos-
teriorly and allowed to regenerate for various lengths of
time before collection. Most worms were actively fissioning
and consisted of chains of linked zooids at time of amputa-
tion. A cut was made 2 body segments anterior to the most
anterior fission zone to elicit posterior regeneration. A sec-
ond cut was made after the 6th body segment of the most
posterior zooid to elicit anterior regeneration. If a worm
did not consist of at least two nearly formed zooids, a sin-
gle cut after the 6th body segment was made to elicit anter-
ior regeneration. Because the initiation of regeneration
processes holds particular significance for future studies,
1,985 of the regenerating worms in the sample were
allowed to regenerate between 0 and 24 hours, which is
roughly coincident with the start of blastema formation.
Batches of 250 worms were also collected at 1.25 days
post-amputation (dpa), 1.75 dpa, 2 dpa, 2.5 dpa, 3 dpa, and
3.5 dpa, when differentiation of adult morphology is nearly
complete.
Fissioning and regenerating worms were washed 5x in

PSW prior to RNA extraction. RNA was extracted using
TRIReagent (Applied Biosystems), and RNA from all
samples was then pooled together.
cDNA library construction
We constructed a pooled cDNA library consisting of a
normalized fraction to capture lowly expressed tran-
scripts and a non-normalized fraction to capture large
transcripts that might be lost during the PCR amplifica-
tion steps of the normalization process.
First-strand cDNA (F.S. cDNA) was made using a

MINT full-length cDNA synthesis kit (Evrogen) and
manufacturer’s instructions. A modified oligo-dT primer
with breaks in the homopolymer-T run was used to
minimize the negative effects of an extensive homopoly-
mer run on 454 sequence quality (Additional file 5). A
portion of the F.S. cDNA was incubated for 2 hours at
15°C with NEB Buffer 2, DNA Polymerase I (New Eng-
land Biolabs), and RNase H in order to make full-length
double-strand cDNA. A fraction of F.S. cDNA was then
normalized with Evrogen’s duplex-specific nuclease
(DSN). F.S. cDNA-RNA duplexes in hybridization buf-
fer were denatured at 98° for 3 minutes and then
allowed to hybridize at 70°C for 5 hours. Preheated
DSN at 1/4x concentration was then added and incu-
bated for 20 minutes at 70°C. DSN stop solution was
then added, and the sample was incubated for 5 minutes
at 70°C. Normalized cDNA was then PCR amplified
using an Encyclo PCR kit (Evrogen). PCR conditions
were: 1 cycle × 95°C-1 min.; 17 cycles × 95°C-15 sec.,
66°C-20 sec., 72°C-3 min.; 1 cycle × 66°C-15 sec., 72°C-
3 min. Normalization efficiency was assayed via gel
smear and qPCR of genes with known relative abun-
dance (Additional file 5). qPCR analysis was performed
using LinRegPCR [91,92].
The non-normalized and normalized cDNA libraries

were then pooled in a 1:2 ratio (Figure 1).
454 sequencing
Five μg of pooled cDNA library was sent to the Roy J. Car-
ver Biotechnology Center at the University of Illinois for
sequencing. The cDNA library was sheared to 500-800 bp
in length, 454 sequencing adaptors were ligated onto ends
(Additional file 5), and the library was then converted to a
single-stranded template library. Three titration runs
(each of 1/16 lane) were performed to optimize sequen-
cing conditions. A full plate was then sequenced on a
Roche/454 GS FLX Sequencer using Titanium reagents.
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Assembly of 454 sequence reads
Reads from the full plate and three titration runs were
assembled using the Newbler Assembler v2.3 (Roche)
using default parameters under the cDNA option. Prior to
assembly, specified primers and adaptors were trimmed,
namely the oligo-dT primer, the MINT PlugOligo adapter
and PCR primer (Evrogen), and the 454 sequencing adap-
tors (Additional file 5).

Determination of fraction of captured transcripts
The coverage statistic developed by Susko and Roger
(2004) estimates the proportion of genes from a cDNA li-
brary that is actually represented in the sequence data [39].
Using this method, the unbiased estimate of coverage was

calculated for our transcriptome with the equation Ĉ = 1 –
n1/n, where n1 is the number of singletons in the assembly
and n is the total number of reads [39,40]. The new gene

discovery rate was estimated using the term 1/(1 – Ĉ ).

Annotation and analysis of BLAST hits
The set of 95,644 isotigs was input into the EST2uni anno-
tation pipeline using default parameters, but with PCR
marker integration, microarray printing, reciprocal BLAST
for orthologues, Gene Ontology, and RFLP integration
options turned off [43]. Within EST2uni, the CAP3 assem-
bly parameters were adjusted to –f 2 –g 100 –p 100 –d 110
to produce an assembly of all singletons, thereby preserv-
ing the isotigs produced by Newbler. Isotigs were anno-
tated if they produced BLASTX matches against
UniProtKB Release 2010_04 (23-Mar-2010) with E-values
less than e-10. Parsing of BLAST data for Table 2 was done
with custom Perl scripts (available upon request).
Completeness of annotated isotigs in Table 3 was per-

formed using only the largest isotig from each isogroup as a
representative for its putative gene locus. A Perl script util-
izing BioPerl modules (available upon request) was used for
completeness analysis. An isotig was considered complete
on either end if it matched within ten amino acids of the
corresponding end of the UniProt sequence [40].
The set of max isotigs was also used to identify Gene

Ontology (GO) designations using the program Blast2GO
[44,45]. Results from BLAST searches against the UniProt
database were imported from EST2uni, and GO annota-
tion in Blast2GO was performed with default parameters
(E-value threshold of e-6).

Identification of candidate regeneration genes
TBLASTX was used to search the P. leidyi isotig dataset
for homologs of genes implicated in animal regeneration
in the literature. A reciprocal TBLASTX search was then
performed against UniProt or the nr database via NCBI
to verify the putative identity of candidate regeneration
genes in P. leidyi.
Validation of transcript assembly
Transcript validation assays were performed for two iso-
groups, isogroup08478 (a putative piwi-like homolog)
and isogroup03233 (a putative frizzled homolog). Isotigs
of each isogroup were aligned together using ClustalX
v2.1 with manual editing by Seaview v4.0 [93,94]. PCR
was then performed to verify contigs and isotigs of each
isogroup (Additional file 5). PCR amplicons of the
expected size were either sequenced directly or cloned
into the pGEM-T Easy vector (Promega) prior to se-
quencing. Sequencing was performed using an Applied
Biosystems 3730 × l DNA Analyzer.
Transcript assembly was also verified for four previ-

ously known P. leidyi genes. BLAST searches against the
454 dataset were performed using the published gene
sequences of Pl-en [GenBank: AF336055.1], Pl-otx1
[GenBank: AF336056.1], Pl-otx2 [GenBank: AF336057.1],
and Pl-nos [GenBank: GQ369728.1]. GenBank sequences
were aligned to transcriptome sequences using Sequencher
v.4.7 (Gene Codes Corporation).
Analysis of gene expression by whole mount in situ
hybridization
A ~1250 bp fragment of Pl-fzA (isogroup23343) and a
~1300 bp fragment of Pl-β-cat (isogroup01340) were
amplified by PCR (Additional file 5). Synthesis of sense
and antisense riboprobes and in situ hybridization were
performed as previously described [35].
Additional files

Additional file 1: Genome sizes of five naid species. Genome sizes of
five species of naid worms, including P. leidyi, were estimated using the
Feulgen image analysis densitometry method.

Additional file 2: PCR assay for metabolic activity in dried Spirulina
food. To assess the possibility of dried Spirulina (used as P. leidyi food)
contributing to the cDNA library, we used PCR to detect the large
subunit of rubisco (rbcL) and c-phycocyanin (cpc) of Spirulina (Arthrospira
platensis). No PCR bands were detectable for either gene in negative
water controls (lane 1) while strong bands were detected when cDNA
from live Spirulina cultures was used as template (lane 2). Neither
Spirulina gene could be detected by PCR in the P. leidyi cDNA (lane 3),
though PCR of a positive control gene (Pl-α-tubulin) produced strong
bands using the same template (lane 4).

Additional file 3: Gene Ontology Molecular Function and Cellular
Component designations of isotigs. Representative isotigs were
subjected to Gene Ontology (GO) analysis using Blast2GO. Categories are
level 2 (A) Molecular Function and (B) Cellular Component designations.
Proportion on the y-axis was calculated from the total number of
representative isotigs that were annotated with GO terms (11,140).

Additional file 4: Nucleotide alignments for isogroups 08478 and
03233. Nucleotide alignment of isotigs from (A) isogroup08478, a
putative piwi-like gene, and (B) isogroup03233, a putative frizzled gene.
Alignments are diagrammed in Figure 5.

Additional file 5: Primer sequences. Primer sequences used for cDNA
synthesis, 454 adaptors, PCR detection of Spirulina metabolic activity,
qPCR of cDNA normalization efficiency, PCR validation of transcript
assemblies, and synthesis of in situ hybridization probes are provided. All
primer sequences are listed 5’! 3’.

http://www.biomedcentral.com/content/supplementary/1471-2164-13-287-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-287-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-287-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-287-S4.pdf
http://www.biomedcentral.com/content/supplementary/1471-2164-13-287-S5.pdf
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