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Abstract

Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable
production of second generation biofuels and other products of industrial biotechnology, efficient degradation of
non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture
of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi,
these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology
for evaluating the potential of a given fungus for polysaccharide degradation.

Results: Through the compilation of information from 203 articles, we have systematized knowledge on the
structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example,
we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus
forming an analysis framework, which can be queried. Combination of this information network with gene expression
analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this
organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the
degradation of oat spelt xylan.

Conclusions: The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a
powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach,
we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in

A. niger.

.

Background

Expression profiling of the genes encoding extracellu-
lar enzymes is of high relevance to several industries.
Commercial enzyme-preparation are often targeted to a
specific activity such as cellulase for the degradation of
cellulose and preparation of fabrics, or amylases for the
preparation of dense syrups from starch or similar com-
pounds. The world market for industrial enzymes is a
multi-billion dollar market [1]. Another emerging market
is the production of second generation biofuels. Energy-
efficient processes rely on enzymes produced by fungi and
other degraders of dead biomass (saprobes) to produce
cheap CO;-neutral fuels from non-edible plant matter [2].
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For this study, we have chosen to study the saprobic fun-
gus Aspergillus niger, a well studied, efficient, and widely
used enzyme producer [3,4].

The interest in profiling the expression patterns of genes
coding for polysaccharide-active enzyme is not new, but
few large-scale surveys have been done. An early study
was made by one of the authors [5] using Northern blot-
ting to create expression profiles of 26 pectinolytic genes
under 16 different growth conditions. The publication
of the first A. niger genome [3] provided the predic-
tion of 171 polysaccharide-active enzymes, along with
microarrays for expression profiling. This has catalyzed
more research, specifically the work of Martens-Uzunova
[6], where expression profiles of 21 pectinolytic genes
are examined. Other studies by Yuan et al. [7-9], exam-
ined the degradation of the polysaccharide inulin and
identified the regulating protein and, in one case, per-
formed expression profiling of genes from three out of
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the 36 carbohydrate-acting enzyme families predicted by
Pel et al. [3] to be present in A. niger. While studies of
this type address interesting parts of the polysaccharide
degradation potential, there is a need to evaluate the entire
scope of polysaccharides and enzymes, to fully address
the challenges involved in complete degradation of plant
biomass for biotechnology purposes.

The degradation of plant biomass is a complex proce-
dure requiring a cocktail of enzymes. Furthermore, the
polysaccharides are rarely found independently in nature.
hemicellulose, found in the cell walls of plants, are a
complex three-dimensional structure of several types and
structures of polysaccharides such as glucomannan, ara-
binan, and xylan. It has been shown in several studies
[10-12], that the presence of one simple saccharide can
trigger the expression of enzymes for the degradation of
an entirely different structure (as has been shown to be the
case with D-xylose [13]). Another possibility with indus-
trial applications is the use of a cheap carbon-source to
induce the enzymes required for degradation of a more
complex and expensive one [12,14]. One example is the
work of Yuan et al. [7], where sucrose induces the genes
for all of the enzymes required for degrading inulin.

With the complex regulation of expression of a large
number of different enzymes and the fact that many dif-
ferent enzymes are needed for the utilization of certain
carbon sources (see e.g. ref. [15]), it is necessary to apply
a systems-wide approach for mapping the regulatory net-
work. The enzyme expression network can be combined
and cross-triggered, so being able to examine the entire
system at once can shed light on systems that might
not be possible to pre-empt with a hypothesis-driven
approach.

In this study, we have compiled knowledge on the struc-
ture and degradation of 16 types of plant polysaccharides
from ;200 articles. This has been combined with a list of
188 genes from A. niger coding for carbohydrate-active
enzymes [3] to form a systematic graphical overview.

This makes it possible to highlight directly on the
polysaccharide structures e.g. which genes are actively
induced on a specific carbon source. This is a network-
based approach for interpretation of data, where the net-
work is provided by the structures of the extracellular
polysaccharides, in contrast to the intracellular metabolic
or regulatory networks often used for data-interpretation.

We apply this reconstructed network to investigate
how enzymes interact to degrade complex polysaccha-
rides with applications within sustainable biotechnology.
The correlation of gene expression analysis on three
monosaccharides and three complex carbohydrates with
the network allowed the detection of concerted enzymatic
actions as well as cross-induction of enzymatic cocktails.

We also see the combination of the network mapping of
available information on the structure of polysaccharides
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with the transcription analysis as a source of reference
for researchers interested in the induction of specific
carbohydrate-active genes on certain substrates.

Results and discussion

Polysaccharide mapping generates a graphical knowledge
base on biomass degradation

In a review of the available literature on the degra-
dation of polysaccharides by A. miger, information was
compiled on the following 10 types of polysaccharides:
starch, cellulose, pullulan, inulin, galactomannan, galac-
toglucomannan (soluble and insoluble), xyloglucan (types
XXGG and XXXG), as well as the following six distinct
components of pectin: smooth pectin (pectate), xylogalac-
turonan, arabinogalactan (type I and II, also known as
protein-bound arabinogalactan), arabinan, and rhamno-
galacturonan I. The last known polysaccharide compo-
nent of pectin, rhamnogalacturonan II, was not included
even though the structure has been elucidated [16], since
no studies of its degradation by A. niger were found in
the literature search. Analyses of the degradation of this
polysaccharide is made more difficult by the fact that it
is composed mainly of highly modified and rare sugars
and thought to be the most complex polysaccharide on
Earth [16].

Sixteen structures have been gathered in schematic rep-
resentations of each type of polysaccharide. An example of
this (for soluble galactoglucomannan) is found in Figure 1.
Schematic representations for all 16 structures and infor-
mation on the genes are found in Additional files 1, 2, 3, 4,
56,7, 8,910,11,12, 13, 14, 15and 16.

For each of these structures, the available literature
and sequence databases (Swissprot/Uniprot http://www.
expasy.org/sprot/) were examined and information was
gathered on the enzymes required for their degrada-
tion. This was integrated on the schematic representation
of the structure as EC numbers where available, or as
enzyme-names if the EC number was not available (As
demonstrated in Figure 1). This was compared to the
annotation of A. niger CBS 513.88 genome sequence [3]
to identify putative isoenzymes for each activity. For each
structure, this has resulted in a table containing the activ-
ities required for degradation, reference to literature on
the characterization of the genes and enzymes, as well
as information on the specificities where available. The
sequence information is found as Uniprot accession num-
bers as well as gene IDs in the A. niger CBS 513.88 and
ATCC 1015 sequence. Further information was found in
an analysis of the carbohydrate degradation genes from A.
nidulans [17]. An example of this is found in Table 1, with
the full table and tables for all 16 structures found in Addi-
tional file 17. This annotation is a valuable reference on
carbohydrate degradation by A. niger. The combination of
structures and specifics on required enzymatic activities
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Figure 1 Schematic representation of soluble galactoglucomannan. The nature of the bonds between the sugar units are noted where they

are known. The number of sides on the sugar polygons reflect the number of carbons of the sugar. The first carbon is indicated on all sugars with a 1
to clarify the bond configurations. Carbons are numbered clockwise from the first carbon with the two last carbons of the sugar (hexose or pentose)
on the same corner of the polygon. The oligos are hypothetical hydrolysis products and sugars that appear due to the action of exo-acting enzymes.

The structure is based on the reportings of refs. [18-21].

Table 1 Extract of Additional file 17: Table S6 of the enzymatic activities required for the degradation of soluble
galactoglucomannan by A. niger

EC number Name CAZy Gene characterization  Specificity Gene Uniprot CBS513.88 ATCC1015
3.2.1.78 Endo-1,4-B-D-mannanase GH5 [22] [22] An05g01320 50378
3.2.1.78 Endo-1,4-B-D-mannanase  GH26 An15g07760 40875
3.2.1.25 B-mannosidase GH2 An01906630 172587
32.1.25 B-mannosidase GH2 [23-25] [23,24] mndA  Q9UUZ3  An11g06540 138876
32122 a-galactosidase GH36 [24,26] [24] aglC QouUUZ4  An09g00260 212736
32122 a-galactosidase GH27 An01g01320 172232
32122 a-galactosidase GH27 [26,27] aglB QIY865 An02g11150 207264
32.1.22 a-galactosidase GH27 [26,28,29] aglA A2QL72 An06g00170 37736
32121 B-glucosidase GH3 An15g04800 181816
32121 B-glucosidase GH3 An17g00520 129891
32121 B-glucosidase GH3 [30-36] bgl1 A2RAL4 An18g03570 56782
32123 B-galactosidase GH35 An01g10350 46429
32123 B-galactosidase GH35 An14905820 41910
32123 B-galactosidase GH35 [26] lacA P29853 An01g12150 51764
3.1.16 Acetyl esterase CE16 An02902540 N/A

For each isoenzyme, putative or characterized, is noted literature references and the gene ID in the sequencings of A. niger CBS 513.88 and ATCC 1015. CAZy families

are shown in the CAZy columnn [37], The list of necessary enzymes are gathered from the work described in refs. [18-21].
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and genes makes this a significant extension of previous
studies, which are dealing with a subset of the structures
and generic enzymatic activities [15].

For a number of the studies found in the literature
search, it was not possible to link the characterized
enzymes with a sequence as only molecular mass and/or
isoelectric point of the characterized enzyme(s) were
given. However, as these characterizations still include
valuable information on the enzymatic capabilities of A.
niger, in Additional file 17: Table S17 includes an overview
of the literature on characterizations of 24 enzymatic
activities, where the gene could not be determined.

The mapping of these 16 structures includes infor-
mation on 115 unique putative and characterized
carbohydrate-active genes from the A. niger CBS 513.88
sequence [3], and 106 from the A. niger ATCC 1015
sequence (117 unique genes) [4]. Of these, the products
of 57 of the genes have been previously characterized
(See Additional file 17 for references). In total, the inte-
grated information includes references to 203 articles. A
full overview of the structures and the integrated genes is
available in Additional file 18.

This map also includes a section with an overview of all
of the 171 genes identified to code for putative or known
polysaccharide-acting enzymes sorted into gene families.
A plotting of expression indices directly on the structures
of the map as well as in the overview section makes a
systems-wide examination possible as described in the
following.

Transcriptome analysis

To assess the regulatory network of genes for extracellular
enzymes, A. niger was cultivated on six different carbon
sources: three mono-saccharides (D-glucose, L-arabinose,
and D-xylose), and three complex polysaccharides with a
defined composition of sugars (starch, arabinan, and oat
spelt xylan). Crude preparations of polysaccharides may
include a multitude of undefined sugars and other types of
compounds. The use of defined complex polysaccharides
in this type of analysis allows for stronger conclusions on
which saccharides induce which genes.

The batch cultivations were performed in shake flasks
and samples were taken for transcriptome analysis and
determination of free sugar concentrations (Table 2). Pair-
wise statistical comparisons of data from the sets of
biological replicates were performed, and the number of
statistically significantly (Benjamini-Hochberg adjusted p-
values < 0.05) regulated genes in each comparison is
shown in Table 3.

In an examination of the sugar-concentration measure-
ments of Table 2, it is rather clear that the sugar-profiles at
the time of sampling for transcriptome analysis are quite
different, thus giving clear difference between the exper-
imental conditions. The only exception is the profiles on
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the D-glucose and starch media, where the concentrations
of free D-glucose are rather similar. This is most likely
due to the fact that the strain employed is an amylase-
producer, meaning that starch is rapidly be hydrolyzed
to D-glucose, thus making the actual difference between
the two carbon sources small. This is reflected in the
transcriptome comparison of Table 3, where it is seen
that only 27 genes show significant changes in expression
between D-glucose and starch. These genes could either
be false positives, genes responding to polysaccharides
present in the degraded starch medium, or genes respond-
ing to the difference in D-glucose concentration between
the two conditions (Table 3). While polysaccharide induc-
tion is not unlikely, A. niger is also known to have gradual
responses from 0.5 — 100 mM D-glucose [38].

In a closer examination of Table 3, it is seen that a
larger number of genes are responding to the polysaccha-
rides xylan and arabinan compared to the monosaccha-
rides and starch. This is expected since degradation of
the diverse components and types of covalent bonds con-
stituting complex carbon sources must require a larger
set of genes than a simple one-sugar monosaccharide
substrate. Furthermore, as can be seen in Table 2, the
concentration of free sugars is roughly an order of magni-
tude lower in the medium containing the complex carbon
sources. It has been shown that CreA mediates carbon
repression of xylanolytic enzymes by D-xylose, begin-
ning at 1 mM and increases in strength up to in the
area between 30-70 mM [39,40]. These ranges are sim-
ilar to the concentrations in the comparison of D-xylose
and xylan in this study. Similar effects within the same
ranges of concentration are known for AraR and XInR (L-
Arabinose and D-xylose metabolism [41-44]), as well as
for AmyR (Glucose-repression [38]). Cross-regulation of
these carbon-repressing proteins has also been reported
[40]. The free sugars are seemingly released from the
polysaccharides (except starch) in a rate that effectively
lessens the effects of carbon repression on these media.

Table 2 Biomass and sugar concentrations at the time of
RNA-sampling from cultivations on six different carbon
sources

Biomass Xylose Arabinose Glucose

Carbon source [g/L] [mM] [mM] [mM]
Arabinan 4284042  0.004+0.00 5794233 -
Arabinose 5.72+0.30 0.00+£0.00 45.03+6.79  0.00£0.00
Glucose 6.49+0.96 - - 34.75+£4.66
Starch 7.49£0.60 - - 23.48+0.56
Xylan 9.0040.36 4.4010.60 0.8040.73 -
Xylose 6.24£021 425611945 - -

All values are shown as average+standard deviation. Cells marked with - were
not measured.
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Table 3 Overview of significantly regulated genes between cultivations on six different carbon sources

Xylan Starch Arabinan Xylose Glucose
Arabinose 991 (3181/673]) 220 (1101/1104) 1281(10481/233)) 25(61/19)) 92 (161/76)
Glucose 1087 (3754/712) 27 (174/10)) 1874 (14851/3891) 59 (501/9)
Xylose 387(1091/278]) 124 (524/72) 1844 (14491/395))
Arabinan 2999 (5091/2492) 1936 (4731/1463])
Starch 361 (1271/234])

The first number in the cells is the number of significantly regulated genes in the pairwise comparison of the carbon sources in the top row and left column. The
number marked with an 4 are the genes that are up-regulated on the carbon source in the top row relative to the one in the left column, while the number with an |,

denotes the opposite.

The differences in induction were examined by prepar-
ing a map of the carbohydrate active enzymes for
each pairwise comparison. For each map, the statisti-
cally significantly changed gene expressions are shown
(Additional files 1, 2, 3, 4, 5,6, 7, 8, 9,10, 11, 12,
13, 14, 15, 16, 19, 20, 21, 22, 23 and 24). This gives
maps of the enzymatic activities induced by a specific
monosaccharide or the required enzymatic activities for
degradation of a specific polysaccharide. A few examples
of comparisons that showed results on a systemic level
are discussed here:

Arabinan versus L-arabinose

The comparison of these two carbon sources (Additional
file 19) showed a diverse response. Regulation was found
in 27 of the 36 carbohydrate-acting gene families pre-
dicted to be present in A. niger [3]. As the mapping shows,
the induction on arabinan unsurprisingly includes all of
the activities required to degrade arabinan (Additional
file 17: Table S15), but also the entire sets of genes required
to degrade the pectin components xylogalacturonan, ara-
binogalactan and rhamnogalacturonan. This is very likely
due to the presence of small amounts of rhamnose, galac-
tose, and galacturonic acid in the preparation of arabinan,
as described in the materials section. Galacturonic acid is
known to induce pectinolytic enzymes [12,14]. The induc-
tion on arabinan also includes activities directed towards
acid-residues not described in the arabinan preparation,
e.g. genes putatively acting on glucuronic acid of arabino-
galactan, rhamnogalacturonan acetyl esterase (rgaeA),
and ferulic acid esterase B (faeB) acting on arabinan.
These enzymes are reacting to compounds found in ara-
binan and rhamnogalacturonan I (where arabinan is a
component, see Additional files 15 and 16). It is there-
fore likely that triggering residues are present in minute
amounts in the preparation.

Arabinose versus D-glucose

Despite only 92 genes being regulated, a mapping of these
genes revealed that 13 of them were coding for putative
polysaccharide-active gene products (Additional file 21)
and all of them induced by L-arabinose. Interestingly,

all three of the induced arabinan-acting genes were exo-
acting arabinofuranosidases (EC 3.2.1.55), including the
characterized abfA and abfB [5,10,11,39,45-49]. How-
ever, the remaining induced genes constitute all of the
activities of the xylan-acting genes (Additional file 17:
Table S9), including B-galactosidase lacA, endo-xylanases,
and o-galacturonase A (aguA), suggesting that L-
arabinose alone can induce the entire complex of xylan-
degrading enzymes.

Starch versus xylan

A comparison of these two carbon sources is espe-
cially interesting, as no bond-types are shared between
the two. Mapping of the significantly regulated genes
(Additional file 22) indicates just this. The regulated genes
are limited to all of the activities required to degrade
starch (up-regulated on starch) and the activities required
for degradation of xylan (up-regulated on xylan). Those
up-regulated on starch include glucoamylase A (glaA),
a-glucosidase A (aglA/aglill) as well as one or more
of the three genes for «-amylase (amyA, amyB, and
gene ID 140567) with almost identical nucleotide-level
sequences. It is not possible with an expression analy-
sis to differentiate between them. The genes induced on
xylan are the same genes as described to be induced
by L-arabinose in the comparison of L-arabinose and
D-glucose, with the exception that the endo-xylanase
xInB is induced on xylan instead of the putative endo-
xylanase An15g04550/183088 that is induced by L-
arabinose. We have thus identified a full set of extracellular
polysaccharide-acting genes for the degradation of oat
spelt xylan and starch and shown that with the exception
of xinB, L-arabinose induces the same array of xylan-
degrading enzymes as does xylan (at the concentrations
examined here).

Transcription-based clustering

To further investigate the regulation of single genes and
the functions of genes that appear to be co-regulated,
a clustering analysis of the expression indices of all
161 putative and characterized glucoside hydrolases,
polysaccharide lyases and carbohydrate esterases on the
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six different carbon sources was performed, thus includ-
ing also genes which could not be assigned directly
to a polysaccharide structure. (Figure 2). 24 gene clus-
ters were identified. Clustering allows the identification
of genes that are only induced by the complex sub-
strates, as well as genes that are induced equally well
by a particular monosaccharide as well as the complex
polysaccharide.

The transcription profile of each cluster (Figure 2) was
examined and classified in terms of regulation on the
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different carbon sources (Additional file 17: Table S18).
If a distinct regulation was evident from the cluster-
ing profile, this information was added to the table as
well, making this an overview of regulation and possible
polysaccharide specificity for each of the 161 genes in the
survey. The same study was made for the subset of genes
coding for carbohydrate-active enzymes that were signif-
icantly regulated in one or more pairwise comparisons
(Additional file 23 and Additional file 17: Table S19).
This subset consists of 103 of the 161 genes, and 47 of
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Figure 2 Clustering of 161 putative and characterized genes coding for polysaccharide-active enzymes according to expression profiles.
The number of genes in each cluster is shown next to the cluster number. The gene names of known genes found in a particular cluster are found in
each cluster. The genes were clustered using the ClusterlLustre algorithm [50].
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the 57 characterized genes. However, as can be seen in
Additional file 23, the clustering of the subset is very
similar to those of the full set of genes (Figure 2). A com-
parison of the clusters of the two studies are also present in
Additional file 17: Table S19. Since the majority of the
genes were significantly regulated, and the remainder fall
mostly in the same clusters, the following detailed analy-
sis of the clustering was made using the full set, thereby
giving information on the expression patterns of as many
genes as possible.

As it is evident from Figure 2, clusters 21-24 are highly
similar. In making the clusters, it was attempted to use
fewer clusters, and thereby combine these four clusters,
however this combination required a decrease of the total
numbers of clusters to 10, which increased the varia-
tion in the other clusters dramatically (Data not shown).
For this reason, it was concluded that they have dis-
tinct patterns, as the small standard deviations of the
clusters also suggest, and they have been kept as sepa-
rate clusters. Furthermore, as clusters 21-24 are almost
solely induced on arabinan, one would need to include
more pectin-like substrates, e.g. polygalacturonic acid, in
the analysis to be able to differentiate between the reg-
ulation of these genes. However, what one can conclude
from this is that the genes of cluster 24 are specific for
arabinan, and are not induced by any of the other sac-
charides in this study. It is interesting that axhA clusters
with this group, as it was previously shown to be induced
on birchwood xylan but not on D-xylose [41]. However,
no induction on xylan is seen for cluster 24, suggesting
that this gene is not induced by oat spelt xylan in this
strain.

In examining the clusters for general trends, it was
found that for most of the clusters, regulation on
D-glucose and starch are very similar. This is in good
agreement with the high level of free D-glucose in both
cultures shown in Table 2. Exceptions are clusters 8, 9,
15, 18, and 20, which should be interesting for determin-
ing genes that are sensitive to degradation-products of
starch, but not necessarily statistically significant in the
comparison of starch versus D-glucose (Table 3).

For each cluster, a map marking the genes of that clus-
ter was prepared and examined to determine an activity
profile if possible (Additional file 24).

Several of the clusters are targeted to a specific
type of polysaccharide. One example hereof is clus-
ter 1. While it does not containing any characterized
genes, the genes of the cluster are quite specifically pre-
dicted to code for enzymes with activity towards galac-
tomannan and insoluble galactoglucomannan (Additional
file 24). This homogeneity of functions confirms the puta-
tive annotations. As the cluster is up-regulated on the
mono-sugars and the relatively easily degradable potato
starch, it is likely that this cluster contains genes are
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induced by mono-sugar-abundance and code for a set
of “scouting enzymes” with the role to liberate more
substrates.

Cluster 5 has the highest level of expression on D-
glucose and starch carbon sources. An examination of it
with the enzyme mapping (Additional file 24), reveals that
it constitutes a full set of co-regulated starch-degrading
enzymes. The individual genes found in the cluster encode
solely amylases and glucosidases, including glucoamy-
lase A (glaA) and one or more of the three o-amylases
with similar sequences discussed above (including amyA
and amyB). The starch part of the map can be found in
Figure 3. The fact that these enzymes cluster together can
be seen as a validation of the transcription analysis and the
clustering employed.

Rather interesting is the observation that the hemicellu-
lose component arabinan seems to induce enzymes acting
on cellulose and other S-glucans (Additional file 24). This
is seen in clusters 17 and 19, each containing one of
the characterized cellobiohydrolases (which were shown
to be induced on D-xylose [51]) and several putative
B-glucosidases. B-glucans are not found as components
of pectins, which makes this pattern a genuine induc-
tion across carbon-sources of entirely different chemical
make-up.

As discussed above, the profile of cluster 24 indicates
that it mainly contains genes that can be described as
pectinolytic. A map inspection (Additional file 24) con-
firms that these genes have a very distinct profile including
all enzymatic activities for the degradation of rhamno-
galacturonan I, smooth pectin, and xylogalacturonan, all
components of pectin, as are arabinan.

Comparison of transcriptional regulation to previous
studies

As described in the introduction, relatively few large-scale
studies exist where the carbon source-based induction
of extracellular enzymes have been studied. There is lit-
tle overlap in the carbon sources employed in this study.
Studies of polysaccharides have mainly been done with
di-saccharides such as maltose or sucrose [7] or on com-
mercial preparations of pectin for food gelling [5,6]. How-
ever, a few have been made, which will be compared to
the results of the present study here. A relatively larger
number of studies including single or a few genes are pub-
lished, however, these have been cited in the text above
where appropriate, and in Additional file 17.

The method applied here is comparable to a study of
one of the authors, where a principal component analysis
(PCA) allows clustering according to expression profiles
[5]. While that study focuses mainly on pectinolysis, it
includes studies of growth on D-glucose, D-xylose, and
L-arabinose. The study describes abfA, abfB, and lacA as
being co-regulated and induced by 25 mM L-arabinose,
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Figure 3 Map of starch-degrading enzymes in cluster 5. Genes marked with a red box are found in the cluster, gray boxes means that the gene
is found in the A. niger CBS 513.88 sequence, but no bi-directional best hit is found in the A. niger ATCC 1015 sequence.

which is in good accordance with the results of this work,
as all of these are found in cluster 13. Interestingly how-
ever, that work also reports abnA as being induced by
L-arabinose and co-regulated with abfAB and lacA, but in
the present work, only induction on arabinan is seen (clus-
ter 24), and with a statistically significant up-regulation on
arabinan in all pairwise comparisons. This may be due to
our higher concentration of L-arabinose (45 mM relative
to 25 mM) leading to differences in carbon-repression.
The PCA also indicates a close relationship between
pmeA, pgaX, and abnA, which describes accurately the
patterns of cluster 24.

faeA and faeB are known to be largely co-regulated, but
faeA is induced on D-xylose due to an induction by the
xylanolytic regulator XInR [5,41]. faeA and faeB are sepa-
rated in clusters 10 and 14, that are very similar, but cluster
10 responds to D-xylose, whereas cluster 14 responds to
the ferulic acid-containing arabinan, suggesting that faeB
is more targeted to arabinan.

Another study [9] examines induction of genes on D-
xylose and maltose, which has an «-1,4-glucoside bond
similar to starch. In Figure two in ref. [9], eleven genes
can be seen to be induced by maltose and/or D-xylose
(An11g03340, An04g06930, An01g06120, Anl4g04190,
An12g02450, An09g03070, agdA, An01gl10930, glaA,
An09g05880, An09g03300). All of these are regulated in
a similar fashion in the present work, if maltose (Glc-a-
1,4-Glc) is seen to be similar to starch ((Glc-a-1,4-Glc-
a-1,4-),).

Conclusions

Enzyme preparations have multiple areas of application
and are a billion dollar market with a low cost/profit ratio.
Thus, it is of great importance and interest to gain an
understanding of the processes leading to production of
enzymes with a specific profile.

In this study, the first genome-scale characterization of
all genes coding for carbohydrate-active enzymes identi-
fied in A. niger is provided. Based on a review of more than
200 articles and sequence database searches, information
of 117 genes and enzymes has been systematized accord-
ing to the polysaccharide structures they degrade, thereby
providing an updated reference on extracellular enzyme-
expression in A. niger. This data-integration effort has
produced schematic representations (maps) of 16 types of
polysaccharide-structures specifically updated with the A.
niger enzymatic machinery.

An application of this knowledge was performed in
a transcription study where statistical analysis as well
as expression-level-based clustering and mapping were
employed to provide transcription profiles of 161 genes
on six defined carbon sources, thereby adding consid-
erably to our knowledge of the transcription-level reg-
ulation of these genes. New knowledge was generated
on the carbon source-based transcriptional regulation of
previously characterized genes including, but not lim-
ited to, abfA, abfB, aglA, cbhA, cbhB, glaA, eglA, eglB,
faeA, faeB, lacA, pelA, pelB, pelC, xInB, and xynA as
well as more than 100 uncharacterized genes predicted
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to code for carbohydrate-active enzymes. The mapping
of transcribed genes allowed us to identify induction
by mono-saccharides of complete sets of enzymes for
degradation of complex substrates, as well as the induc-
tion of cellulolytic enzymes on a hemicellulose substrate,
e.g. xylan.

Methods

Cultivation procedure

Strain information

The strain used was A. niger BO-1, a progenitor to high-
yield amylase-producing industrial strains, obtained from
Novozymes A/S. The strain is maintained as frozen spore
suspensions at -80°C in 20 % glycerol.

Growth media

Complex medium: 2 g/L yeast extract, 3 g/L tryptone, 10
g/L glucose monohydrate, 20 g/L agar, 0.52 g/L KCl, 0.52
g/L MgSO4 - 7H20, 1.52 g/L KH2POy4, and 1 mL/L of
trace elements solution. Trace element solution: 0.4 g/L
CuSOy4-5H30, 0.04 g/L NazB4O7 - 10H20, 0.8 g/L FeSOy -
7H,0, 0.8 g/L MnSO4-H>0, 0.8 g/L NayMoOy - 2H,0, 8
g/L ZHSO4 . 7H20.

Batch cultivation medium salt concentrations: 2.5 g/L
(NH4)2S04, 0.75 g/L KHPOy, 1.0 g/L MgSOy - 7H,0, 1
g/L NaCl, 0.1 g/L CaCl, - 2H50, 0.05 mL/L antifoam 204
(Sigma), and 1 mL/L trace element solution. Trace ele-
ment solution composition: 7.2 g/L ZnSO4 - 7H50, 0.3 g/L
NiCly -6H20, 6.9 g/L FeSO4-7H20, 3.5 g/L MnCl, -4H,0,
and 1.3 g/L CuSOy - 5H30. The carbon sources used for
the cultivations were D-glucose-HpO (20 g/L), D-xylose
(20 g/L), L-arabinose (19.5 g/L + 0.5 g/L D-glucose), sugar
beet arabinan (Megazyme, P-ARAB) (16.3 g/L), oat spelt
xylan (Sigma, no 95590) (16.2 g/L), and potato starch
(Sigma, no 85650) (16.5 g/L). These concentrations all
equal 0.61 Cmole/L. Cultivations with L-arabinose were
added D-glucose in order to make the spores germinate.

Sugar beet arabinan (Megazyme) is 95% pure 1,5-
a-L-arabinan containing arabinose:galactose:rhamnose:
galacturonic acid in the ratios 88:4:2:6. The documen-
tation further describes the arabinan as being “a poly-
mer of 1,5-alpha-L-linked arabinofuranose units which
is highly substituted by 1,3- and 1,2-linked single o-L-
arabinofuranose residues. About 50% of 1,5-linked arabi-
nosyl residues in the main chain are substituted by 1,3 or
1,2 linked arabinofuranosyl branches”

Oat spelt xylan (Sigma) contains <10% L-arabinose,
<15% D-glucose, and >70% D-xylose.

Shake flask cultivations

Shake flasks were initiated by spore inoculation to a final
concentration of 2x10° spores/L. Spores were propagated
on complex medium plates and incubated for 7-8 days at
30°C before being harvested with 10 mL of 0.01% Tween
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80. All cultivations were carried out in 500 mL baffled
shake flasks with a total volume of 200 mL liquid medium
at 30°C and 150 rpm. The initial pH was set to pH 2.5
to avoid pellet formation. The entire content of the shake
flask was harvested when the biomass concentration was
approximately half the maximum biomass concentration
on the given medium (mid-growth phase). All cultivations
were performed in biological triplicates except starch,
where a duplicate culture was performed.

Sampling

Cell dry weight was determined using nitrocellulose fil-
ters (pore size 0.45 um, Gelman Sciences). The filters
were pre-dried in a microwave oven at 150 W for 15 min-
utes, cooled in a desiccator and subsequently weighed. A
known volume of cell culture was filtered and the residue
was washed with 0.9% NaCl and dried on the filter for
15 minutes in a microwave oven at 150 W and cooled in
a desiccator. The filtrate was saved for quantification of
sugars and extracellular metabolites and stored at -80°C.
The filter was weighed again and the cell mass concentra-
tion was calculated. These values were used to calculate
maximum specific growth rates. For gene expression anal-
ysis, mycelium was harvested at the mid-late exponential
phase (at approximately half the maximum concentration
of biomass) by filtration through sterile Mira-Cloth (Cal-
biochem) and washed with a PBS buffer (8 g/L NaCl,
0.20 g/L KCl, 1.44 g/L NagHPOg, and 0.24 g/L KHyPOq4
in distilled water). The mycelium was quickly dried by
squeezing, and subsequently frozen in liquid nitrogen.
Samples were stored at -80°C until RNA extraction.

Quantification of sugars

The concentrations of sugar in the filtrates were deter-
mined using HPLC on an Aminex HPX-87H ion-exclusion
column (BioRad, Hercules, CA). The column was eluted
at 60°C with 5 mM H;SOy4 at a flow rate of 0.6 mL/min.
Sugars were detected with a refractive index detector and
a UV detector.

Transcriptome analysis

Extraction of total RNA

40-50 mg of frozen mycelium was placed in a 2 mL
Eppendorf tube, pre-cooled in liquid nitrogen, contain-
ing three steel balls (two balls with a diameter of 2 mm
and one ball with a diameter of 5 mm). The tubes were
then shaken in a Mixer Mill, at 5°C for 10 minutes, until
the mycelium was ground to powder. Total RNA was iso-
lated from the powder using the Qiagen RNeasy Mini Kit,
according to the protocol for isolation of total RNA from
plant and fungi. The quality of the extracted total RNA
was assessed using a BioAnalyzer 2100 (Agilent Tech-
nologies Inc., Santa Clara, CA, USA) and the quantity
determined using a spectrophotometer (GE Healthcare
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Bio-Sciences AB, Uppsala, Sweden). The total RNA was
stored at -80°C until further processing.

Preparation of biotin-labeled cRNA and microarray
processing
15 pg of fragmented biotin-labeled cRNA was pre-
pared from 5 ug of total RNA and hybridized to the
3AspergDTU GeneChip [13] according to the Affymetrix
GeneChip Expression Analysis Technical Manual [52].

cRNA was quantified in a spectrophotometer (same as
above). cRNA quality was assessed using a BioAnalyzer.
A GeneChip Fluidics Station FS-400 (fluidics protocol
FS450.001) and a GeneChip Scanner 3000 were used for
hybridization and scanning.

The scanned probe array images (.DAT files) were con-
verted into .CEL files using the GeneChip Operating
Software (Affymetrix).

Analysis of transcription data

Affymetrix CEL-data files were preprocessed using the
statistical language and environment R [53] version 2.6.1.
The probe intensities were normalized for background
using the RMA method [54] using only perfect match
(PM) probes. Normalization was performed subsequently
using the quantiles algorithm [55]. Gene expression values
were calculated from the PM probes with the median-
polish summary method [54]. All statistical preprocessing
methods were used by invoking them through the affy
package [56].

Statistical analysis was applied to determine genes sub-
ject to differential transcriptional regulation. The limma
package [57] was used to perform moderated t-tests
between two sets of triplicates from each pH level. Empir-
ical Bayesian statistics were used to moderate the stan-
dard errors within each gene and Benjamini-Hochberg’s
method [58] to adjust for multi-testing. A cut-off value of
adjusted p<0.05 was set to assess statistical significance.

Normalized and raw data-values are deposited with
GEO as series GSE11930.

Clustering

Genes were clustered using the clustering algorithm Clus-
treLustre [50], using k-means clustering, a pearson-based
distance measure and accounting for biological replicates.

Additional files

Additional file 1: Schematic representation of starch. The nature of
the bonds between the sugar units are noted where they are known. The
number of sides on the sugar polygons reflect the number of carbons of
the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on ref. [59].
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Additional file 2: Schematic representation of cellulose. The nature of
the bonds between the sugar units are noted where they are known. The
number of sides on the sugar polygons reflect the number of carbons of
the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [20,60].

Additional file 3: Schematic representation of pullulan. The nature of
the bonds between the sugar units are noted where they are known. The
number of sides on the sugar polygons reflect the number of carbons of
the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [59,61].

Additional file 4: Schematic representation of inulin. The nature of the
bonds between the sugar units are noted where they are known. The
number of sides on the sugar polygons reflect the number of carbons of
the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on ref. [62].

Additional file 5: Schematic representation of galactomannan. The
nature of the bonds between the sugar units are noted where they are
known. The number of sides on the sugar polygons reflect the number of
carbons of the sugar. The first carbon is indicated on all sugars with a 1 to
clarify the bond configurations. Carbons are numbered clockwise from the
first carbon with the two last carbons of the sugar (hexose or pentose) on
the same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [20,63].

Additional file 6: Schematic representation of insoluble
galactoglucomannan. The nature of the bonds between the sugar units
are noted where they are known. The number of sides on the sugar
polygons reflect the number of carbons of the sugar. The first carbon is
indicated on all sugars with a 1 to clarify the bond configurations. Carbons
are numbered clockwise from the first carbon with the two last carbons of
the sugar (hexose or pentose) on the same corner of the polygon. The
oligos are hypothetical hydrolysis products and sugars that appear due to
the action of exo-acting enzymes. The structure is based on ref. [20].

Additional file 7: Schematic representation of soluble
galactoglucomannan. The nature of the bonds between the sugar units
are noted where they are known. The number of sides on the sugar
polygons reflect the number of carbons of the sugar. The first carbon is
indicated on all sugars with a 1 to clarify the bond configurations. Carbons
are numbered clockwise from the first carbon with the two last carbons of
the sugar (hexose or pentose) on the same corner of the polygon. The
oligos are hypothetical hydrolysis products and sugars that appear due to
the action of exo-acting enzymes. The structure is based on ref. [18-21].

Additional file 8: Schematic representation of smooth pectin. The
nature of the bonds between the sugar units are noted where they are
known. The number of sides on the sugar polygons reflect the number of
carbons of the sugar. The first carbon is indicated on all sugars with a 1 to
clarify the bond configurations. Carbons are numbered clockwise from the
first carbon with the two last carbons of the sugar (hexose or pentose) on
the same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [20,60].

Additional file 9: Schematic representation of xylogalactouronan.
The nature of the bonds between the sugar units are noted where they are
known. The number of sides on the sugar polygons reflect the number of
carbons of the sugar. The first carbon is indicated on all sugars with a 1 to
clarify the bond configurations. Carbons are numbered clockwise from
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the first carbon with the two last carbons of the sugar (hexose or pentose)
on the same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [20,64-67].

Additional file 10: Schematic representation of xylan. The nature of
the bonds between the sugar units are noted where they are known. The
number of sides on the sugar polygons reflect the number of carbons of
the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [20,60,68,69].

Additional file 11: Schematic representation of xyloglucan type
XXGG. The nature of the bonds between the sugar units are noted where
they are known. The number of sides on the sugar polygons reflect the
number of carbons of the sugar. The first carbon is indicated on all sugars
with a 1 to clarify the bond configurations. Carbons are numbered
clockwise from the first carbon with the two last carbons of the sugar
(hexose or pentose) on the same corner of the polygon. The oligos are
hypothetical hydrolysis products and sugars that appear due to the action
of exo-acting enzymes. The structure is based on refs. [20,70,71].

Additional file 12: Schematic representation of xyloglucan type
XXXG. The nature of the bonds between the sugar units are noted where
they are known. The number of sides on the sugar polygons reflect the
number of carbons of the sugar. The first carbon is indicated on all sugars
with a 1 to clarify the bond configurations. Carbons are numbered
clockwise from the first carbon with the two last carbons of the sugar
(hexose or pentose) on the same corner of the polygon. The oligos are
hypothetical hydrolysis products and sugars that appear due to the action
of exo-acting enzymes. The structure is based on refs. [20,70,71].

Additional file 13: Schematic representation of arabinogalactan type
I. The nature of the bonds between the sugar units are noted where they
are known. The number of sides on the sugar polygons reflect the number
of carbons of the sugar. The first carbon is indicated on all sugars with a 1
to clarify the bond configurations. Carbons are numbered clockwise from
the first carbon with the two last carbons of the sugar (hexose or pentose)
on the same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [12,72,73].

Additional file 14: Schematic representation of arabinogalactan type
Il (protein bound arabinogalactan). The nature of the bonds between
the sugar units are noted where they are known. The number of sides on
the sugar polygons reflect the number of carbons of the sugar. The first
carbon is indicated on all sugars with a 1 to clarify the bond configurations.
Carbons are numbered clockwise from the first carbon with the two last
carbons of the sugar (hexose or pentose) on the same corner of the
polygon. The oligos are hypothetical hydrolysis products and sugars that
appear due to the action of exo-acting enzymes. The structure is based on
[12,72,74,75].

Additional file 15: Schematic representation of arabinan. The nature
of the bonds between the sugar units are noted where they are known.
The number of sides on the sugar polygons reflect the number of carbons
of the sugar. The first carbon is indicated on all sugars with a 1 to clarify the
bond configurations. Carbons are numbered clockwise from the first
carbon with the two last carbons of the sugar (hexose or pentose) on the
same corner of the polygon. The oligos are hypothetical hydrolysis
products and sugars that appear due to the action of exo-acting enzymes.
The structure is based on refs. [76-78].

Additional file 16: Schematic representation of rhamnogalacturonan
type I. The nature of the bonds between the sugar units are noted where
they are known. The number of sides on the sugar polygons reflect the
number of carbons of the sugar. The first carbon is indicated on all sugars
with a 1 to clarify the bond configurations. Carbons are numbered
clockwise from the first carbon with the two last carbons of the sugar
(hexose or pentose) on the same corner of the polygon. The oligos are
hypothetical hydrolysis products and sugars that appear due to the action
of exo-acting enzymes. The structure is based on refs. [20,76,77,79,80].

Additional file 17: Tables of enzymatic activities required for the
degradation of 16 different plant-derived polysaccharides. For each
isoenzyme, putative or characterized, is noted literature references and the
gene ID in the whole genome sequencings of A. niger CBS 513.88 and
ATCC 1015 [3-7,10-12,14,18-36,39-41,45-49,51,59-68,70-226].

Additional file 18: Full map of 16 polysaccharide structures with the
addition of genes from A. niger ATCC 1015 specific for

each type of bond. The nature of the bonds between the sugar units are
noted where they are known. The number of sides on the sugar polygons
reflect the number of carbons of the sugar. The first carbon is indicated on
all sugars with a 1 to clarify the bond configurations. Carbons are
numbered clockwise from the first carbon with the two last carbons of the
sugar (hexose or pentose) on the same corner of the polygon. The oligos
are hypothetical hydrolysis products and sugars that appear due to the
action of exo-acting enzymes. Type and approximate 2D orientation is
shown for each of the chemical bonds connecting sugars and/or acids.
Next to each bond, one can find verified and hypothetical enzymes in A.
niger ATCC 1015 capable of catalyzing the hydrolysis of the bond. The
bottom panel denotes CAZy-families for each of the genes. See Additional
Files 1-16 for details on literature references

for structures.

Additional file 19: Map of statistically significantly regulated genes
coding for carbohydrate-active enzymes in a pairwise comparison of
growth on arabinan versus L-arabinose. Genes marked with a red box
are significantly up-regulated on arabinan relative to L-arabinose, a green
box denotes the opposite, gray boxes means that the gene is found in the
A. niger CBS 513.88 sequence, but no bi-directional best hit is found in the
A. niger ATCC 1015 sequence. The absence of a box mean that this gene is
not statistically significantly regulated in this comparison.

Additional file 20: Map of statistically significantly regulated genes
coding for carbohydrate-active enzymes in a pairwise comparison of
growth on starch versus D-glucose. Genes marked with a red box are
significantly up-regulated on starch relative to D-glucose, a green box
denotes the opposite, gray boxes means that the gene is found in the A.
niger CBS 513.88 sequence, but no bi-directional best hit is found in the A.
niger ATCC 1015 sequence. The absence of a box mean that this gene is
not statistically significantly regulated in this comparison.

Additional file 21: Map of statistically significantly regulated genes
coding for carbohydrate-active enzymes in a pairwise comparison of
growth on L-arabinose versus D-glucose. Genes marked with a red box
are significantly up-regulated on L-arabinose relative to D-glucose, a green
box denotes the opposite, gray boxes means that the gene is found in the
A. niger CBS 513.88 sequence, but no bi-directional best hit is found in the
A. niger ATCC 1015 sequence. The absence of a box mean that this gene is
not statistically significantly regulated in this comparison.

Additional file 22: Map of statistically significantly regulated genes
coding for carbohydrate-active enzymes in a pairwise comparison of
growth on starch versus xylan. Genes marked with a red box are
significantly up-regulated on starch relative to xylan, a green box denotes
the opposite, gray boxes means that the gene is found in the A. niger

CBS 513.88 sequence, but no bi-directional best hit is found in the A. niger
ATCC 1015 sequence. The absence of a box mean that this gene is not
statistically significantly regulated in this comparison.

Additional file 23: Clustering of 103 significantly regulated genes
coding for enzymes with putative and characterized
polysaccharide-activities. All genes were found to be significantly
regulated in at least one pairwise-comparison of two carbon sources.
Cluster numbers in parentheses is the number of the corresponding
cluster(s) in Figure 2. The number of genes in each cluster is shown next to
the cluster number. The gene names of known genes found in a particular
cluster are found at the bottom of the transcription profile graph of each
cluster. The genes were clustered using the ClusterLustre

algorithm [50].

Additional file 24: 24 maps of enzymatic activities present in the
expression-based clusters 1-24 of Figure 2. Genes marked with a red
box are found in the cluster, gray boxes means that the gene is found in
the A. niger CBS 513.88 sequence, but no bi-directional best hit is found in
the A. niger ATCC 1015 sequence.
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