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The receptor like kinase at Rhg1-a/Rfs2 caused
pleiotropic resistance to sudden death syndrome
and soybean cyst nematode as a transgene
by altering signaling responses
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Abstract

Background: Soybean (Glycine max (L. Merr.)) resistance to any population of Heterodera glycines (I.), or Fusarium
virguliforme (Akoi, O’Donnell, Homma & Lattanzi) required a functional allele at Rhg1/Rfs2. H. glycines, the soybean
cyst nematode (SCN) was an ancient, endemic, pest of soybean whereas F. virguliforme causal agent of sudden
death syndrome (SDS), was a recent, regional, pest. This study examined the role of a receptor like kinase (RLK)
GmRLK18-1 (gene model Glyma_18_02680 at 1,071 kbp on chromosome 18 of the genome sequence) within the
Rhg1/Rfs2 locus in causing resistance to SCN and SDS.

Results: A BAC (B73p06) encompassing the Rhg1/Rfs2 locus was sequenced from a resistant cultivar and compared
to the sequences of two susceptible cultivars from which 800 SNPs were found. Sequence alignments inferred that
the resistance allele was an introgressed region of about 59 kbp at the center of which the GmRLK18-1 was the
most polymorphic gene and encoded protein. Analyses were made of plants that were either heterozygous at, or
transgenic (and so hemizygous at a new location) with, the resistance allele of GmRLK18-1. Those plants infested
with either H. glycines or F. virguliforme showed that the allele for resistance was dominant. In the absence of Rhg4
the GmRLK18-1 was sufficient to confer nearly complete resistance to both root and leaf symptoms of SDS caused
by F. virguliforme and provided partial resistance to three different populations of nematodes (mature female cysts
were reduced by 30–50%). In the presence of Rhg4 the plants with the transgene were nearly classed as fully
resistant to SCN (females reduced to 11% of the susceptible control) as well as SDS. A reduction in the rate of early
seedling root development was also shown to be caused by the resistance allele of the GmRLK18-1. Field trials of
transgenic plants showed an increase in foliar susceptibility to insect herbivory.

Conclusions: The inference that soybean has adapted part of an existing pathogen recognition and defense
cascade (H.glycines; SCN and insect herbivory) to a new pathogen (F. virguliforme; SDS) has broad implications for
crop improvement. Stable resistance to many pathogens might be achieved by manipulation the genes encoding a
small number of pathogen recognition proteins.
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Background
Fusarium virguliforme (Akoi, O’Donnell, Homma &
Lattanzi), causal agent of soybean (Glycine max L. Merr.)
sudden death syndrome (SDS), first caused a significant
disease loss in 1987 [1]. F. virguliforme was not prevalent
in Asia by 2011 but had spread quickly across the Amer-
icas from about 1980–2011. SDS has become a major
pest problem for soybean growers and breeders in the
Americas [2]. The origins of the disease remain unclear
but F. virguliforme may be a new pathogen of soybean
since no complete resistance has been reported.
F. virguliforme, like many plant pathogenic Fusaria,

were facultative hemi-biotrophic pathogens of plant
roots with many host species [1,3,4]. However, only
soybean among known hosts showed the leaf scorch
when infected by F. virguliforme. Soybean cultivars
showed a wide range of susceptibility to both leaf scorch
and root rot suggesting cultivar-specific partial resist-
ance existed [5] F. virguliforme appeared to be a clonal
pathogen [3,6]. There were some variations in aggres-
siveness among field isolates and maintained strains but
there were no races reported, by 2011.
Soybean resistance to SDS was multi-geneic and had

two components; a partial resistance to root infection
and rot caused directly at the site of infection by the
fungus; and a partial resistance to leaf scorch caused
indirectly by translocated fungal toxins [5,7,8]. The bases
of resistance might include resistances to one or more
toxins [9]; and both local and systemic resistances fol-
lowing pathogen recognition [10-12].
Heterodera glycines I., the soybean cyst nematode

(SCN) was probably an ancient pest of soybean since
complete resistances to some Hg Types of SCN was
found in about 1% of pre-domesticated and early domes-
ticated Plant Introductions (PIs) [13]. Interestingly most
of these PIs were also partially resistant to SDS [14].
One locus, the Rfs2/Rhg1 locus on chromosome 18, was
shown to underlie coinheritance of resistance to SDS
in the roots and also reduce root infestation by SCN
[10,11,14-17]. Fine map development did not resolve
Rfs2 from Rhg1 suggesting the underlying gene(s) were
either very closely linked or pleiotropic [11,16].
Rfs2 underlay partial resistance to the spread of root

infections by F. virguliforme [5,7,11]. The site of infec-
tion did not rot as rapidly when this allele was present
and rates of root growth nearly equal to non-infested
plants were maintained. Toxin translocation to leaves
appeared reduced because leaf scorches did not develop
or were less severe. The sudden plant death characteris-
tic of SDS was manifested as both early senescence and
an unusual abscission, basal to the leaflets instead of the
petiole. Neither occurred if the Rfs2 allele was present.
Equally the Rhg1 locus underlay partial resistance

to SCN [13,18]. H.glycines, like many plant parasitic
nematodes, were obligate endoparasites of plant roots.
Like F. virguliforme, H. glycines has many alternate
hosts. Over the past 50 years, the number of Hg Types
(ex. races) has expanded from 4 in the 1960’s to 16–20
[19,20]. However, the Rhg1 locus was constant, being
required for partial resistance to all Hg Types in most
PIs and cultivars. Full resistance to SCN required 1–4
loci in addition to Rhg1, the number depending on the
nature of the cyst population parasitizing the roots
[17,21-25]. Genetic diversity was found among SCN iso-
lates, even inbred cyst populations like PA3, Hg type 0
[13,26]. Further, variation among the host plant roots re-
sponse to SCN has been associated with temperature
[27] such that environmental conditions must be rigor-
ously controlled during assays [13,16].
The resistance or susceptible interaction(s) between

the nematode and soybean affected by Rhg1 was not
induced until females stopped moving through the roots
and established a feeding site comprising several giant
cells [28-30]. Full resistance to SCN, based on the com-
bined action of the genes at Rhg1 and one or more add-
itional Rhg loci, was manifest as; cell wall appositions to
surround the feeding site; failure to supply the feeding
site a tracheary element; and a necrosis as the feeding
site develops. If the resistance allele at Rhg1 was present
normal rates of root growth were slightly depressed but
the above ground stunting, yellowing and early senes-
cence did not occur.
Inheritance of resistance to SCN was first reported in

the PI ‘Peking’ [13]. Three recessive loci (rhg1–rhg3) and
a dominant locus (Rhg4) were assigned gene names
by parsimony though other dominance models were
equally likely. The Peking derived resistance alleles of
rhg1 and Rhg4 were introgressed into the cv. ‘Forrest’
[31-33]. In crosses based on Forrest and with SCN iso-
late PA3 the rhg1-a was shown to be codominant with
the susceptibility allele of ‘Essex’ (rhg1-e) and alone
capable of providing partial resistance. Consequently,
the Forrest, ‘Hartwig’, Peking and ‘PI 437654’ allele was
renamed to Rhg1-a ([17] and hereafter) by the Soybean
Genetics Committee.
The Rhg1 locus was located to a sub-telomeric region

of the soybean chromosome 18 (molecular linkage group
G; Lg G) by many studies [17,21,23-25]. All of these
segregating populations that were later tested with
F. virguliforme also had an Rfs2-like activity against SDS
[8,15,34]. However, an Rhg1-like locus was found at
other locations in a few SCN resistant PIs, including Lg
B1 (chromosome 11) [22], mid LgG [35,36] and Lg B2
(chromosome 14) [37,38]. The effects of the Rhg1-like
loci found at other locations than chromosome 18 on
resistance to SDS were not reported by 2012.
It has been shown the resistance allele of Rhg1-a/Rfs2

(from Peking) was associated with reduced seed yield
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when SCN is not present in the fields [39-41]. That
phenomenon might be related to delayed seedling devel-
opment and stand formation [42]. How the root reduc-
tion contributes to resistance may involve a locus
on chromosome 7 (LG M) where Rzd, an interacting al-
lele needed for resistance to zygote death, was strictly
co-inherited in phase with Rhg1/Rfs2-a [21]. Therefore,
effects on development were predicted for the gene(s)
underlying Rhg1-a/Rfs2-a [16,43-47].
Fine scale genetic maps and BAC based genomic anal-

ysis identified a 42 kbp region encompassed in BAC
B73p06 as the Rhg1/Rfs2 locus [16,45,48]. The region
encoded an RLK (Glyma18g02680 named GmRLK18-1
hereafter), a variant laccase (Glyma18g02690) and a
predicted Na/H ion antiporter (Glyma18g0270). The
GmRLK18-1 and Gmlaccase18-1 were expressed in
roots, shoots and flowers but not nodules or seeds. The
antiporter was not expressed in any organ tested in
Essex or Forrest. However, it might be expressed in flow-
ers and seed at very low abundance [49]. Many nucleo-
tide differences were found in the region encompassing
the GmRLK18-1 and Gmlaccase18-1 genes from frag-
ments of sequences from the resistant allele in Forrest
compared to susceptible genotypes ‘Asgrow 3244’ and
‘Williams 82’ [16,29,48,50,51]. However, the GmRLK18-1
was considered the most likely candidate gene underlying
Rhg1-a based on fine maps and association analyses.
RLKs are part of the eukaryotic tumor necrosis factor

beta receptor super-family [44,52]. In plants they repre-
sent a major class of resistance genes and also a major
class of developmental regulators. The GmRLK18-1 gene
at Rhg1/Rfs2 had nine alleles recognized among PIs and
cultivars [16,44-48,50]. Of those four alleles were asso-
ciated with partial resistance to SCN and five with
susceptibility. The second most important resistance al-
lele was from PI88788 and named rhg1-b because it was
recessive and discovered second [53]. However, a small
scale experiment with RNAi to the RLK (named
GmRLK18-1-b) at the rhg1-b in transgenic hairy roots
did not show a large effect on cyst numbers [53]. Either
dominance or incomplete inhibition of the protein might
have occurred. Here, additional experiments were under-
taken with the GmRLK18-1 at Rhg1-a in stable trans-
formed soybean lines. Here, a molecular basis for
resistance to SDS and SCN was inferred from functional
analyses of the Rhg1/Rfs2-a locus in near isogenic lines
(NILs) and the Forrest allele of the GmRLK18-1 gene in
transgenic plants.

Results
Allelic variations at the Rhg1/Rfs2 locus
The Forrest (resistance) allele of the Rhg1/Rfs2 locus was
analyzed by sequencing the entire BAC B73p06 to 8 fold
redundancy (Figure 1; GenBank HQ008938). The BAC
sequence was compared to the sequences of (suscep-
tible) Williams 82 whole genome shotgun sequence [54]
and a BAC contig developed from (susceptible) ‘Asgrow
3244’ [50] from the same region. The BAC insert
encompassed 82,157 bp that was predicted to encode
nine genes comprised of 57 exons (2–8 per gene;
Table 1). The GmRLK18-1 was gene 5, the laccase gene
6 and the antiporter gene 7. Sequences of the resistant
and susceptible alleles were colinear with no large (more
than 100 bp) insertions, deletions or inversions. Across
the entire BAC there were 800 SNPs between Forrest
and the sequences of alleles for susceptibility. SNPs
were found in the promoter and enhancer regions of all
9 genes. However there were only 31 SNPs within genes.
Only 11 of the 31 caused amino acid changes. There
were just 6 of the 9 proteins changed by those 11 SNPs.
There was evidence for a large and highly polymorphic

region within the BAC (743 SNPs in 59 Kbp; from
1,500–60,500 bp). A highly polymorphic region was
expected to be a characteristic of the region introgressed
into Forrest from Peking. Equally, relatively monomorphic
regions were common when comparing sequences of
US cultivars [54,55]. In fact, the three alleles (Forrest,
Williams 82 and A3244) were nearly identical outside the
59 kbp central region. For example the region that
encompassed gene 10 had just 5 SNPs across 18.25 kbp
among the 3 alleles and no alloproteins.
The RLK contained 2 of the 6 SNPs in the BAC predicted

to cause amino acid changes (Ruben et al. 2006; Afzal et al.
2012) when comparing Forrest allele to Williams 82 and
Asgrow 3244. However, it contained 7 synonymous SNPs.
In comparison the laccase contained 3 SNPs predicted to
cause amino acid changes and only one that was synonym-
ous (Figure 1). The antiporter alloproteins contained one
non-synonymous and two synonymous SNPs.
The greater number of differences between alleles of

the GmRLK18-1 and the other candidate genes was
taken as evidence this should be the first gene tested in
transgenic plants. The RLK was subcloned on a 9,772 bp
insert for plant transformation (Figure 1D) that con-
tained 6 Kbp of 5′ sequence, 2.7 kbp of geneic sequence
and 1 kbp of 3′sequence. The 5′ sequence extended to
the TATA box of the neighboring gene (#4). The region
contained 7 potential cis-regulatory elements (CREs) of
8 bp that were identical to motifs found in the 5′ regions
hundreds of plant genes. The four closest to the RLK are
shown in Figure 1D. Only the most distant was poly-
morphic between cultivars. The Forrest allele of this CRE
was the identical to sequences found 5′ to 1,091 rice
genes and 108 Arabidopsis genes. There was a 53 bp
deletion from Forrest (at 33,942 bp) compared to Essex,
Williams 82 and Asgrow 3244 in the enhancer region of
the gene that was named SIUC-indel-(plus) + 3.5. There
was also a 22 bp deletion 3′ to the gene at (at 40,215 bp)
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Figure 1 Marker map of the genomic region around Rhg1/Rfs2 and the most identical paralog (homeolog) of Rhg1/Rfs2 with locus,
BAC and gene ideograms. Panel A shows the marker map of the genomic region around Rhg1/Rfs2 (Lg G; chromosome 18) with locus
ideograms. Sequence coordinates were from the susceptible cultivar Asgrow 3244 [16,49]. The GmRLK18-1 gene encoding the RLK was shown as
a black block arrow. The genes encoding the laccase and antiporter were shown as opposite white block arrows. All other genes were shown as
grey block arrows. Locations of overlapping BAC clones B73p06 and B21d09 that both encoded the GmRLK18-1 at the Rhg1/Rfs2 locus (Lg G;
chromosome 18) were shown below the ideogram. Panel B shows the BAC clone B73p06 that encoded the Rhg1/Rfs2-a locus. The gene
encoding the RLK was shown as a black block arrow. The genes encoding the laccase and antiporter were shown as opposite white block
arrows. All other genes were shown as grey block arrows. The extent of the pSBHB94 (HQ008939), the 9.772 kbp subclone from BAC B21d09 that
was used for soybean transformations was shown as a blue arrow. The plasmid pSBHB94 encompassed from 30,423- 40–194 bp. Sequence
coordinates were from the complete sequence of the BAC derived from resistant cultivar Forrest (HQ008938). Panel C showed a syntenic
homeolog of Rhg1-a /Rfs2/ found in the sequence of BAC H38F23 from Lg B1 (chromosome 11). The homeolog of the gene encoding the RLK
was show as a black block arrow. The homeologs of the genes encoding the laccase and antiporter were shown as opposite white block arrows.
All other syntenic genes were shown as grey block arrows. The marker TMD1 amplified a fragment from Rhg1-a /Rfs2/Rhg1-a/Rfs2 of 303+ 15 bp
(resistant allele was the smaller) and of 362 bp from a syntenic homeolog of Rhg1-a /Rfs2Rfs2/ found in the sequence of BAC H38f23 from Lg B1
(chromosome 11). Sequence coordinates were from the complete sequence of the BAC derived from resistant cultivar Forrest (HQ008940). Panel
D shows an ideogram of markers, the GmRLK18-1 gene and gene features found in the insert of plasmid pSBHB94 that encompassed from
30,423- 40,194 bp of B73p06. Panel E shows the position of markers in the transcribed region of the GmRLK18-1 gene. Panel F shows the position
of amino acid substitutions in the protein encoded by the cDNA.
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named SIUC-indel (minus)-3.5. This deletion was within
a complex microsatellite repeat mainly composed of
AAAG motifs. Neither deletion appeared to encompass
any previously characterized CREs. In the intergeneic
region between RLK and laccase were four polymorphic
small indels or microsatellite-like polymorphisms.

Syntenic paralogs of the Rhg1/Rfs2 locus
The soybean genome was hypothesized to be the product
of a diploidized tetraploid [54,55]. Therefore, a detailed
molecular analysis of the Rhg1/Rfs2 locus required that
paralogs and syntenic gene clusters be identified. The
most identical paralog (the homeolog) was found on BAC
H38f23 (Additional file 1: Figure S1) that was from Lg B1
(chromosome 11) in a region where loci with functions
similar to Rhg1/Rfs2 were mapped [22,36,37]. Signifi-
cantly, the sequence of H38f23 contained a complete
set of syntenic genes for a second Rhg1/Rfs2 locus and
surrounding genes (an RLK, laccase, both antiporters, the
kinase and the helicase; Glyma11g35710- Glyma11g35660;
Figure 1; HQ008940). Interrogation of Soybase showed
the transcript abundance patterns for the syntenic RLK
pair and laccase pair were both abundant in roots as
reported in the RNA sequence atlas generated from a
Williams 82 sister line derived NIL (cultivar ‘P-C609-45-
2-2’ a BC5F5 plant derived from G. soja (‘PI 468916’)
backcrossed into G. max (‘A81-356022’) [49]. The laccase
transcripts were 15 fold more than either of the RLK
transcripts in roots. Though it must be noted this geno-
type was either the rhg1-d or Rhg1-e allele.
Comparing the syntenic BACs the DNA sequence

identity was high (~97% in geneic regions; Additional file
1: Figure S1E; Additional file 2: Table S1). At the RLKs,
GmRLK18-1 and GmRLK11-1, with intron boundaries as
described by [16] and [25], the amino acid identity was
93% overall with 94% in the LRR, 93% in the trans-
membrane domain and 97% in the kinase domain (Add-
itional file 1: Table S1). The N terminal signal peptide
was most divergent (11 changes in 50 amino acids). The
laccase and the antiporter also showed 85–96% amino
acid identity with their syntenic paralogs.
GmRLK11-1’s amino acid sequence was less identical

to GmRLK18-1 than the alleles (98–99%) of the gene.
However, four of the six residues that differ among allo-
proteins of GmRLK18-1 were identical to the Forrest
allele in the homeologous protein GmRLK11-1-a. At the
other 2 residues the changes were identical to the sus-
ceptible alleles of Essex and Williams 82. From sequence
comparison and transcript abundances it appears likely
the paralogs GmRLK18-1 and GmRLK11-1 would share
functions and should hetero-dimerize [47].

Allele and paralog discrimination in NILs and
transgenic plants
Since paralogs with homeolog sequence variants (HSVs)
appeared to exist for each gene in the cluster, it was
important to distinguish alleles precisely and separately
from their most similar HSVs. In the NIL population
RLK alleles and HSVs were distinguished using both the
SIUC-TMD1 marker (Figure 2) and SNP Ala87Val from
the LRR region by Taqman (Additional file 3: Figure S2;
Additional file 4: Table S2). In genomic DNA TMD1 dis-
tinguished both the Peking and Peking-like allele of
GmRLK18-1 from the other 7 alleles and the homeolo-
gous alleles of GmRLK11-1. To distinguish Forrest from
both Essex and X5 the SNP probe to Ala87Val was again
used for both genomic DNA and cDNA.

Dominant, recessive or co-dominant nature of Rhg1/Rfs2
in NILs
In the NIL line 34–33 that was heterogenous at the
Rhg1/Rfs2 locus, about 12% of plants (4/34) were still



Table 1 Genes predicted from DNA sequence within the Rhg1-a/Rfs2 locus encoded by BAC 73p06 (81, 157 bp) from
Forrest (resistant) and sequence contig from A3244 (susceptible; AX196295)

Gene # Annotation Forrest A3244 EST

Marker SIUC_Sat_−35 (35 bp) 1,770 11,870 na

1 (5) NADP redox coenzyme-like 5,959–7,947 16,234–18,215 AW185583

2 (6) Predicted protein 14,800–10,888 25,760–21,294 BG550903

Marker SIUC_Scaa-23 (19 bp) 13,800 23,900 na

3 (7) Predicted protein 23,795–18,782 34,265–28,983 TC63131

Marker SIUC_Sat_001 (2 bp) 24,500 34,600 na

4 (8) Predicted protein 30,076–28,429 40,482–38,327 na

Marker SIUC_InD+ 3.5 (53 bp) 33,900 44,000 na

Marker SIUC_Sca_005/Sac_013 (4 bp) 36,400 46,700 na

5 (9) Receptor like kinase (Rhg1-a/Rfs2) 36,448–39,204 46,891–49,573 AF506517*

Marker SIUC-SattTMD1(19 bp) 38,500 48,500 na

Marker SIUC_Indel-3.5 (22 bp) 40,150 50,000 na

Marker STS 10893 (12 bp) 43,800 54,000 GF097715

Marker SIUC-Satt9.0 (17 bp) 45,250 55,000 na

Marker SIUC-Satt9.5 (21 bp) 45,500 55,000 na

6 (10) Variant diphenol oxidase 47,930–52,465 58,247–62,782 AY113187*

Marker SIUC-SNP_A/G 56,320 66,637 na

7 (11) Na/H antiporter-like 1 57,661–55,772 67,540–64,896 na

Marker SIUC-Satt22/Indel22 (20 bp) 58,500 58,500 na

Marker BARC-Satt309 (17 bp) 61,100 71,400 na

8 (12) Na/H antiporter-like 2 64,165–60,904 74,602–69,934 AW279576*

9 (13) DNA helicase-like 1 64,996–73,760 75,245–75,418 na

Marker SIUC-Sat_027(3 bp) 65,570 75,881 na

10 (14) DNA helicase-like 2 70,601–74,056 80,601–84,056 BF425110

Marker SIUC- ATG4 74,150 84,400 na

Marker SIUC- Sat_37 74,250 84,500 na

Marker Minisat 2/SIUC-Sctt39 (45 bp) 75,800 85,900 na

Marker SIUC-Sat_40 (38 bp) 79,500 89,600 na

Shown are; the gene numbers in the larger sequenced interval; the sequence coordinates from the predicted 5′ translation start to 3′ translation stop; and the
presence of ESTs in Genbank (May 2012) with homology to the predicted genes. Marker coordinates are listed. Intra-geneic markers were italicized. Genes were
bold face. Marker positions are rounded to nearest 10 bp except for SNP markers which were exact. The * indicated the aligned EST and mRNA were from
soybean, Glycine max. The plasmid pSBHB94 encompassed from 30,423- 40–194 bp in BAC 73p06.
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heterozygous by the F5:7:13 (thirteen generations after
the original cross and single seed selection at F5; NIL se-
lection at F7; Figure 2). Those plants were heterozygous
at the TMD1 marker because they had not yet been
fixed by recombination. The frequency of heterozygous
plants among F5:7:13 generation seed was surprisingly
high (4/34 or 12%) compared to the expected frequen-
cies at the F5 (6.25%), F7 (1.56%) and F13 (0.025%)
generations. Even calculating the expected heterozygous
plant frequency starting from the F5 the occurrence was
higher than expected (1/256 or 0.39%). The existence of
these plants suggested that fixation by re-assortment
was selected against in viable zygotes (or gametes) or
that the heterozygous state was under positive selection.
The remaining 30 plants (88%) were fixed equally to
Forrest or Essex alleles (15/34 or 44% each).
The cyst scores for all plants in the NIL population

corresponded with the respective alleles at the Rhg1/Rfs2
locus so plants with resistance alleles had female indices
(FIs) less than 8% and plants with susceptibility alleles
had FIs greater than 84% (Figure 2). For the four hetero-
zygous plants, polymorphic at TMD1, the cyst scores
ranged from 5–12% which corresponded to those for
resistant or moderately resistant plants. Therefore, the
Rhg1/Rfs2 locus was dominant in this set of NILs
infested with HgType 0 population JB3. However, het-
erozygous NILs were reported co-dominant with
HgType 0 population PA3 in earlier tests where FIs
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Figure 2 The Rhg1/Rfs2 genomic region altered root development. Panel A; soybean NILs at 2 weeks pre-SCN inoculation show different
root morphologies, Rhg1/Rfs2 inhibited germination and early root growth. Panel B; the root morphologies co-segregated with the allele of
GmRLK18-1 at the Rhg1/Rfs2 locus as shown by the 3 bands generated by intron located marker TMD1 (arrowed). R indicated the resistant allele
from Forrest; S the susceptible allele from Essex; and H indicated the heterozygous state for the Rhg1/Rfs2 locus. Panel C showed the distribution
of root mass (rfw was root fresh weight) among 20 heterozygous plants. Panel D showed the distribution of root mass among 20 susceptible
plants. Panel E showed the distribution of root mass among 20 resistant plants.
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ranged from 5–40% [23]. Co-dominant and recessive
roles of plant disease resistance loci were previously
associated with factors needed by the pest for successful
parasitism [56,57]. The discrepancies in dominance
among different populations may be associated with the
genetic background in which the gene resides or may re-
sult from interactions among genes at the Rhg1/Rfs2
locus and/or modifier genes at other loci [21].

Inhibition of root growth by alleles of Rhg1/Rfs2
in the NILs
When counting the cysts with prior knowledge of the
allele at Rhg1/Rfs2 in the standard assay of SCN it
was noted that root mass and vigor appeared to differ
among genotypes. Measurement of root masses showed
a significant difference (P < 0.0015) among NILs that
were associated with the allele at Rhg1/Rfs2 (Figure 2).
Across several experiments, both NILs that were suscep-
tible and NILs that segregated most susceptible lines had
higher root masses (mean 2.24 ± 0.19 g) than their SCN
resistant (1.22 ± 0.22 g) or heterozygous (1.79 ± 0.18 g)
counterparts. This phenomenon might underlie the
global association of resistance to SCN with low seed
germination, seedling vigor and ultimately seed yield
noted previously [40-42]. In addition, the lower root
growth might provide an avoidance mechanism that is
part of a broad resistance effective against all Hg Types.
The distribution of recombination events found previ-

ously among the six Hg Type 0 susceptible PIs [16] sug-
gested that the action of Rhg1/Rfs2 required elements to
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the 3′ side of the RLK intron or in the C terminal por-
tion of the protein. One of the 2 amino acid substitu-
tions found in the intracellular kinase of the complete
RLK (Gly539Ala and Ser770Pro) may be key to trans-
ducing intracellular signaling leading to the resistance
response [44]. Some mutations in the kinases of other
plant RLKs are known to be lethal [58-60]. Therefore,
it may be the kinase at the Rhg1/Rfs2 locus that under-
lies restricted root growth in resistant genotypes. The
effect may be direct or occur after protein-protein inter-
action(s). The signal transduced is likely to result in a
negative reponse since the kinase domain lacks the RD
amino acid motif needed for ATP binding [44] and so
protein phosphorylation.
Transcripts of the GmRLK18-1 alleles at Rhg1/Rfs2 were
found in soybean roots
Expression judged by examination of EST libraries in
silico, cDNA libraries by hybridization, RNA sequencing
and mRNA populations assayed by qRT-PCR showed both
transcripts encoded by GmRLK18-1-a and GmRLK18-1-e
alleles (Figure 3) were present in both non-infested roots
and SCN-infested roots, as reported in [16]. The transcript
and protein abundances were not increased by more than
2 fold in either H. glycines or F. virguliforme infested
plants compared to non-infested plants (Figure 3). Low
transcript and protein abundances appeared to result from
largely constitutive expression under the conditions and
stages of development tested to date.
A.

B.
(1)     (2)    (

(a) (b) (c

Figure 3 Expression of Forrest (−a) and Essex (−e) alleles of the GmRL
Western hybridization using an anti-RHG1/RFS2 (GmRLK18-1) antibody (Afza
ExF34-3(b); E.coli expressed proteins RHG1/RFS2-LRR-Shrt (c); RHG1/RFS2-LR
cDNA amplified using Rhg1/Rfs2 LRR flanking primers from; non-infested N
and Forrest genomic DNA (4). Negative control without template is shown
Analyses of disease responses in plants transgenic with
the resistance allele of the GmRLK18-1 in the greenhouse
In order to test the hypothesis that GmRLK18-1-a
underlay part of the activity of the Rhg1/Rfs2-a locus
susceptible plants were made transgenic with this allele.
Such plants had a resistance allele at a new location and
a susceptibility allele (GmRLK18-1-a; rhg1/rfs2-e) on
chromosome 18. Several primary transgenic lines were
created by biolistics and fertile lines selected in two dif-
ferent cultivars (‘X5’ and ‘Westag 97’) for analyses of
SDS and SCN responses.
In several transgenic lines from (T1-T3) used for SDS

and SCN assays, lines were identified with the
GmRLK18-1-a transgene in the homozygous state. In
these plants the transgenes were both transcribed and
translated. For example, in the progeny of fertile T0 line
6B3 the progeny T1 lines like 7D2 and sixteen T3
derived plants expressed the GmRLK18-1-a transgene as
both mRNA and protein (Figure 4). Expression of the
transgene alleles was equal to the endogenous gene
alleles as judged by protein abundance. GmRLK1 tran-
scripts and proteins were detected in about 50% of the
progenies of the 6B3 primary transformants. In selfed
lines expressing GmRLK18-1-a the transgene allele
was detected as distinct mRNAs and alloproteins.
Expression was directed by the native promoter and the
enhancer elements contained on the proximal 6 kbp of
the 9.772 kbp fragment of pSBHB94. That plasmid was
sub-cloned from BAC B21d09 (Figure 1; HQ008939)
during BAC sequencing.
3)     (4) (5) 

) (d) (e)

K18-1 at Rhg1/Rfs2 in non-transgenic soybean NIL roots. Panel (A);
l et al. 2007) from roots of; Forrest allele in ExF34-23 (a); Essex allele in
R-Long (d); and RHG 4 (e). Panel (B); agarose gel electrophoresis of
IL 34–23 (1); SCN infested NIL 34–23 (2); SCN infested NIL 34–3 (3);
in lane 5.



Figure 4 Soybean transgenic plants expressed the mRNA and protein from the Forrest allele of GmRLK18-1, the RLK at the Rfs2/Rhg1
locus. Panel A shows PCR from leaf samples of progeny plants derived from a primary transgenic event 6B3-7D2(1) with TMD1 primers. Lanes
contain transgenic plants 1 to 13. The arrow shows the double band for Gm18RLK-1-a positive sample at 314 bp for lines 1,3–5, 7,8,10 and 12. M
was the marker; H was the no DNA (water) control; P was the Rhg1 plasmid pSBHB94; X5 was the control plant. Panel B shows PCR from cDNA
leaf samples of sixteen transgenic lines derived from event 6B3-7D2(1) with HRM primers. Green lines are from transgenic plants. Red melt curve
was a resistant control blue line was a susceptible control. Panel C shows a Western of a 2D gel from roots of a transgenic plant probed with
the anti-RLK peptide antibody. An alloprotein at pI 8.42 and 92.41 kDa was found in the non transgenic cv X5 but the presence of the Forrest
alloprotein at pI 8.44 and and 92.39 kDa was found in transgenic plants derived from event 6B3-7D2(1) expressing GmRLK18-1-a. GmRLK18-1 was
shown to be a very low abundance protein impossible to visualize without immune-staining.
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In transgenic soybean plants GmRLK18-1-a allele pro-
vided resistance to both root infection and root rot
by Fusarium virguliforme. That root resistance underlay
a significant reduction in leaf symptoms and delay of
the senescence caused by SDS (Figure 5; Table 2B).
Resistance to SDS was effective throughout the life of
the plants which flowered and set seed. The non-
transgenic X5 plants proved to be highly susceptible to
SDS and showed all the expected phenotypes of root rot
and leaf scorch. The phenotypes among the susceptible



Figure 5 Resistance to Fusarium virguliforme and partial resistance to Heterodera glycines caused by the Forrest allele of a receptor
like kinase (GmRLK18-1-a) found at the Rfs2/Rhg1 locus as transgene in primary transgenic lines (cv ‘X5’). Panels A-H show the SDS
assays. F. virguliforme was used at 104 cfu per cm3 of soil. The experiment was carried out on 3 separate occasions. Leaf scorch was scored as DS
at 7, 14, 21, 28, 35, 42, 49 and 56 dai (days after infestation). Derived crossed lines (X5::GmRLK18-1-a x WENIL35 and cultivars X5:: GmRLK18-1-a x
WENIL35xEF2) were included in runs 2 and 3. Panel A & B shows stable soybean transgenics with and without the 10 kbp GmRLK18-1 (Rhg1/Rfs2)
subclone at 21 dai. Panel C shows the GmRLK18-1-a transgene reduced root rot at 28 dai. Panel D shows leaf symptoms at 28 dai. Panel E shows
plants at 56 dai where X5 is senescent with abscission of leaflets from erect petioles and X5::GmRLK18-1-a is still green and filling pods. Panel F
shows selected leaflets at 28 dai with a 1–9 range in DS scores arranged in order of severity from bottom left to top right. Panels G-J show the
SCN assays. Panel G shows SCN development by the RLK in X5 transgenics. Panel H shows SCN development by the Rhg1-a allele in resistant NIL
34–23. Panel I shows normal SCN development in the susceptible X5. Panel J shows normal SCN development in susceptible NIL 34–3. Panel K
shows a GmRLK18-1-a transgenic plant of cultivar X5 that was defoliated by insect herbivory in the field. Panel L shows an non-transgenic X5
plant with much less leaf area loss.
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plants included a gradual worsening of leaf scorch symp-
toms from 3.0 at 21 days after infection (dai) to 8.5 by
56 dai. Only at near maturity did the susceptible plants
showed symptoms characteristic of SDS. For example,
leaflet abscission occurred from the top of the petiole
instead of the base of the petiole. However, the trans-
genic plants did not show early senescence or reduced
pod set. Equally, the characteristic root symptoms of
SDS were very reduced in the RLK transgenic plants.
Symptoms reduced included the degree of root rot and
browning of the root cortex. Senescence was delayed by
14 days in GmRLK18-1 transgenics compared to
controls and more pods were set in each of the three
repeats of the experiment. Therefore, the GmRLK18-1-a
provided a very high degree of resistance to the trans-
genic plants in roots and leaves and pods.
The results from X5 transgenics were comaperd to

results from Westag97 transgenics in the SDS assay with
infested plants (Table 2). Westag97 plant were bigger and
more stress resistant than X5. However, the Westag
plants transgenic with the RLK again proved more signifi-
cantly more resistant to SDS caused by F. virguliforme.
Therefore, the resistance was not transgenic event or cul-
tivar specific.



Table 2 Association of mean root growth in transgenic lines with pleiotropic resistance to two pests in two different
greenhouse assays and insect herbivory in field tests

A. Line::gene SCN infested Root mass (g) Significant differences Range (g) n SCN FI (%)

X5 No 1.05 a 0.81–1.44 15 0 ± 0.0

Westag97 No nd nd 5 0 ± 0.0

X5 Yes 0.98 a 0.73–1.31 15 100 ± 13

X5::RLK No 0.64 bc 0.57–0.74 15 0 ± 0.0

X5::RLK Yes 0.38 c 0.26–0.49 15 60 ± 11

X5::RLK::Rhg4 Yes nd nd 2 11± 3

X5::RLK::rhg4 Yes nd nd 3 38± 6

Westag97 Yes nd nd 5 130 ± 11

Westag97::RLK Yes nd nd 5 12± 3

B. Line::gene Fungus infested Root mass (g) Significant differences Range (g) n Root RS Leaf DS

X5 No 7.80 a 4.90–8.78 15 1.0 ± 0.1 3.2 ± 0.7

X5 Yes 3.86 bc 3.08–4.80 15 4.5 ± 0.9 4.3 ± 0.8

X5::RLK No 6.10 a 4.77–7.81 15 1.0 ± 0.1 1.0 ± 0.3

X5::RLK Yes 4.64 b 4.00–6.22 15 1.5 ± 0.5 1.5 ± 0.4

Westag97 Yes 6.15 A 3.02–9.55 6 6.5 ± 1.9 6.3 ± 1.3

Westag97::RLK Yes 12.2 B 3.55–24.0 6 0.5 ± 0.3 1.8 ± 0.5

C. Line::gene Insect PI (%) Mean shoot dry weight (g) n Leaf defoliation (%) Seed No weight

X5 22 + 13 47.2 a 4 33 ± 4.0 40 ± 9 11.6 ± 0.3

X5::RLK 59 + 15 18.8 b 4 90 ± 5.0 36 ± 8 11.2 ± 0.3

Part A shows SCN female index in greenhouse grown seedlings at 28 days after SCN infestations. Pots were watered daily with 100 ml. Female index (FI) was
the mean percentage of cysts of Hg Type 0 found on five plants per repetition compared to a susceptible genotype Essex. Part B shows the effects of the
transgene on resistance to F. virguliforme. in greenhouse grown seedlings at 28 days after infestations. Pots were saturated with water to the 5 cm level.
Leaf scorch was recorded as the mean disease severity (DS) measured on a 1–9 scale found on five plants per experimental repeat. Root rot severity (IS) was
measured on a 1–5 scale. Panel C shows the percent insect incidence, defoliation by herbivorous insects and the consequent loss of biomass at harvest as
mean dry weight per plant for field grown plants with 4 replications across 2 years.
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In separate assays with plants from the same lines the
resistance to SCN was partial in the GmRLK18-1-a
transgenic plants (Table 2A) judged by female index (FI).
Partial resistance was expected as rhg4-e was present
and Rhg4-a absent. SCN FI was reduced by 30–50%
across four experiments using three Hg Types (P < 0.01).
Because the X5 selfed transgenic plants reported here
had a susceptible allele at Rhg4, partial resistance was
the expected outcome. The partial resistance was con-
firmed with another isolate of SCN at Harbin University
(China). A cross was made to the RIL EF2 via a suscep-
tible NIL WE1. EF2 was rhg1-e/rfs2, rhg1-e/rfs2, Rhg4,
Rhg4. The progeny segregated for the RLK and so were
rhg1-e/rfs2, rhg1-e/rfs2, Rhg4, rhg4::RLK18-1 or rhg1-e/
rfs2, rhg1-e/rfs2, Rhg4, rhg4 with no transgene. Plants
with the RLK had a 20% lower FI and were almost in
the resistant class (FI < 10; Table 2). Again the Westag
97 plants were tested with the same assay. Westag 97
appeared to encode a functional Rhg4 resistance allele.
Consequently the RLK transgenic Westag 97 showed
nearly complet resistance. Therefore, the GmRLK18-1-a
was alone sufficient to provide for an Rhg1–a like activ-
ity at different locations in different cultivars. The linked
genes may reduce SCN numbers but did require the
action of a second locus (Rhg4) to provide full resistance
to Hg Type 0 as expected from [23,61].

Analyses of plants transgenic with the resistance allele
of the GmRLK18-1 in the field
Field grown plants showed that the RLK was associated
with increased insect herbivory (Table 2C; Figure 5). The
primary damaging pest was the Japanese beetle (Popillia
japonica, Newman). Insects were attracted to the RLK
transgenic plants judged by pest incidence (PI) measured
from R1-R7 growth stages. Herbivory resulted in plants
with less leaf area that produced less shoot biomass at
harvest compared to isogenic plants lacking the
GmRLK18-a allele. There was no incidence of SDS or
SCN in the field during the 2010 or 2011 seasons.

Effect of the Forrest allele of GmRLK18-1 on transgenic
plant development
In both SCN greenhouse assay and field the Forrest
allele of GmRLK18-1 caused a reduction in root and
shoot mass (Table 2). The reduction was significant even
though the X5 cultivar was innately smaller than the
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NILs due to a very much earlier maturity date. Reduc-
tions occurred in seedlings in the SCN assay (Table 2A),
the SDS assay (Table 2B) and whole plants in the field
(Table 2C) at harvest maturity. The reduction in growth
in the field lead to a reduction in biomass but not seed
yield and seed number per plant. Mid- to late-season de-
foliation by insect pests rarely reduces soybean yield. In
both SCN and field assays plant growth was limited by
available water. A reduction in root growth might be
related to reduced water uptake.
However, in the water saturated assays of SDS resist-

ance the Forrest allele of GmRLK18-1 caused an increase
in root and shoot mass (Table 2) in the presence of
F. virguliforme infestations. The increase in growth lead
to a increase in biomass and seed yield (Figure 5) and
seed number per plant in plants grown to maturity in the
greenhouse (1.7± 0.3 compared to 5.7 ± 1.1). Water suffi-
ciency appeared to make the Forrest allele of GmRLK18-1
beneficial to growth and yield when F. virguliforme was
present. In contrast, plants that were not infested in the
SDS assays showed the Forrest allele of GmRLK18-1
caused a decrease in root and shoot mass.

Discussion
The GmRLK18-1 at the Rhg1/Rfs2 locus was shown to
underlie resistance to root infection by F. virguliforme
and the subsequent leaf scorch, as predicted by [11].
Some resistance to SCN was found but this was partial
as expected in the absence of a resistance allele at Rhg4
[23,61]. The RLK simultaneously contributed resistance
to both pathogens, establishing pleiotropy (Figure 6).
Reduced seedling root growth was part of the resistance
mechanism and this may underlie the reduced yield of
resistant cultivars [39-41]. In Arabidopsis CLAVATA1,
the RLK that regulated meristem development, also had
an effect on nematode resistance [52].
In field trials of plants transgenic with GmRLK18-1

further evidence of pleiotropy was discovered when leaf
herbivory was shown to be significantly worsened. Insect
pests are separated into the chewing and sucking guilds.
Resistance mechanisms to the guilds were known to op-
erate by different pathways but some involved the Rhg4
locus or region [62]. Arabidopsis resistance to F. grami-
nearum was recently shown to require operation of both
SA and JA pathways [63]. The same Nils used here when
infested with H. glycines decreased proteins involved in
salicylic acid responses and increased those in the jas-
monic acid signaling pathways [46]. Therefore, plants
transgenic with Gm18RLK18-1 might be altered in their
responses to a broad range of pests and pathogens. Add-
itional pathogens will be tested in future studies.
The Rhg1/Rfs2 locus was shown to center on three

genes where recombination was suppressed within a
wider region that was high in recombination. Perhaps
the failure to recombine within the central 3 gene
cluster caused the unusually high frequency of heterozy-
gous plants in the neighboring region. A potential
suppressor locus acting on the resistance allele of Rhg1
was identified earlier [21,45,47]. The allele of the gene
on chromosome 7 (Lg M) had to be inherited from the
resistant parent to prevent zygote or embryo lethality in
SCN resistant plants. Consequently, all resistant plants
co-inherited Rhg1/Rfs2 on chromosome 18 (Lg G) and
the resistance allele on chromosome 7 (Lg M). That
gene may have had a functional homeolog in this study.
However, the locus was fixed to the R haplotype in all
the NILs, so fine mapping was not possible. Plant trans-
genic with the RLK were fertile and produced seed and
they would lack the resistance allele of the gene on
chromosome 7 (Lg M). Therefore, GmRLK18-1 does
not cause zygote or embryo lethality. Additional genetic
elements must be involved in that phenomenon.
An absence of recombination events in a region can be

caused by; deletions; insertions; inversions; the condensed
heterochromatin found near centromeres; and recombin-
ant allele lethality. The first four phenomena were not
occurring at the Rhg1/Rfs2 locus since DNA sequences in
resistant and susceptible cultivars were co-linear over
at least 87 kbp. Further, the Rhg1/Rfs2 locus mapped into
a region within 1 Mbp of the predicted telomere region
of chromosome 18. Therefore, recombinant allele lethal-
ity may be the cause and a hypothetical model for its ac-
tion was developed. The kinase domain of the RLK at
Rhg1/Rfs2 was proposed as the element causing lethality
to gametes or the zygote carrying a recombination event.
The hypothetical anti-porter protein was proposed as the
target locus kept in the resistant state when the RLK is
conferring SCN resistance (Figure 6). The laccase that
was located between these two genes, along with the
intergenic regions, are held in phase by the locus. It may
be possible that the lethal nature of the three genes
linked in association at the resistance locus are not fully
suppressed by the modifier locus (they are leaky) and
results in the inhibition of root growth observed in SCN
resistant cultivars (Figure 2).
The linkage disequilibrium studies reported with

probes in, and around, the RLK inferred a larger more
complex structure for Rhg1 than simply the RLK poly-
morphisms [15,16,25,64]. Possible roles included contri-
butions to additive resistance; contributions to resistance
in other resistance types (eg PI88788 and Toyosuzu; R
types 2 and 3) or contributions to the resistance to other
Hg types. The hypothesis that the linked genes were fac-
tors necessary in susceptible genotypes for SCN parasit-
ism was unlikely [16,25,53]. The dominance of Rhg1/
Rfs2 to SCN in NIL segregation also suggested the
genes were active in resistant types and inactive in sus-
ceptible genotypes.
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Conclusions
The Rhg1/Rfs2 locus was shown to include the
GmRLK18-1. Previously [53] also reported inhibition of
the resistance allele increased FI in composite roots, but
not to a significant degree in small experiments with few
replications. Here Rhg1/Rfs2 was inferred to be a com-
plex of three genes assembled and co-inherited over long
periods of selection for resistance to a endemic pest,
root parasitic nematodes. However, the GmRLK18-1
alone at a new genomic locations in transgenic plants
was sufficient for resistance to a relatively new pathogen
of soybean F. virguliforme. Revisions to the sequence
of the RLK made by re-sequencing PCR products [25]
were confirmed by BAC fragment sequencing here.
Fortunately the amino acid changes made to [16] lay
outside of regions under detailed analysis for ligand and
antibody binding [65,66]. Previously CLE peptide in
nematode secretions were shown to be perceived by
RLKs in the CLAVATA1, CLAVATA2 and CORYNE fam-
ilies [52]. In vitro, the purified GmRLK18-1 LRR domain
has been shown to bind strongly to the CLE peptide
found in nematode secretions as well as two proteins
and two CLE peptide of plant origin involved in
tracheary element inhibition [43,66]. It will be of interest
to discover whether the ligand profiles are similar for
the two resistances. The biochemical analysis of the RLK
protein will lead to refinements of models for modes of
action for the pleiotropic resistance.
The allelic discrimination probes developed provide a

high throughput alternative to satellite markers for mar-
ker assisted selection. These tools will facilitate molecu-
lar breeding for resistance to two or more important
pests and diseases of soybean [2]. The discovery of a
syntenic set of paralogs to the RLK, laccase and trans-
porter gene cluster at Rhg1/Rfs2 may also assist marker
assisted breeding. The discovery of the syntenic homeo-
logs raised significant barriers to reverse genetic
approaches to analyses of the RLK at Rhg1/Rfs2. Another
barrier to reverse genetic approaches was the role of Rhg1/
Rfs2 in normal plant development that can be inferred
from the restricted root growth of NILs (Figure 2) and
transgenic plants (Table 2). A third barrier to reverse gen-
etics was the uncoupling in eukaryotes of transcript and
protein abundances. Both effects may have contributed to
the recent report of no significant difference between the
SCN counts on composite plant roots with the GmRLK18-
1-b alone targeted for inhibition [53]. It must be noted that
the GmRLK18-1-b protein abundance was not measured
in that study in spite of the tools available to do so
[43,65,66]. Further, note that the numbers of cyst did differ
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between treatments [53] and that might be significant in
larger, replicated studies or under different conditions. Fur-
ther note that allele was recessive. However, further proofs
of the nature of Rhg1/Rfs2 locus function may require
knock-outs of each of the paralogs, or stable transform-
ation to several new locations, followed by measurements
of genetic segregation. In each case, the analysis will be
complicated by the co-dominant nature of the resistance
gene in certain experiments. In fact, the possibility that the
susceptible Essex allele of Rhg1/Rfs2 was functional by pro-
moting root growth and susceptibility, and so actively pro-
moted the establishment of parasitism by SCN and F.
virguliforme, should be explored with transgenic plants.
The model inferring that soybean has adapted part of an
existing pathogen recognition and defense cascade (SCN
parasitism and insect herbivory), to a new pathogen (F. vir-
guliforme) disease (root rot and leaf scorch and syndrome
(SDS) has broad implications for crop improvement. Stable
resistance to many pathogens might be achieved by ma-
nipulation of the genes encoding a small number of patho-
gen recognition proteins in the RLK family.

Methods
Plant materials
Many of the NILs were described previously [7,11,16].
All lines were released and consequently are available on
request as seed. Seeds of NIL 34–23 (resistant haplotype
between markers Satt 214 to Satt 570) and NIL 34–3
(susceptible haplotype from the marker Satt 214 to the
Sat122-Satt 570 interval) were obtained at the F5:13 gen-
eration. Genotypes were rhg1-e/rfs2, rhg1-e/rfs2, Rhg4,
Rhg4 for NIL 34–3 and Rhg1-a/Rfs2, Rhg1-a/Rfs2, Rhg4,
Rhg4 for NIL 34–23 whereas NIL34-33 contained both
those and rhg1-e/rfs2, Rhg1-a/Rfs2, Rhg4, Rhg4 in differ-
ent plants (NIL34-33-1 to −34).
Soybean cv. X5 and Westag 97 were used for trans-

formation because they could be regenerated to plant effi-
ciently from embryo cultures [67]. They were susceptible
to both SCN and SDS. X5 was judged to be rhg1-e/rfs2,
rhg1-e/rfs2, rhg4, rhg4 and Westag 97 was judged rhg1-e/
rfs2rhg1-e/rfs2, Rhg4, Rhg4 and based on the assays
reported here. Crosses were made to RIL EF2 for SCN
tests which was rhg1-e/rfs2, rhg1-e/rfs2, Rhg4, Rhg4.

SCN inoculations
Soybean plants were grown in cones containing a 1:1
ratio of sand soil mix, placed in a water bath to maintain
the root zone at 26°C or in a growth chamber at 26°C.
Infection with the three different Hg Type 0 SCN popu-
lations (PA3, JB3 and YC3) in separate assays consisted
of inoculating 2,000 eggs to each 14 day old seedling.
Plants were watered daily with 100 ml per pot. Infested
soybean plants were removed from the cones at 28 days
post infestation (dpi) and cyst numbers counted and
compared to ‘Essex’ susceptible controls [16]. Some
plant roots were harvested at 10 and 20 days for pro-
tein analyses. Root masses of the NILs and transgenic
plants were noted. Heterozygous NILs were replanted in
non-infested soil and grown to maturity. Seed were har-
vested. The indicator lines female indices (FI) for nema-
tode population JB3 were ‘PI54840’ (FI 7%), PI 88788
(FI 2%), PI90763 (FI 1%), PI437654 (FI 0%), ‘PI 209332’
(FI 1%), ‘PI89772’ (FI 2%) ‘PI548316’ (FI 8%) and
‘PI548402’ (FI 3%). The soil collected from Yichun
in China (YC3) contained Hg Type 0 (SCN race 3) was
‘Peking’ (FI 0%), ‘PI 88788’ (FI 0%), ‘PI 90763’ (FI 6%)
and ‘Pickett’ (FI 9%). Essex was the susceptible genotype
used across assays to determine 100% FI. Therefore, the
standard differentials showed these HG Types to all be
variants on Hg Type 0 (Niblack et al. 2003) correspond-
ing to race 3 (Riggs and Schmitt 1988). Nematode popu-
lation PA3 was described previously [16,23].

Assays of root development in the absence of
infestations
Root development was assayed in NILs and transgenic
plants using conditions identical to the SCN assays or
SDS assays (as noted in text) except that the roots were
not infested with either pathogen. Roots were weighed
separately from shoots during destructive sampling. These
plant organs were used for RNA and protein extractions.

SDS measures following F. virguliforme infestations
Greenhouse assays of the effects of F. virguliforme infes-
tations followed the methods previously described [5].
A culture of F. virguliforme virulent strain ‘Mont-1’
(NRRL 22292; MAFF 238545) was provided by Dr. A.
Fakhoury (SIUC). Briefly, the strain was grown on ten
potato dexrose agar plates. Hyphae and spores were
washed with distilled water and 10 μl of this is used for
spore count on a hemocytometer under a microscope.
Spore counts of 104 spores/cm3 of sand and soil mix
were used. Seed were sown in sterilized 1:1 (v/v) of sand
and soil inoculated with F. virguliforme virulent strain
Mont-1 in 10 cm square pots. Pots were kept in trays
filled to the 5 cm level with water to keep the lower half
of the soil saturated. The water was inoculated with 104

spores/cm3 to avoid dilution of the inocula in the pots.
Transgenic plants, non transgenic X5, selected ExF RILs
and a set of breeders advanced lines were grown in
the green house at the Southern Illinois University
Horticulture Research Center in Carbondale, IL. Experi-
ments were conducted from October 2009 to May 2012.
Plants were grown with a 14 h photoperiod under sup-
plemental lights. The air temperature ranged from
20 ± 2°C at night to 27 ± 2°C during the day in the green
house. Leaf symptoms were rated every 7 days from in-
festation to senescence. The standard sudden death
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syndrome DS score comparable across studies was rated
at 21 days after inoculation, determined on the basis of
the degree of leaf damage (chlorosis/necrosis) on each
plant, and was rated on a scale of 1 to 9 (1 = 0–10%/1–
5%, 2 = 10–20%/6–10%, 3 =20–40%/10–20%, 4 =40–
60%/20–40%, 5=60%/_40% of leaf surface chlorosis/necro-
sis, respectively, 6 = up to 33% premature defoliation,
7 = up to 66% premature defoliation 8 = 66% premature
defoliation, and 9 = premature death of plant). At 28 days
after infection (dai) roots were washed, photographed
and a root sample (1 g) taken. Root rot severity (RS) was
scored on a scale of 1–5 where 1 was unaffected; 2 was
discolored; 3 was discolored and partly rotted; 4 was dis-
colored and heavily rotted; and 5 was discolored and
necrotic. Plants were weighed, the root to shoot ratio
estimated visually and then repotted into the media of
the reciprocal genotype to test for pot effects. The
experiments were repeated on 3 occasions using 3–5
plants of each genotype. Highly resistant plants of RIL
EF23, and highly susceptible plants of RIL EF85 were
assayed in parallel with each test.
DNA and RNA for genotype analysis
DNA was isolated following [11]. Concentrations of
DNAs were calculated by measuring absorbances at 260
and 280 nm. Total RNA was isolated with TrizolTM

(Invitrogen, Carlsbad, CA, USA), according to the manu-
facturer’s instructions. First strand cDNA was synthesis
carried out using oligo dT primers using a cDNA synthe-
sis kit, according to manufacturer (Invitrogen). Presence
of the Rhg1/Rfs2 resistance alleles was confirmed by
PCR analysis using TMD1 an indel marker in the RLK
intron. Several designs of TMD1 primers have been
reported [11,16,23]. Used here were the primers pair; for-
ward 5′- CAC CTG CAT CAA GAT GAA CA -3′ and
reverse 5′- GCC TAT TAC TTG GGA CCC AA -3′
(Additional file 4: Table S2). Genotyping by markers
linked to Rhg1/Rfs2 used about 50 ng of DNA for micro-
satellite analysis on PAGE after [39] and on agarose gels
after [8].
BAC sequence and allele comparisons
Southern hybridizations were performed following the
standard procedure described in [68] to identify parala-
gous BACs. BACs B73p06 and H38f23 were sequenced
at TIGR (nee JCVI). Briefly, the entire BAC was sheared
by nebulization to provide fragments in the 3–5 kbp or
9–11 kbp range. The fragments were ligated into pHOS2
and used for Sanger DNA sequencing. BACs were
sequenced to 8–12 fold redundancy and assembled. As-
sembly quality was judged by BLAST comparisions for
sequences from A3244 BACs [11,16,50] and Williams 82
genome sequence [54].
Allelic discrimination at the RLK within the Rhg1/Rfs2 locus
The SNP genotyping assay within the gene encoding the
RLK was performed using a custom TaqmanTM Kit.
Three probes were designed for the SNPs at 1,486 bp,
506 bp and 2,040 bp (relative to the translation start site)
to distinguish the 8 commonest alleles of the RLK (Add-
itional file 4: Table S2). Six process were designed to the
non-synonymous SNPs in the GmRLK18-1 preotein to
distinguish the seven allotypes. The PCR reactions were
carried out using a 3 step PCR protocol with one hold at
95°C for 10 minutes followed by 35 cycles that included a
denaturation cycle of 95°C for 30 sec, annealing at 58°C
for 10 seconds and an extension at 68°C for 20 sec.
Primers for SNPs within the Rhg1/Rfs2 locus on Lg G

were used in fine melt curve assays as described previ-
ously [69] with the following modifications. Briefly, gen-
omic DNA was used; multiple amplicon sizes were
detected on PAGE gels; an ABI7900 with HTM software
was used; melt curve data were normalized by both local
and global metrics. Primers used were to the SNP at
2090–1 for transgenic cDNA between X5 and X5 trans-
genics. The target was SNP G to T (G for resistant and
T for susceptible plants). SNP2090-1 forward primer was
5′- GTT GGT TGA TCC AGA AGG GTT -3′ and the
reverse was 5′- CTA AGC TTC CTG AGG CCT TG -3′.
For detection of mRNA products of GmRLK18-1

(Figure 3) the qRT-PCR methods described previously
[45-47] were followed. Briefly, mRNA concentrations
were estimated from Cot curve analyses using cDNAs.
Actin1 was the control used for comparisons.
Allelic discrimination across the region flanking the
Rfs2/Rhg1 locus
Screens for new recombination events used the flanking
markers Satt309 and Satt038. Recombinants identified
with those markers were screened with TMD1 and three
SNP primers for TaqmanTM assays used were set as
described in [45-47] (Afzal, 2008b; 2012) with the fol-
lowing modifications. The SNPs used were; AX196295
10893 between the laccase and RLK; AX196295 37583
CR-G in the laccase; and AX196295 37581 CR-G in the
hypothetical antiporter gene.
Total root protein extraction, SDS–PAGE and Western
hybridization
Protein from root material was isolated from infested and
non-infested roots was extracted after [46]. Total pro-
tein concentration was determined using a non-interfering
protein assay. For the Western hybridizations, a custom
made antibody generated against a peptide [C]TL SRL
KTL DIS NNA LNG NLP ATL SNL S from the LRR
domain of RLK at RHG1/RFS2 was used (Alpha diag-
nostics, San Antonio, Texas).
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Transgenic Plants
For soybean transformation, the cassette included
pSBHB94 that was a 9.772 kbp insert sub-cloned from
BAC B21d09 by nebulization, size fractionated to 9–
11 kbp and ligated into pHOS2. The plasmid pSBHB94
encompassed the sequences found from 30,423–40,194 bp
in BAC B73p06. Transformation, selection and plant
regeneration were conducted after [67]. Briefly, proliferative
embryogenic cultures of soybean cv. X5 (AAFC breeding
line X2650-7-2-3) or Westag 97 were co-bombarded with
the pHOS_SBHB94 and HygR [70] constructs; transgenic
events were selected and maintained on 55 mg L−1 hygro-
mycin; embryos were matured on antibiotic-free medium,
air desiccated and converted on B5 medium [71]; tissue
cultures and regenerating plantlets were maintained at
20 C and 20 h photoperiod. The plantlets were transferred
to soil and plants were regenerated under controlled con-
ditions as in [67]. Primary transgenic (T0) plants were
tested for the presence of the pHOS::SBHB94 transgene
using PCR with the TMD1 primers. Fourteen primary
lines were obtained and grown for seed. T2 seed from T1

plants was tested for transgene segregation to identify
homozygous T1 individuals. Event 6B3-7D2 and 6B3-7D3
provided seed for the X5 experiments described here.
Repeats of the experiments were made on seed of events
8B2-7D2 and 8B2-15D1 in Westag 97.
The genotype of X5 was rhg1-e/rfs2, rhg1-e/rfs2,

rhg4rhg4. Purified stable transgenics were of genotype rhg1-
e/rfs2rhg1-e/rfs2, rhg4rhg4:: GmRLK18-1, GmRLK18-1
(so Rhg1-a/Rfs2Rhg1-a/Rfs2) as shown by markers TMD1
and A2D8. Expression of the transgene was established
by qRT-PCR from cDNA with allele specific Taqman
probes and HRM of amplicons. Protein allotypes were
identified by two dimensional PAGE [46] followed by
Western hybridization [43,44].
Field trials were conducted at the ARC in Carbondale

during 2010 and 2011 using conditions described in
[62]. Plants were arrayed in 12′ plots arrayed in a rando-
mized complete block with 4 replications. Insect herbiv-
ory was measured as described in [62]. Briefly, the pest
incidence was calculated as the number of individual
plants within a given line that were affected by herbivor-
ous insects; the pest severity was the percent defoliation;
and both were measured once a week from the R1 to R6
growth stages. The major defoliating pest was the Japa-
nese Beetle (Popillia japonica, Newman). Plant biomass
was measured for 5 plant per plot. The seed yield of
each plot was measured after harvest.

Additional files

Additional file 1: Figure S1. Paralogs of Rhg1 in the soybean
genome. Panel (A) shows LRR probe (200bp) hybridized to Forrest MTP.
(B) Southern hybridization of LRR probe (200bp) to the MTP positives.
Five out of the 7 MTP clones hybridized after BAC clone purification and
restriction digestion with HindIII. The lower panel (C) shows the kinase
domain probe (200bp) hybridized to Forrest MTP. Panel (D) shows
Southern hybridization of the same kinase probe to the MTP positives.
Three out of 5 MTP clones hybridized after BAC clone purification and
restriction digestion with HindIII. Panel F shows ideograms of the genes
predicted from the genome sequences centered on GmRLK18-1 and
GmRLK11-1 Panel F shows an alignment of the genome sequences of
70kbp centered on GmRLK18-1 and GmRLK11-1 showing the extent of
synteny.

Additional file 2: Table S1. Comparisons of sequence identity
between Forrest alleles of GmRLK18-1 and GmRLK11-1 the most
similar and syntenic RLK like protein. The amino acid identity was
78% in the signal peptide (residues 1–61); 94% in the ten LRRs
(141–471), 93% in the transmembrane domain (485–507) and 97% in
the kinase domain (569–840). Residues that differ in alloproteins of
GmRLK18-1 are in bold. Four of the six are identical in the homeoprotein
the other 2 are identical to the susceptible allele. The neighboring
laccase and the antiporter also showed 85–96% amino acid identity.

Additional file 3: Figure S2. Detection of the SNP polymorphism at
position 1486 in the LRR region of Rhg1–a and –e using an allelic
discriminatory assay. A Famlabeled probe was used for the detection
of resistant haplotypes1 and 2 (red) and Hex labeled probe for the
detection of susceptible haplotypes2, 3 and 4 (blue). A total of 16
individuals from the 110 PIs were selected for the analysis. The Panel
shows relative fluorescent signal intensity for each of the 16 plant
introductions. The two groups form separate clusters.

Additional file 4: Table S2. The sequence of the microsatellite
primers that were used for Rhg1-a fine map development (from
Triwitayakorn et al., 2005).
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