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Abstract

origin of progeny plants of targeted parents.

switchgrass breeding efforts.

Background: Switchgrass (Panicum virgatum) is a herbaceous crop for the cellulosic biofuel feedstock development
in the USA and Europe. As switchgrass is a naturally outcrossing species, accurate identification of selfed progeny is
important to producing inbreds, which can be used in the production of heterotic hybrids. Development of a
technically reliable, time-saving and easily used marker system is needed to quantify and characterize breeding

Results: Genome-wide screening of 915 mapped microsatellite (simple sequence repeat, SSR) markers was
conducted, and 842 (92.0%) produced clear and scorable bands on a pooled DNA sample of eight switchgrass
varieties. A total of 166 primer pairs were selected on the basis of their relatively even distribution in switchgrass
genome and PCR amplification quality on 16 tetraploid genotypes. Mean polymorphic information content value
for the 166 markers was 0.810 ranging from 0.116 to 0.959. From them, a core set of 48 loci, which had been
mapped on 17 linkage groups, was further tested and optimized to develop 24 sets of duplex markers. Most of (up
to 87.5%) targeted, but non-allelic amplicons within each duplex were separated by more than 10-bp. Using the
established duplex PCR protocol, selfing ratio (ie, selfed/all progeny x100%) was identified as 0% for a randomly
selected open-pollinated ‘Kanlow' genotype grown in the field, 15.4% for 22 field-grown plants of bagged
inflorescences, and 77.3% for a selected plant grown in a growth chamber.

Conclusions: The study developed a duplex SSR-based PCR protocol consisting of 48 markers, providing ample
choices of non-tightly-linked loci in switchgrass whole genome, and representing a powerful, time-saving and easily
used method for the identification of selfed progeny in switchgrass. The protocol should be a valuable tool in
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Background

Switchgrass (Panicum virgatum L.) is a C4 perennial
grass native to the prairies of North America and being
developed as a herbaceous crop for the biofuel feedstock
production in the USA and Europe [1-3]. Recurrent se-
lection procedures have been widely employed in genetic
improvement of populations and development of culti-
vars in switchgrass [4]. Because of its wind facilitated
pollination behavior and low fertility of bagged inflores-
cences, switchgrass is considered to be allogamous.
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Although homozygous inbred lines of switchgrass had
not been reported yet, some studies indicated that the
rate of self-pollination ranged from less than 1% of
bagged inflorescences [5-7] to higher than 50% in some
specific individuals [8] or a genotype grown in a con-
trolled environment [9]. Through continuous selfing, de-
velopment of inbred lines is potentially possible, which
will produce single cross hybrid cultivars in switchgrass
[8-10]. Hybrid vigor (ie., biomass vyield) has been
reported in switchgrass [11]. Using tissue culture proto-
cols to clonally propagate two heterozygous parents for
hybrid seed production was suggested [11]. But the ap-
proach for producing hybrid cultivars is not applied due
to high costs associated with producing large quantities
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of switchgrass clones through tissue culture and trans-
planting the clones into field plantings for large scale
seed production. Identification of selfed progeny, offers
the potential for the development of switchgrass inbred
lines to serve as parents of F1 hybrids. The proposed
procedure has proven successful for large amounts of
seed production in maize (Zea mays), likely applicable in
switchgrass.

The attempt to obtain switchgrass selfed seeds was
carried out by bagging inflorescences of selected plants
[5-7]. However, bagging may not be fully effective to pre-
vent pollen contamination [12]. It has been proposed
that seeds from bagged panicles needed to be genotyped
with molecular markers to confirm parentage [8]. Mor-
phological traits, such as pubescence on the adaxial sur-
face of the leaf blade, foliage color, and seed size, were
used to identify selfed and crossed progeny in previous
experiments [13,14]. Although these phenotypic markers
are simple and easily used, they are not only genotype-
dependent but also may be environmentally sensitive. In-
stead, simple sequence repeat (SSR) markers have many
advantages due to their co-dominance, low cost, high
polymorphism, and environmental independence, and
have been available in switchgrass [15-19]. SSR markers
were used for genetic diversity [20], cultivar classification
[21], and evolution [22] in switchgrass. Using PCR
amplifications of six individual SSR markers, one prelim-
inary study reported the confirmation of selfed progeny
in switchgrass [12]. It will save 50% time and cost in the
lab work if a duplex PCR protocol is developed. In
addition, one prerequisite for molecular genetic-based
inbred testing requires non-tightly linked markers [23].
Recently available SSR linkage maps [18,24] enable to se-
lect molecular markers covering much of the genome
and less of linkage in switchgrass.

Multiplex polymerase chain reaction (PCR) consists of
two or more primer sets within a single PCR mixture to
produce amplicons of varying sizes that are specific to
different DNA sequences. Since the use to detect dele-
tions in a dystrophin gene [25], multiplex PCR protocols
have been well established as a widespread technique in
forensic studies, disease diagnosis, pathogen identifica-
tion or linkage analysis due to obvious advantages of re-
ducing labor, time, and reagent cost (see review [26]). In
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crops, to identify genotypes, test seed purity, and protect
intellectual property, multiplex PCRs have been devel-
oped in rapeseed (Brassica napus) [27], cassava (Mani-
hot esculenta) [28], peanut (Arachis hypogaea) [29],
sorghum [Sorghum bicolor] [30], cotton (Gossypium hir-
sutum) [31], soybean (Glycine max) [32], maize (Zea
mays) [33], sunflower (Helianthus annuus) [34], wheat
(Triticum aestivum) [35,36], and red cover (Trifolium
pretense) [37].

Because of inherent variation for selfing rates in switch-
grass, development of a technically reliable and easily used
multiplex marker system is very useful to quantify and
characterize selfing and crossing rates of switchgrass.
However, no similar study has been reported in switch-
grass. The objectives of this study were: (1) to select a set
of polymorphic SSR markers based on genome-wide
screening, (2) to develop a duplex PCR-based protocol,
and (3) to apply this SSR system in the identification of
self- and cross-fertilized progeny of selected switchgrass
plants in different growth conditions.

Results

Screening and evaluation of genome-wide mapped SSR
markers

Of the 915 primer pairs (PPs) that were positioned on
the published linkage maps [18,24], 842 (92.0%) pro-
duced clearly scorable bands with approximate sizes as
reported previously [15-19]. The remaining 73 (8.0%)
PPs produced either no amplicons or nonspecific or
smear products. The number of alleles among the scor-
able SSR markers ranged from one to 20. The mean
number of alleles per locus was 14.3 for dinucleotide,
10.5 for trinucleotide, and 8.3 for other SSR markers
with repeat motifs >4 (Table 1). The SSRs with di-
nucleotide repeats produced a significantly greater
number of alleles than those with trinucleotide repeats
(t-test, p < 0.01).

From the 842 PPs, 166 well amplified SSR markers
were selected due to their relatively high allele number
(>4) per locus. These markers were distributed on 18
linkage groups (LGs) and spanned 17514 cM (84.0%
coverage) of the reference map [24]. The number of SSR
markers in each LG ranged from 2 on LG 7b to 20 on
LG 3b (Additional file 1). Average marker interval was

Table 1 The evaluation of microsatellite primer pairs (PPs) for different repeat classes in pooled DNA

Class Primer pairs Mean of alleles per locus
Tested Scorable Percentage (%) * standard error

Dinucleotide 409 384 93.9 14.3+0.3

Trinucleotide 369 342 92.7 105 0.2

Tetra-, penta-,hexa-nucleotide 29 20 69.0 83%0.7

Compound 108 96 889 10.1£0.3

Total 915 842 92.0
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10.6 ¢cM. The uncovered regions spanned 333.8 cM on
the recent map, and those longer than 15 ¢cM were on
seven LGs, ie, LG 1b, 3a, 3b, 6a, 2a, 7a, and 9a
(Additional file 1). To estimate polymorphic information
content (PIC), assess genotyping quality, and identify
candidate SSR markers for multiple duplex PCR, the 166
SSR markers were tested for polymorphisms on 16 indi-
viduals selected from four different tetraploid cultivars
(Figure 1). The raw data (e.g, SSR allele size range, het-
erozygosity, PIC value, frequency of each allele, etc.) for
each SSR marker are presented in Additional file 2.

The selected EST-SSR (eSSR) markers produced fewer
bands (Figure 1A) than genomic SSR (gSSR) (Figure 1B).
The mean number of alleles was 8.4 amplified for eSSRs
while 14.6 for gSSRs. Mean PIC value for all 166 loci was
0.810 with a range from 0.116 (SWW-2377) to 0.959
(PVCA-1843/4). No significant differences in expected
heterozygosity were observed among 18 LGs (p >0.05,
Figure 2). The gSSRs had a significantly higher mean PIC
value (0.844 + 0.135) than that of eSSR (0.688 + 0.183)
(t-test, p <0.001).

Development of a set of duplex PCR markers

Multiplex PCRs were developed by using the principles
described by Edwards and Gibbs [26] and Hayden et al.
[35,36]. PCR robustness, polymorphism and map pos-
ition were used as the screening criteria to select 60 out
of the 166 single-locus markers, and then these markers
were empirically tested for duplex PCR quality. Compar-
ing to monoplex PCR conditions, which generally didn’t
work in duplex PCR by just combining two sets of
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primers together (Figure 3, set A), several adjustments
associated with reaction chemicals were tested to
optimize the protocol. The increase of dANTP, template
DNA, buffer, IR-M13 dye, and primer concentrations
did not significantly improve the amplification quality
(Figure 3, set C, D, E, G and H). In contrast, the increase
of Tagq polymerase concentration from 0.25 to 0.5 units
per 10ul reaction partially increased amplicon quantity
but did not correct uneven amplification or pull up un-
amplified alleles (Figure 3, set B). The most effective
change that affected SSR primer compatibility was the
increase in Mg2+ concentration (from 1x to 1.6x), which
generally pulled up faintly amplified and unamplified loci
(Figure 3, set F).

After an optimal duplex PCR protocol was identified,
individual SSR primer chemical regent quantities were
modified as necessary to obtain appropriate fluorescent
signals for two SSR markers in each duplex (Figure 4).
The process of calibrating primer quantities was done by
comparing fluorescent signal intensity. The relative ratio
between two SSR PPs’ concentrations was more import-
ant than the absolute quantities, which is consistent with
previous results [34]. The duplex PCR protocol required
adding 0.125 to 4 pmoles of each SSR primer in a 10 ul
reaction volume (see details in Table 2).

Of the 60 tested PPs, 48 SSR markers were assembled
into 24 duplexes (set #1-24) by testing them on eight in-
dividual DNA samples (Table 2). Twelve markers were
discarded due to unsatisfactory amplifications in duplex
PCRs. All duplex PCRs produced the same SSR alleles as
monoplex PCRs (Figure 4). The 48 SSR markers
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Figure 1 Polymorphisms of SSR primer pairs in a panel of 16 individuals. The panel was made from four cultivars, Alamo (A) Kanlow (K),
Cimarron (C) and Summer (S), and each variety included four different genotypes. The lane with an “M" is DNA marker of 50-350 bp size
standards (LI-COR Biosciences, Lincoln, NE, USA). A) Amplification from two EST-SSR markers, SWW-333 and SWW-387. B) Amplification from two
genomic SSR markers, PVCAG-2397/8 and PVCAG-2473/4.
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Figure 2 Expected heterozygosity (HE) by linkage group (LG) for 166 simple sequence repeat markers. The box plot showing means

represented 15 perfect and five compound repeat SSRs
of dinucleotide, 26 perfect and one compound repeat
SSRs of trinucleotide, and one compound repeat SSR of
pentanucleotide (Table 2). The mean PIC for dinucleo-
tide and trinucleotide SSRs were 0.823 and 0.820, re-
spectively (Table 2). Eleven markers were eSSRs and the
other 37 gSSRs (Table 2).

The 48 markers constituting the 24 duplexes are dis-
tributed on 17 LGs and the number of SSR markers per
LG ranged from one (on LG 1la and 8a, respectively) to
five (on LG 2b and 5b, respectively), based on a pub-
lished linkage map [24] (see Additional file 1, in red).
The mean distance of two immediate neighboring mar-
kers was 37.7 cM, and the nearest markers were on LG
2b with a mean distance of 8.5 ¢cM. The only LG with no
SSR marker loci contributing to the duplex PCR sets

was LG 7b, one of the shortest and least polymorphic
LGs in the mapping population [24].

The allele band size range of the 48 SSR markers was
from 102 bp (PVAAG-3245/6) to 413 bp (PVAAG-2895/
6) (Table 2). Non-allelic but targeted bands within each
duplex were separated by more than10-bp among the 16
genotypes, aside from a 3-bp gap between alleles ampli-
fied by one duplex Set 15 (PVGA-1357/8 and PVGA-
1301/2), a 5-bp gap by Set 21 (PVCA-415/6 and SWW-
1643) and a 6-bp gap by Set 23 (PVCAG-2269/70 and
PVCAG-2361/2) (Table 2).

The minimum, mean and maximum PIC values of the
48 markers were 0.622, 0.829 and 0.945, respectively. The
mean of non-exclusion probability of one marker, if one
parent is known (NE-1P), were 0.414 ranging from 0.191
to 0.709 (Table 2).
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Figure 3 Optimization of duplex PCR. Alleles were amplified with a duplex set of SSR primer pairs (PVCAG-2517/8 and PVCAG-2397/8). Eight
switchgrass genotypes from Alamo and Kanlow were used as amplification templates. The adjustments of PCR reaction components were shown
from group A to H. Group A: control PCR with the same conditions as monoplex PCR, except for mixing PVYCAG-2517/8 and PVCAG-2397/8
together; B: doubling Tag polymerase; C: doubling dNTPs concentration; D: doubling concentrations of DNA templates; E: increasing buffer
concentration to 1.6x; F: increasing Mg >* concentration to 2.4 mM; G: doubling IR-M13 dye; H: doubling primer concentrations of PVCAG-2517/8

and PVCAG-2397/8. "M" indicated the DNA ladder.
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Figure 4 Primer pair (PP) combinations for the duplex PCR. The target bands for each PP (underline) and names of PPs are given. Here the
duplex sets (I -VIIl) were temporarily encoded and later they were integrated into the final list of duplex sets in Table 2. The DNA templates were
the same as Figure 3.

Validation of the duplex PCR in identification of selfed
progeny using different populations

Three populations produced in different environments
were used to determine selfing ratios (Figure 5). Popula-
tion 1: A maternal plant (K4) grown in the field condi-
tion and its 46 putative half-sib progeny were genotyped
with 100 sets of randomly selected duplex markers
(Figure 5A). Each set contained five duplexes with 10
loci on different LGs. One plant (K4-11) was identified
as a contaminant because all alleles of its six loci
(PVCAG2361/2, 5211-B07, PVAAG3163/4, PVGA1143/
4, PVCAG2397/8 and PVGA1963/4) were not inherited
from K4. The remaining 45 plants showed the maternity
relatedness with K4 and were included in further ana-
lysis. The results showed that, if genotyping with one
random marker, the mean value of selfing ratio was
46.7%. As more markers were tested and more poly-
morphisms were detected between the maternal plant
and unknown pollen parents, the cumulative selfing
ratio began to decline. When the number of marker loci
increased up to eight or more, the cumulative selfing
ratio dropped to 0 (Figure 6).

Population 2: Twenty-two different families with to-
tally 99 progeny were genotyped for 10 loci with five sets
of duplex PCR (Sets 1, 9, 12, 14 and 18). These progeny
plants were from seeds harvested in a field plot by bag-
ging panicles. Unexpectedly, of 99 progeny, 34 (34.3%)
were identified as contaminants because each of them
showed no alleles from their corresponding maternal
parents in at least two loci (Figure 5B, indicated by

lozenges). In the remaining 55 progeny, 10 plants from
four families (i.e.,, NS85-1, 2, 3, 5, 6, and 7; SN16-1 and
-2; SN17-1; and SN44-1) shared the same alleles from
their respective maternal parents, and therefore were
identified as selfed progeny (Figure 5B, indicated by
asterisks). The other 55 progeny were identified as
hybrids due to their possession of alleles, which were
different from their seed parents (Table 3). Later, the 10
selfed progeny were further confirmed by detecting two
additional SSR duplexes (Sets 2 and 24). The overall self-
ing ratio by the bagging method was only 15.4% (10/65)
if contaminants were excluded.

Population 3: Forty-four progeny plants from seed of a
breeding line (‘SL93 7x15; abbreviated as SL93) grown in
a controlled growth chamber, in which another breeding
line ('NL94 LYE 16x13; NL94) was grown as a potential
pollen donor, were genotyped with five sets of PCR-
duplex (Sets 1, 11, 12, 16 and 24, Figure 5C). The geno-
typing results were consistent across all 10 SSR loci. For
the 44 progeny from SL93, 34 (77.3%) were identified as
originating from self-fertilization and 10 (22.7%) were
hybrids between SL93 and NL94. SL93, like NL94 as
reported recently [9], was a self-compatible genotype in
the specific environment.

Discussion

Switchgrass has become one important energy crop in the
USA and Europe due to its high biomass yield and adapt-
ability on marginal lands, low nutrient and water require-
ments, and powerful ability as a carbon sink [1-3,8]. The
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Table 2 Parameters of 48 microsatellite markers assembled into 24 duplexes (Sets 1-24) in switchgrass

Set SSRID? Type® Repeat motif LGC Position ¥ N&  Lminmax (BP)’ Dpmin (bp)® PIC"  NE-1P'  Primer (pmol) }
1 PVAAG-3163/4  gSSR  (ACA)29 5b 635 19 211-293 16 0925 0248 1
PVGA-1143/4 9SSR (GA)7-GA)8  5a 293 20 156-195 0926 0246 1
2 PVCAG2397/8  gSSR  (CAG)12 3b 363 9 161-189 73 0822 0484 2
PVCAG-2517/8  gSSR  (GCT)8 % 69 15 213-234 0879 0362 2
3 PVCAG-2147/8  gSSR  (CAG)7 6b 150.5 12 285-306 68 0836 0454 1
SWW-1394 eSSR (GGT)n 7aMla 604 8 194217 0651 0709 05
4 SWW-463 eSSR (TG)n % 583 7 253273 108 0762 058 05
PVAAG-3017/8  gSSR  (AAG)11 6b 5838 8  132-145 0787 0539 05
5 PVAAG-3091/2  gSSR  (TTO)13 % 795 13 304-346 71 0867 039 1
PVAAG-3245/6  gSSR  (TTC)9 2a 914 19 102-233 0929 0237 025
6  NFSG-112 9SSR (GAn 8bVilb 48 4 189-195 22 065 0472 05
NFSG-036 9SSR (GAN 4alVa 0 17 120167 091 0289 05
7 SWw-573 eSSR (CAG)n 2b 395 11 229-247 60 0767 0561 1
PVCAG-2473/4  gSSR  (GCA)12 3a 60.8 13 138-169 0896 0325 4
8  PVAAG-2895/6  gSSR (GAA)0 5b 118 23 310413 82 0936 0215 4
PVCAG-2527/8  gSSR (GCT)9 4b 60.8 12 206-228 0867 0392 4
9  NFSG-200 9SSR (GAIN 9bXb 764 15 107-146 19 0884 035 1
NFSG-219 9SSR (GAn 8bVilb 266 19 165-199 0928 0243 1
10 SWw-387 eSSR - (CDn 9b 465 5 154-159 44 0622 049 2
PVGA-1663/4 9SSR (AG)13 % 34.1 17 203-230 089 0332 2
11 PVAAG-3051/2  gSSR (GAA)29 7a 318 15 185-254 10 0851 0418 1
PVCAG-2209/10  gSSR  (GO)8 4a 134 9 264274 0839 0452 1
12 PVCAG-2207/8  gSSR  (CTG)S 2b 403 7 221238 29 0677 0685  0.125
PVCAG-2289/90 gSSR  (TGO)S 4b 61 16 157-192 0886 0343 025
13 PVCAG-2187/8  gSSR  (GCA)7 8b 694 13 152-179 99 0859 0404 1
PVGA-1549/50  gSSR  (GAA)6 1b 835 11 278331 085 0428 1
14 SWW-2662 eSSR (AGG)N 2b, b 735 10 178197 43 0774 0555 1
5211_B07 eSSR (AGO)8 2a 172 7 240253 0799 0525 1
15 PVGA-1357/8 9SSR (AQ)7-(GA)22  5a 595 22 229337 3 0938 0211 1
PVGA-1301/2 9SSR (TO)22 % 505 17 163-226 0914 0279 15
16 PVGA-1243/4 9SSR (TO)23 5b 69.3 25 280317 62 0945 0191 2
PVCAG-2297/8  gSSR  (CAG)6 3a 66.6 15 177-218 0866 0386 05
17 PVAAG-3311/2  gSSR (CTT)28 2a 296 12 140170 66 0883 0353 05
PVGA-1813/4 9SSR (GA)7 5a 722 18 236276 0915 0277 1
18 NFSG-035 9SSR (GAN 3a,lla 1292 13 117-151 52 0897 0325 1
SWW-125 9SSR (GAn 2b, b 455 5 203-220 0629 0487 1
19 PVCA-893/4 9SSR (AQ)19 3b 653 9 297336 81 078 0546 1
SWW-1615 eSSR (GGO)n lala 1098 17 185-216 0873 0368 1
20 SWW-1622 eSSR (GCG)N 2b, b 563 6 233-246 15 077 0576 1
SWW-1889 eSSR (GCMn 6b, Vb 72 4 21-218 0624 0484 1
21 PVCA-415/6 9SSR (TG)16 6a 68.1 20 137-172 5 093 0236 1
SWW-1643 eSSR (GAN 3b 136 12 177-207 0881 0361 2
22 PVCA-979/80 9SSR (GT)30 8a 502 8 283310 60 0678 0679 2
SWW-2376 eSSR (CTG)n Sb,Vvb 1115 9 204-223 0655 0703 2
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Table 2 Parameters of 48 microsatellite markers assembled into 24 duplexes (Sets 1-24) in switchgrass (Continued)

23 PVCAG-2269/70  gSSR (CAG)8 4b 0 17 209-262 6 0906 0298 05
PVCAG-2361/2 9SSR (AGQO)8 1b 259 8 268-277 0705 0648 1

24 PVCAG-2279/80  gSSR (GCN8 5a 11.7 11 236-248 14 0.83 0.46 0.25
PVGA-1963/4 9SSR (GA)9-(AG)6 5b 66.5 17 191-222 0908 0294 2

Footnote: ? The sequences of primer pairs are available in previous studies [15-19]; > gSSR, genomic SSR; eSSR, EST-SSR; © The linkage group (LG) with an Arabic
number indicates the map developed by Liu et al. [24], while Roman number by Okada et al. [18]; ¢ The position indicated genetic distance of linkage map by Liu
et al. [24]; © Number of alleles (N,); f Minimum and maximum allele lengths (L); ¢ Minimum difference (D) between non-allelic bands; " Polymorphic information

content (PIC); ' Average non-exclusion probability for one known parent (NE-1P); ’ Each primer quantity.

duplex PCRs consisting of 48 SSR markers were the first
developed in switchgrass. The protocol was based on a
genome-wide selection of SSR marker loci. PCR-
multiplexes for genome-wide or nearly genome-wide SSR
marker loci have only been developed in limited plant spe-
cies thus far, including maize [33], sunflower [34],
Arabidopsis thaliana [38], rice [39] and soybean [40]. In
other crops, such as rapeseed [27], cotton [31], and sor-
ghum [30,41], multiplex PCR systems have been estab-
lished, although markers were selected not covering the
whole genome.

SSR marker polymorphism

Initially, DNA samples from eight diverse switchgrass
cultivars were pooled together, which not only kept the
diversity of different ecotypes of switchgrass but simul-
taneously minimized the number of genotypes used for
the preliminary screening of SSR markers. Similar strat-
egy had been used in a previous switchgrass study [19].
Generally, SSR markers with dinucleotide repeats were
more polymorphic than trinucleotide repeats in several
plant species, such as barley [42], rice [43], wheat [44],
maize [45], and soybean [46]. In this study, of all
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Figure 5 Genotyping switchgrass progeny with duplex PCR. For each parent, DNA sample was duplicated in PCR and shown by arrows. The
letters (“a” to “g") indicate different alleles of each locus. “M" indicates the DNA ladder. A) Genotyping a maternal plant (K4) grown in a field plot
and its 46 progeny (K4-01 to 46) with a duplex set 9 (NFSG-200 and NFSG-219). B) Genotyping seven parents (arrows) and their progeny
harvested by bagging in the field with duplex set 12 (PVCAG-2207/8 and PVCAG-2289/90). The asterisks indicate selfed progeny and lozenges
indicate seed contaminations. C) Genotyping the seed parent 'SL937x15" (P1), pollen parent ‘NL94 LYE 16x13" (P2) and 44 progeny (SN-01 to 44)
amplified with a duplex set 12. The asterisks indicate selfed progeny.
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Figure 6 Cumulative selfing ratio with increasing the number of loci. The duplex sets were randomly selected on different linkage groups.
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scorable PPs in the preliminary screening, the dinucleo-
tide repeat SSRs produced a significantly greater number
of alleles than those with trinucleotide repeats (Table 1),

which was consistent with previous studies in switch-  1able 3 Selfing test for plants by bagging with duplex

grass [19,24,47]. However, in the final 48 PPs selected PCRs
for duplex PCR, we found that both classes of SSRs were ~ Grand Parent Family Selfed ~ Crossed
equally polymorphic. The PIC values for the selected di-  Pparent size  progeny progeny Contaminants
nucleotide and trinucleotide SSRs were not significantly =~ NL94 LYE 16x13 NS33 6 0 6 0
different (0.823 vs. 0.820), and the number of alleles per NS81 8 0 7 1
locus were nearly identical (12.3 for dinucleotide and NS85 7 6 1 0
12.6 for trinucleotide repeats) (Table 2). NS5 7 0 0 ;
Duplex PCR NS313 10 0 10 0
Due to the competition of primers, DNAs, Mg**, and Ns387 8 0 / !
other reaction components, PCR multiplexing generally =~ SL93 7x15 SN 1 0 0 1
requires some optimization [26]. In this study, we found SN6 11 0 1 10
increasing Tag and Mg>* concentrations improved the sNO 2 0 0 5
duplex PCR quality (Figure 3). Previous studies showed N1 7 0 : 6
that a Tag DNA polymerase concentration (with an ap-
. . . . . SN16 - 2 2 0 0
propriate increase in MgCl, concentration) four to five
times greater than that required in monoplex PCR, was SN17- 1 ! 0 0
necessary to achieve optimal nucleic acid amplification SN18 1 0 1 0
[48]. In contrast, the alteration of other PCR compo- SN19 1 0 0 1
nents such as PCR buffer constituents, dNTPs, and pri- SN25 4 0 4 0
mer absolute concentrations in multiplex PCR over N3O 1 0 : 0
those reported for most monoplex PCRs usually resulted
in little improvement in the sensitivity or specificity of N3 0 ] 0
the test [49]. But another study showed that only in- N33 5 0 3 2
creasing the buffer concentration markedly improved SN34 13 0 1 2
the quality of multiplex PCR [34]. It is evident that the SN38 1 0 0 1
optimization is necessary in developing multiplex PCR SNAT 1 0 1 0
26,35,36]. SN44 1 1 0 0
Aside from technical factors discussed above, the se-
Total 99 10 55 34

lection of SSR markers to create PCR duplexes in
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switchgrass also integrated information of marker map
position, allele-length range, genotyping quality, and
polymorphism. The 48 selected markers covered the
major portion of switchgrass genome based on the avail-
able genetic maps although they were not evenly distrib-
uted in the genome. Despite that we tried to select
unlinked markers before designing duplex combinations,
the selected marker loci in LG 2b and 5b remained
linked although most of them >10 cM. Tightly linked
loci are not ideal in paternity analysis because they are
usually inherited together, but these markers indeed pro-
vide more choices, especially in case some of them lack
polymorphisms within and between tested parents.

The band-size separations of individual SSR markers in
each duplex combination were mostly more than 10-bp,
which should be wide enough to unequivocally score
alleles amplified in major switchgrass lowland varieties.
Even for the nearest distance of non-allelic bands (3-bp,
duplex Set 15), it could be easily differentiated on
frequently-used polyacrylamide gels [50]. The duplex mar-
ker system might also perform well on capillary electro-
phoresis instruments due to their similar resolutions with
the LI-COR DNA analyzer used here [50].

SSRs needed for parentage analysis

A comprehensive review of 53 articles showed an aver-
age of seven microsatellites (ranging 3 toll) was used
for plant parentage studies [51]. In general, the number
of markers required to resolve parentage with a given
level of confidence depends on a number of factors. One
of the main factors is the expected heterozygosity or
polymorphism of each marker [52]. Of the 48 markers,
the mean PIC value was 0.829. In an actual example
(population 1) with 46 individuals derived from naturally
wind pollination, four sets of randomly selected duplexes
containing eight markers were enough to discriminate
the breeding origin of each progeny (inbreeding vs. out-
crossing). In another population (population 3) har-
vested from a control environment, theoretically only
one polymorphic locus could assign parentage to each
progeny plant. Therefore, four duplex sets identified in
this study would be recommended for the identification
of self- or cross-fertilized progeny. Thus, the 24 sets of
duplex SSRs should provide a reservoir used for the
breeding origin analysis in switchgrass.

In addition, from population 2, using 14 markers, we
found the overall selfing ratio of switchgrass plants by
bagging their inflorescences was 15.4%, which was
slightly lower than the results in a previous report [12].
The bagging method with pillow cases did not produce
only selfed progeny, perhaps because openings on pillow
cases were bigger than switchgrass pollen grains. Previ-
ous study showed pollen size of switchgrass was in the
range of 425 to 54.0 um [53]. Therefore, bagging
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methods need to be improved if a large number of
inbreds are needed in a hybrid breeding program in the
future.

Implications in other forage species

This study was focused on the tetraploid switchgrass
varieties/genotypes. But paternity testing for polysomic
genomes is complicated and has not yet been well devel-
oped [37]. Recent studies indicated that tetraploid
switchgrass exhibited disomic inheritance [9,18,24]. So
paternity testing for selfing analysis in switchgrass can
be implemented by the same ways as diploid species
with diploid-specific software (such as Cervus 3.0 [54]).
The set of SSR markers selected here are also helpful to
identify genotypes, test seed purity, and protect intellec-
tual property in switchgrass. Other forage species with
diploid and allopolyploid genome structure were
reported as well, including creeping bentgrass (Agrostis
palustri) [55], colonial bentgrass (Agrostis capillaries)
[56], perennial ryegrass (Lolium perenne) [57], Italian
ryegrass (L. multiflorum) [57], tall fescue (Festuca arun-
dinacea) [58], meadow fescue (Festuca pratensis) [59],
white clover (Trifolium repens) [60], red clover (Trifo-
lium pretense) [61], and smooth bromegrass (Bromus
inermis) [62]. Similar testing can be expanded into these
species.

Conclusions

Based on the genome-wide screening of a large set of
SSR markers, we developed a multiple duplex PCR sys-
tem including 48 polymorphic PPs. The applications of
this SSR test system demonstrated its high discrimin-
ation capability and effectiveness for the identification of
switchgrass selfed progeny, which were produced on
multiple plants in different pollination conditions. The
protocol provides ample SSR markers, which should be
a powerful tool for the detection of inbreds in
switchgrass.

Methods

Plant material

Plants of ‘Alamo; ‘Kanlow;, ‘Nebraska 28, ‘Cave-in-Rock]
‘Summer, ‘Docotah, ‘Shelter, and ‘Blackwell’ [63], were
grown in an Oklahoma State University (OSU) green-
house, Stillwater, OK. These cultivars had been widely
used in the USA and represented eco- and cyto-type di-
versity within the species [64]. For initial SSR marker
screening, equimolar DNAs from the eight cultivars
were mixed to form a pooled DNA sample. For each cul-
tivar, DNA sample was a mix from four to six plants.

In an OSU switchgrass nursery, ‘Alamo; ‘Kanlow, and
‘Cimarron’ plants were space planted on 3.5 feet x 3.5
feet centers in 2008. Four individuals from each cultivar
were randomly selected. These 12 individual plants with
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additional four ‘Summer’ plants grown in the green-
house constituted a panel (totally 16 plants), which was
used for marker polymorphism analysis.

Open-pollinated seeds from a randomly selected
‘Kanlow’ genotype (encoded K4) in the nursery were
harvested in 2010, and then they were germinated on
filter paper in petri dishes after pre-chilling treatment
for two weeks [65]. The obtained seedlings were trans-
planted into conetainers and grown in the greenhouse
for leaf collection. The obtained half-sib progeny popu-
lation (Population 1) of 46 individuals (encoded as K4-1
to 46) was used to examine selfing and outcrossing rates
of a plant grown in the open-pollinating, natural field
condition.

In 2010, 22 first-generation selfed (S1) plants of two
genotypes NL94 and SL93 [9] were selected according to
spring growth vigor, plant height, and crown size. And
then two inflorescences from each plant were bagged
with pillow cages [66] in the field before inflorescences
fully emerged out. The obtained seeds were germinated
respectively in a growth chamber in the spring of 2011.
Survived plants were transplanted in a field plot on
August 1, 2011 and constituted 22 families of totally 99
progeny plants (Population 2). The family size ranged
from 1 to 13 in Population 2. Population 3 included 44
progeny collected from SL93 in a growth chamber, in
which NL94 served as the pollen donor [9]. Genomic
DNA was isolated from healthy leaf tissues using the
CTAB method [67]. The DNA concentration was mea-
sured using an ND1000 spectrophotometer (NanoDrop
Products, Wilmington, DE). The working solutions were
adjusted to10 ng/pul as PCR templates.

SSR primer screening

PCR PPs were obtained principally from two sources:
those on two-sister linkage maps (totally 585 PPs) [18],
and the others from a recent linkage map (totally 473 PPs)
[24]. Primer sequence information was collected from pre-
vious studies [15-19]. After excluding SSR redundancy,
unique PPs were used in this study. All forward primers
were appended with a M13 sequence (5-CACGACGTTG
TAAAACGAC-3’) at the 5’ end to allow indirect labeling
in PCR reactions. The initial screening for polymorphism
was performed using the pooled DNA sample to deter-
mine the number of alleles at each locus. Candidate SSR
PPs were selected based on the previous data generated in
the mapping experiment [24] and screening results of
amplifying clear bands, displaying four or more alleles per
locus and avoiding tight linkages (i.e., >10 cM between
two neighboring loci). And then selected PPs were tested
on the panel with 16 individual DNA samples to deter-
mine polymorphism. Monoplex PCR with 10 ul volume
mixtures each reaction and a “Touchdown’ thermal cycling
program was used [68,69].
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Development and optimization of duplex PCR

Based on amplified allele size, map position and hetero-
zygosity for each of the candidate SSR markers, a smaller
set of SSRs was selected for testing in duplex PCR. The
criteria used to combine SSR markers into duplex PCR
were as the following: (1) Non-overlapping allele size for
each pair of two markers; (2) Primer compatibility and
genotyping quality in duplex PCR; (3) High polymorph-
ism estimated by PIC value [70]; (4) Two high-quality
bands in each genotype due to disomic inheritance iden-
tified in tetraploid switchgrass [9,18]; (5) Genetic dis-
tance between selected SSRs > 10 ¢cM; (6) SSRs with tri-,
tetra-, or higher nucleotide repeats were preferred to
lessen slippage during PCR [71].

An optimization procedure was carried out before the
final PP combinations for duplex PCR were assembled.
Eight switchgrass genotypes from Alamo (A) and
Kanlow (K), ie, A2, A4, A5, Al10, K1, K3, K4 and K5,
were used as amplification templates. The SSR PPs used
here to optimize duplexes were PVCAG-2397/8 and
2517/8. The adjustment of duplex PCR parameters on
the amplification effect followed: increasing Taq poly-
merase (BioLabs’, Catalog #M0273X, NEW ENGLAND
Inc., USA) from 0.25 to 0.5 units, dNTPs from 0.2 to 0.4
mM, template DNAs from 15 to 30 ng, PCR buffer from
1 x to 1.6 x, Mg ** concentration from 1.5 to 2.4 mM,
IR-M13 forward primer (labeled with either 700 nm or
800 nm florescence) concentration from 0.02 to 0.04 uM
and PP quantity from 1.0 to 2.0 pmoles. Subsequently,
the compatibilities of different SSR primer combinations
were tested on the same eight genotypes.

Duplex PCRs were performed in 10 pl of reaction mix-
ture containing 1 x PCR buffer, 2.4 mM of Mg **, 0.2
mM each of dNTPs, 0.125 to 4.0 pmoles of each primer
(Table 2), 0.5 units of Taq polymerase (BioLabs®, USA),
0.02 pM IR-M13 forward primer, and 15 ng of genomic
DNA. The cycling parameters were the same as mono-
plex PCR mentioned above. PCR products labeled with
700 and 800-nm dye were pooled, and mixed thor-
oughly. After denaturation, they were separated using
6.5% KB plus polyacrylamide gels with a LI-COR 4300
DNA Analyzer (LI-COR Biosciences, Lincoln, NE, USA)
[69].

Genotyping and data analysis

The gel bands were visually scored and band sizes were
determined using Saga Generation 2 software, version
3.3 (LI-COR Biosciences, Lincoln, NE, USA). For Popu-
lation 3, the scoring of PCR bands and identification of
selfed progeny were the same as our former study [9].
For Populations 1 and 2, PCR bands were recorded as
“ab” if two bands (“a” indicated upper band and “b” for
lower band) or “aa” if only one band for the parent. In
the progeny, if bands were from parents, they were
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scored in the same way as described above. If different
bands were scored in the progeny, letters from “c” to “g”
(or “h”, “i” and so on, if more alleles appeared) were
assigned to each band based on the molecular sizes (“c”
for the largest and “d” for a smaller band than “c” but
larger than other non-parental bands) . If the alleles of a
tested individual were all derived from its corresponding
maternal parent, it was identified as a selfed progeny.
Apart from maternal allele(s), if non-parental alleles of a
progeny individual appeared, it was identified as cross-
fertilized (i.e., hybrid). If none of the alleles of a tested
progeny was from the seed parents on more than two
marker loci (>2), it was determined as contaminants and
excluded in further study.

T-test was carried out using Microsoft® Excel 2007.
The allele frequency, heterozygosity, PIC, and average
non-exclusion probability for one known parent (NE-1P)
were estimated using Cervus 3.0 [54]. The output
options were set as the following: Header row = vyes,
Read locus names = yes, First allele in column =3, Num-
ber of loci=166. For comparisons of expected heterozy-
gosity among 18 LGs, the Scheffe’s method for general
linear model (GLM) procedure was used in SAS 9.3
(SAS Institute Inc.) with a significance level of 0.05.

Additional files

Additional file 1: Linkage map of switchgrass showing the
positions of 166 simple sequence repeat (SSR) marker loci for
polymorphism analysis. The genetic distances and marker orders are
adopted from a previous study [24]. To simplify and clarify the display of
linkage map in this study, only 166 loci are shown and the other 333 loci
are removed from a previous reference map [24]. The loci that assembled
into 24 duplex sets are indicated in red.

Additional file 2: Allele frequency for 166 simple sequence repeat
(SSR) markers.
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