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Abstract

Background: The significant mortality associated with breast cancer (BCa) suggests a need to improve current
research strategies to identify new genes that predispose women to breast cancer. Differential allele-specific
expression (DASE) has been shown to contribute to phenotypic variables in humans and recently to the
pathogenesis of cancer. We previously reported that nonsense-mediated mRNA decay (NMD) could lead to DASE of
BRCA1/2, which is associated with elevated susceptibility to breast cancer. In addition to truncation mutations,
multiple genetic and epigenetic factors can contribute to DASE, and we propose that DASE is a functional index for
cis-acting regulatory variants and pathogenic mutations, and that global analysis of DASE in breast cancer precursor
tissues can be used to identify novel causative alleles for breast cancer susceptibility.

Results: To test our hypothesis, we employed the IlluminaW Omni1-Quad BeadChip in paired genomic DNA
(gDNA) and double-stranded cDNA (ds-cDNA) samples prepared from eight BCa patient-derived normal mammary
epithelial lines (HMEC). We filtered original array data according to heterozygous genotype calls and calculated
DASE values using the Log ratio of cDNA allele intensity, which was normalized to the corresponding gDNA. We
developed two statistical methods, SNP- and gene-based approaches, which allowed us to identify a list of 60
candidate DASE loci (DASE ≥ 2.00, P ≤ 0.01, FDR ≤ 0.05) by both methods. Ingenuity Pathway Analysis of DASE loci
revealed one major breast cancer-relevant interaction network, which includes two known cancer causative genes,
ZNF331 (DASE = 2.31, P = 0.0018, FDR = 0.040) and USP6 (DASE = 4.80, P = 0.0013, FDR = 0.013), and a breast
cancer causative gene, DMBT1 (DASE=2.03, P = 0.0017, FDR = 0.014). Sequence analysis of a 50 RACE product of
DMBT1 demonstrated that rs2981745, a putative breast cancer risk locus, appears to be one of the causal variants
leading to DASE in DMBT1.

Conclusions: Our study demonstrated for the first time that global DASE analysis is a powerful new approach to
identify breast cancer risk allele(s).
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Background
Breast cancer is the most common cancer and the sec-
ond most common cause of cancer-related death in
women. It is estimated that one out of eight American
women will develop breast cancer some time in their
lifespan and 3.0% will die from this disease [1]. For the
year 2012, about 226,870 new invasive breast cancer
diagnoses and 39,970 breast cancer related deaths are
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expected in the United States [2]. Due to this high preva-
lence and severe consequences, genetic factors contribut-
ing to breast cancer risk have been intensively studied.
Family history is known to be associated with 20% -

30% of breast cancer incidence in the United States [3].
Pedigree analysis of clustered familial cases followed by
positional cloning in the 1990s led to the discovery of
tumor suppressor genes, BRCA1 [4] and BRCA2 [5], two
major breast cancer susceptibility loci. Deleterious mu-
tations in these genes increase the risk of developing
breast cancer by more than 10 fold and overall account
for 15% - 30% of observed risks in familial breast cancer
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cases [6]. To discover breast cancer susceptibility alleles
that constitute the remainder of genetic risk, genes asso-
ciated with BRCA1/2 pathways were investigated in
BRCA1/2 mutation negative familial cases. Such candi-
date gene approaches revealed that germline mutations
of TP53[7], PTEN[8], ATM[9], CHEK2[10], BRIP1[11],
PALB2[12], NBS1[13] and RAD50[14] are correlated with
breast cancer risk, but to a much more moderate extent
than BRCA1 and BRCA2. Therefore, new unbiased gen-
omic approaches are needed for identifying genetic fac-
tors that influence breast cancer susceptibility.
Over the last decade, advances in array technologies

have resulted in the ability to evaluate the expression of
thousands of genes simultaneously. These platforms
offer a powerful tool to test multiple biomarkers for
breast cancer tumorigenesis and prognosis, as well as
targeted breast cancer therapy [15]. However, gene ex-
pression assessed by current techniques represents the
total level of transcripts produced by both parental
alleles. The absolute transcript level failed to resolve po-
tential imbalances in relative allelic contribution to the
total expression. This perspective is particularly import-
ant for familial breast cancers, where an individual
inherits a germline mutation on one parental allele, fol-
lowed by a somatic mutation of the second allele in the
tumor cells. Previously, we have reported that mutant
BRCA1 transcripts containing premature stop codons
were eliminated or destabilized by nonsense-mediated
mRNA decay (NMD) [16] and could lead to a state of
haploinsufficiency. As a result, the ratio between the
expressions from the wild-type allele and the corre-
sponding mutant allele was significantly increased,
resulting in what we coined differential allele-specific ex-
pression (DASE) or allelic imbalance (AI) [17].
DASE is a common phenomenon in human tissues

[18]. Although its contribution to breast cancer suscepti-
bility has been implicated [17], it has not been studied
on a transcriptome-wide scale in breast cancer precursor
tissues. Since the phenomenon of DASE at a locus may
help identify nearby cis-acting transcriptional and epi-
genetic regulatory sites as well as mutations resulting in
non-mediated RNA decay [16,18], we propose that
DASE is a sensitive functional index for genetic variants,
and can be used as a novel approach to identify risk
alleles for breast tumorigenesis. The main objectives of
this study are to identify genes with DASE by comparing
the allele-specific expression (ASE) and to demonstrate
that global DASE analysis could be a powerful new ap-
proach to identify breast cancer risk alleles.

Results
Global DASE profiling in HMECs
There have been successful applications of Illumina’s
Infinium assay on global DASE analysis [19,20] since it
provides genotyping results based on quantified fluores-
cent signal intensity of both alleles at a specific SNP site
[21]. The samples we used are paired gDNAs and ds-
cDNAs derived from eight human mammary epithelial
cell lines. In this study, we performed a transcriptome-
wide DASE analysis using Illumina’s HumanOmni1-
Quad BeadChip platform (Version 1B). Among the total
1,140,419 markers on the Omni1 BeadChip, we focused
on SNP markers representing transcribed regions of the
female genome for global DASE analysis. Raw data from
the array were filtered as described in the Methods sec-
tion for quality control purposes, and 35,690 qualifying
SNPs, representing 8,779 transcribed loci crossing all
eight samples, survived for the final DASE analysis. The
global DASE pattern at each SNP locus is shown as a
Circos plot in Figure 1A (Detailed data are included in
Additional file 1: Table S1). As shown in the DASE dis-
tribution histogram (Figure 1B), about 30% of loci are
with a DASE ≥ 2, which we used as the cut-off to define
a locus with a positive DASE event. This result is con-
sistent with previous array studies which suggest DASE
is a relatively common event across the human genome
[20,22].

Identification of candidate loci exhibiting significant DASE
DASE values of transcribed loci were calculated as
described in the Methods section. Although a previous
study successfully validated candidate loci exhibiting a
fold change of 1.5 [23], we raised the stringency by arbi-
trarily setting the DASE value cut-off bar at 2, equal to a
4-fold variance between alleles, to ensure the signifi-
cance of the findings. By using SNP-based calculation,
93 SNPs representing 90 transcribed genes showed stat-
istical significance (P≤0.01 and FDR≤0.05) (Left panel,
Figure 2A). Similarly, using gene-based calculation, 143
genes exhibited statistical significance (P≤0.01 and
FDR≤0.05) (Right panel, Figure 2A). However, each
method presents some degree of limitation. For example,
the SNP-based DASE measurement may only represent
certain transcribed isoforms of a certain gene, and it is
practically true when the targeted SNPs are located in
the 50 or 30 UTRs of this gene. For the gene-based ap-
proach, an outlier of DASE value from one SNP could
have too much weight for final DASE results. To de-
crease the chance for false positive “hits’, it is important
that only gene candidates (total 60) discovered by both
methods (Figure 2B, Table 1) were carried forward for
further analysis.

Ingenuity pathway analysis (IPA) analysis revealed
interaction networks within candidate DASE loci
To help interpret the candidate DASE loci in the
context of biological processes, pathways and net-
works, IPA analyses were performed on our DASE
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Figure 1 Global DASE mapping. (A). This Circos plot illustrates the global DASE profiles mapping to each chromosome (outer layer) across
eight HMECs. Each green dot within the green circular ring area represents the DASE value for a SNP; (B). Histogram of DASE. This diagram uses
the number of SNP loci against the DASE value.
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candidates. The result showed that 24 out of 34 pro-
tein coding loci are involved in known molecular
interactions. Among those interactions, there are two
major networks. Interestingly, one of the major
networks covers 9 DASE candidates, including cancer
causative genes ZNF331 and USP6 and known breast
cancer associated gene DMBT1, and most of them
are downstream players of sex hormones (β-estradiol)



Figure 2 Identification of DASE loci. (A) We developed 2 statistical methods, SNP-based and gene-based calculation, to assign DASE values to
transcribed loci. (B) Using the same selection stringency, sixty candidate loci were identified by both methods. Among them, ZNF331 and USP6
are classified as cancer causative by the Cancer Gene Census at Sanger Institute. The DMBT1 locus has been reported to contain breast cancer risk
associated variants. (C) We used these three genes as examples to show our DASE validation process. Comparing sequencing chromagraphs
between cDNA and gDNA amplicons we could easily tell a typical DASE pattern from all of them.
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and MMP pathways, suggesting their potential for
being breast cancer risk alleles (Figure 3). In
addition, IPA analysis also revealed a variety of bio-
logical functions that candidate DASE loci are
significantly associated with (P<0.05, Additional file 2:
Table S2). The cellular functions of these genes are
wide-ranging, including cell proliferation, cell death,
and inflammation.



Table 1 DASE Candidate Loci Identified by both SNP- and Gene-based Approaches.*

Gene_ID SNP SNP-based Gene-based

DASE P-Value FDR DASE P-Value FDR

ACPP rs14192 3.83 0.010497 0.0442 2.32 0.005517 0.0216

ADAMTSL3 rs2277849 3.13 0.007309 0.0359 2.25 0.014546 0.0280

AGBL1 rs10520618 3.12 0.000134 0.0279 2.37 0.000305 0.0113

C1orf94 rs6698707 3.27 0.000023 0.0016 3.27 0.000024 0.0088

CEP170P1 rs28720014 3.59 0.002355 0.0180 3.59 0.002355 0.0282

CHRAC1 rs10216653 4.31 0.007459 0.0360 4.31 0.007459 0.0425

CTAGE11P rs477274 2.42 0.003269 0.0237 2.42 0.003269 0.0319

DMBT1 rs11523871 2.03 0.001676 0.0140 2.03 0.001676 0.0268

FAM154B rs16973457 2.03 0.002254 0.0423 2.03 0.002254 0.0427

FLJ39061 rs10221698 4.01 0.008501 0.0379 4.01 0.008501 0.0442

FLJ42393 rs344952 2.04 0.000490 0.0449 2.25 0.000012 0.0093

GRIN3A rs10989563 3.78 0.001589 0.0385 3.25 0.001386 0.0364

GRK4 rs1024323 2.37 0.000845 0.0532 2.71 0.000261 0.0113

rs2960306 3.01 0.000014 0.0053 - - -

HCG4 rs1611213 2.19 0.003925 0.0257 2.16 0.005494 0.0098

HLA-G rs1130363 2.52 0.001700 0.0399 3.49 0.002469 0.0170

HNRNPKP1 rs182844 2.53 0.000285 0.0071 2.53 0.000285 0.0113

HS6ST1P1 rs6423191 4.73 0.000005 0.0002 4.73 0.000005 0.0005

KHSRPP1 rs12380505 2.27 0.001212 0.0342 2.27 0.001212 0.0364

LAP3P2 rs12199346 3.55 0.000007 0.0010 3.21 0.000250 0.0113

LOC283398 rs7139313 3.74 0.000001 0.0003 2.58 0.003455 0.0178

LOC341056 rs7933723 3.70 0.002423 0.0423 3.70 0.002423 0.0428

LOC387703 rs7070947 3.61 0.000854 0.0305 3.61 0.000854 0.0355

LOC440973 rs605795 2.79 0.002160 0.0423 2.79 0.002160 0.0427

LOC442238 rs985937 4.13 0.000168 0.0114 4.13 0.000168 0.0152

LOC642590 rs9455190 3.66 0.000645 0.0486 2.50 0.000915 0.0355

LOC643618 rs732531 3.79 0.009696 0.0417 3.12 0.012274 0.0268

LOC645521 rs1976809 4.11 0.000052 0.0091 4.11 0.000052 0.0128

LOC646970 rs614805 3.38 0.008546 0.0379 3.09 0.004693 0.0207

LOC727884 rs12371762 5.21 0.002386 0.0423 4.76 0.000009 0.0002

LOC729675 rs13137565 2.36 0.003844 0.0498 2.36 0.003844 0.0522

MAGEC2 rs3765272 3.30 0.000109 0.0091 3.30 0.000109 0.0128

MMP20 rs1784423 2.32 0.001136 0.0133 2.25 0.001791 0.0268

MUC16 rs2547068 3.88 0.012106 0.0462 2.61 0.003190 0.0072

MYADML rs11684598 5.97 0.000167 0.0114 5.97 0.000167 0.0152

NLRP1 rs11651270 2.39 0.013058 0.0479 2.87 0.000835 0.0105

NSUN4 rs17361749 2.43 0.000076 0.0091 2.43 0.000076 0.0128

OR13H1 rs17316625 3.12 0.003801 0.0498 3.12 0.003801 0.0522

OR6N1 rs857825 2.78 0.002543 0.0431 2.44 0.002721 0.0443

rs857826 3.98 0.000430 0.0449 - - -

PHF2P1 rs9553323 5.08 0.000053 0.0021 4.47 0.000252 0.0048

PRDM14 rs10089937 2.07 0.002243 0.0423 2.07 0.002243 0.0427

PTCHD3 rs2484173 4.13 0.002351 0.0423 3.00 0.000427 0.0128
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Table 1 DASE Candidate Loci Identified by both SNP- and Gene-based Approaches.* (Continued)

PTTG2 rs6811863 3.06 0.001091 0.0342 3.06 0.001091 0.0364

RPL4P4 rs13099317 4.43 0.000063 0.0011 4.43 0.000063 0.0044

RPL9P16 rs7439293 3.44 0.001159 0.0133 3.06 0.003857 0.0329

SLAMF1 rs1061217 3.42 0.000524 0.0085 3.42 0.000524 0.0137

SMARCE1P3 rs11852150 3.46 0.000020 0.0016 2.97 0.000543 0.0137

SZT2 rs2027130 2.72 0.000478 0.0085 2.39 0.003010 0.0313

TARDBPP2 rs9528094 4.81 0.000122 0.0279 2.46 0.009678 0.0454

TEX34 rs11651968 2.60 0.001264 0.0135 2.60 0.001264 0.0252

TLK2P1 rs3744516 4.00 0.004876 0.0516 4.78 0.000203 0.0046

rs4795846 5.84 0.000008 0.0053 - - -

TMCC3 rs1290005 3.45 0.002658 0.0198 2.10 0.005092 0.0209

UFM1 rs2485783 3.96 0.000659 0.0082 3.96 0.000659 0.0100

UQCRFS1P2 rs13238715 3.95 0.000097 0.0091 3.02 0.003106 0.0177

USP6 rs11658877 4.80 0.001324 0.0135 4.54 0.000530 0.0086

WASF4 rs909713 4.10 0.000063 0.0091 4.07 0.000076 0.0128

WNT3A rs752107 3.04 0.000037 0.0020 3.04 0.000037 0.0088

XIAP rs5958343 2.46 0.005591 0.0327 2.27 0.006924 0.0423

XPNPEP2 rs3747343 2.55 0.000343 0.0073 2.55 0.000343 0.0113

ZBTB8OS rs3753603 3.31 0.004053 0.0259 3.31 0.004053 0.0329

ZNF331 rs8110350 2.31 0.001826 0.0403 2.48 0.001014 0.0121

*: Only loci with DASE ≥ 2; P ≤ 0.01; and FDR ≤ 0.05 were included.
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Validating candidate DASE loci by Sanger sequencing
We utilized Sanger sequencing to validate nine DASE
candidates in one major interaction network (Figure 3).
In brief, regions flanking DASE-associated SNPs
were amplified by PCR followed by sequencing and
Figure 3 Functional “DASE” networks. IngeunityW Pathway analysis reve
ZNF331, USP6 and DMBT1 and six other candidates. Most of them are down
suggests their potential of being breast cancer risk alleles.
comparing trace chromatograms between paired gDNA
and cDNA samples. The DASE value between two alleles
in a sample of a given SNP was evaluated by measuring
the peak height of each allele in the chromograms origi-
nated from the cDNA sample, justified by that
aled one major interaction network in DASE candidates, including
stream players of sex hormones (β-estradiol) and MMP9, which



Table 2 Validation of DASE Candidate by Sanger
Sequencing

Gene ID SNP ID Heterozygous
samples

DASE events*
by array

DASE events
by sequencing

ACPP rs14192 5 4 3

CHRAC1 rs10216653 6 5 1

DMBT1 rs11523871 6 6 6

MMP20 rs1784423 6 6 6

MUC16 rs2547068 6 4 3

PTTG2 rs6811863 5 5 4

SLAMF1 rs1061217 6 6 2†

USP6 rs11658877 6 6 2†

ZNF331 rs8110350 5 5 4

Total: 51 47 31§

*: A positive DASE event is defined when the ratio of ASE levels from one
allele to another allele is either more that 2 or less that 0.5.
†: Only two samples were able to be validated because of unsuccessful cDNA
sequencing at this locus for some samples.
§: DASE were confirmed by sequencing in total 31 out of 39 samples whose
cDNA sequencings were successful.
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originated from the genomic DNA sample. Figure 2C
showed the examples of sequencing trace files in the val-
idation of DASE in ZNF331, USP6, and DMBT1. A posi-
tive DASE event by sequencing is defined when the
height of the peak representing one allele is less than
half of the peak height of the other allele. As summar-
ized in Table 2, we clearly observed DASE in 9 candidate
loci by sequencing in 31 out of 39 (79%) of samples with
DASE identified by global DASE analysis. These results
Figure 4 RACE analysis for DMBT1 50UTR. (A) DASE candidate DMBT1 (D
located in the third exon. SNP rs2981745 in the first exon of DMBT1 has bee
are ~10 kb from each other. (B) Genotyping and sequencing of DMBT1 50 R
our HMECs.
supported that our approach reported here to identify
DASE loci by high dense SNP array is successful.

Identifying causative variants for DASE in DMBT1
Candidate DASE locus DMBT1 was identified and vali-
dated by analyzing SNP rs11523871 (Figure 2C). A
nearby SNP, rs2981745 (C>T) in 50UTR region of
DMBT1, has been reported to be associated with
increased breast cancer risk and rs2981745-T has
decreased promoter activity compared with rs2981745-C
[24]. Since rs2981745 is not covered in the HumanOmni1
BeadChip, we carried out additional genotyping across all
eight HMECs and found rs2981745 heterozygous in 6
HMECs that are also heterozygous for rs11523871 (Data
not shown). Sequence analysis of DMBT1 50 RACE prod-
uct revealed that rs11523871-C co-presents with
rs2981745-A in all six HMECs, which suggests that
DASE observed in DMBT1 was caused by the loss of ex-
pression of rs2981745-T allele (Figure 4). To examine if
any variants in DMBT1 30 UTR could also contribute to
DASE in DMBT1, we fully sequenced 30UTR region in
the genomic DNAs of all 8 HMECs and identified two
common SNPs, rs8441 and rs7383, both presented in
samples HMEC-1 and −5 (Additional file 3: Figure S1).
We further sequenced the same regions in cDNA pro-
ducts isolated from these two HMEC lines. The results
from HMEC-1 are consistent with DASE pattern discov-
ered by analyzing heterozygous rs11523871 in this sam-
ple (Table 2). Importantly, the results from HEMC-5, in
which both rs11523871 and rs2981745 are homozygous,
ASE=2.03, P=0.0017, FDR=0.014) was identified by analyzing rs11523871
n known to be associated with breast cancer risk [24]. These two SNPs
ACE product confirmed that rs2981745-C is linked with rs11523871-A in
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revealed typical bi-allelic expression (Additional file 3:
Figure S1). We then used an online miRNA targeting
tool, Probability of Interaction by Target Accessibility
(PITA) [25], to compare the effects of these variants on
miRNA binding, and only very subtle differences of
miRNA targeting were found among all genotype combi-
nations (Additional file 4: Figure S2). Taken together, we
concluded that in our study, variants in DMBT1 30UTR
region unlikely contribute to DASE. Our data suggested
that rs2981745, if not exclusively, appears to be one of
the causative variants for DASE in DMBT1.

Discussion
In our current study, we demonstrated transcriptome-
wide DASE analysis as a novel approach to identify
breast cancer susceptibility loci. The HumanOmni1-
Quad BeadChip we utilized has state of the art coverage
of common SNPs on the human transcriptome. Our
study identified 60 candidate DASE loci by both SNP-
and gene-based methods (Table 1 and Figure 2). Pathway
analysis reveals one major DASE gene network which is
likely associated with breast tumorigenesis (Figure 3).
Using PCR and Sanger sequencing, we successfully vali-
dated the DASE predictions in this breast cancer-related
network, which includes cancer causative genes ZNF331
and USP6, and breast cancer risk associated gene
DMBT1 (Table 2). By analyzing the 50UTR region of
DMBT1, we successfully identified rs2981745 as the
causal variant for the DASE in DMBT1 (Figure 4).
Therefore, we presented an example supporting our ori-
ginal expectation that DASE analysis may lead to the
discovery of functional DASE-causing variants. DASE in
ZNF331 has possibly resulted from genomic imprinting
as indicated from studies in human extraembryonic tis-
sues [26], but we are not able to verify such speculation
for the lack of genetic material from parents. Neverthe-
less, we reported for the first time about such
phenomenon of ZNF331 in primary cultures of adult
human tissue. We did not investigate further with the 26
non-coding DASE candidate loci in current studies
largely because very little information could be obtained
to help interpret their roles. However, there have been a
few studies denoting the importance of non-coding
RNAs in cellular processes during recent years [27,28].
Considering the high percentage (nearly 50%) of such
loci in our candidate list, it is an important next step for
us to validate non-coding candidate DASE loci and study
their likely roles in breast tumorigenesis.
As the Illumina Human Omni1-Quad Array is origin-

ally designed for targeting genomic DNA sequences in-
stead of cDNA sequences, intronic SNPs and many
SNPs at the exon/intron boundary are left out for DASE
profiling. Although the number of “usable” SNPs covers
the majority of transcripts, the coverage could be further
increased with newly developed platforms with add-
itional SNP markers. Furthermore, the size of the probes
on the Illumina SNP array is 50mer, and it is likely diffi-
cult for them to pick up small size transcripts, such as
miRNAs. Therefore, it would be logical to consider
designing customized BeadChips covering pre-selected
probes to improve both cost-effectiveness and specificity,
and to reduce the data processing load for global DASE
profiling as well. In addition, we observed fluorescent
interference between X and Y channels during the data
analysis due to the initial probe design [29], and it was
able to be alleviated by canonical data normalization.
Despite these limitations, Infinium-based BeadChip is
still a practical platform for whole transcriptome DASE
analysis as indicated by the results of successful valid-
ation using Sanger sequencing (Table 2).
As mentioned in the Introduction, currently known

high and moderate penetrance risk alleles help only to
explain a fraction of familial breast cancer incidents and
the existence of more susceptibility genes are likely to be
very rare. Thus, it is plausible that the remaining cases
could be complemented by the synergistic effects of
multiple low penetrance alleles, each conferring an ele-
vated risk of <1.5 fold [30]. The completion of the
Human Genome Project and fast development of SNP
array technologies have made it practical to perform
genome-wide association studies (GWAS) to identify
genetic factors that account for breast tumorigenesis.
Since the first wave of GWAS to search for such alleles,
22 loci have been reported to significantly associate with
breast cancer risk by 16 studies [31-34]. Among those
candidate risk loci, nearly half (2q35, 3p24.1, 5p12,
5q11.2, 6q25.1, 8q24.21, 10q26.13, 11p15.5, 16q21.1-21.2)
were reproducible in multiple independent studies,
which denotes the reliability of GWAS prediction. Des-
pite these successes, the mechanisms of how these
GWA variants affect breast cancer pathogenesis are
often unknown, because in most cases it is not clear
which gene(s) are associated with GWA signals [35,36].
Therefore, understanding the function of these breast
cancer associated variants and the mechanisms of how
they contribute to breast cancer is a logical next step to
validate GWAS findings. Until now, most of them are
merely SNP tags for yet unknown breast cancer causal
variants [37]. A couple of exceptions so far were
rs2981582-A [31] and rs1219648-G [32] on FGF2R locus.
The discovery of these two common low risk variants
eventually pinpointed rs2981576 and rs2981578 as
causal variants by genetic mapping and CHIP assay [38].
Evaluation of the functional impact of putative causal
variants identified by GWAS could be very challenging
as many GWA signals (e.g., 8q24) map some distance
from the nearest coding regions, and are likely to medi-
ate disease predisposition through remote regulatory
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effects on transcription [39]. In addition, the causal
alleles involved in breast cancer susceptibility are likely
to have moderate molecular and cellular effects, and the
measurable effects of an allele in a given functional assay
may not exhibit a causal role in breast cancer pathogen-
esis by itself. Therefore, novel strategies are required to
functionally characterize the multiple GWA signals in a
genome-wide manner for convincing genetic evidence.
Based on previous reports [24,40], our study has pin-
pointed a likely causal variant for DASE in DMBT1
(Figure 4). In addition, genetic mapping in mice has indi-
cated that DMBT1 is a candidate modifier of mammary
tumors and breast cancer risk [41], and our results fur-
ther support that allelic loss of expression in DMBT1
could contribute to breast cancer development, which is
consistent with the reports from previous studies [42,43].
These findings support the idea that global DASE profil-
ing mapping could be a powerful approach to validate
GWAS findings when the DASE loci map is overlapped
with existing data from GWAS [44].
In our study, we have compared top DASE loci identi-

fied in our genome-wide ASE studies with the current
cancer genome database provided by Cancer Gene Cen-
sus (Sanger Institute) and have identified two DASE loci
(USP6 and ZNF331) listed as cancerous genes [45]. Som-
atic mutations in USP6 (p.V678A and p.R475Q) and in
ZNF331 (p.G193E) have been reported in 1% of primary
breast cancer and 2% of ovarian cancer, respectively [45].
These findings suggest that global DASE profiling could
be a powerful tool in combination with currently avail-
able cancer genome databases to identify novel breast
cancer “driver” genes. Furthermore, on-going cancer
genome sequencing projects (e.g. Cancer Genome Atlas
by NCI) have identified thousands of so-called variants
of unknown/uncertain significance (VUS), including var-
iations typically characterized by a single base change, or
a change to several intronic bases. This large amount of
VUS data produced by the next generation sequencing-
based cancer genome projects has been termed “overkill”
from a clinical perspective [46]. Currently, the conse-
quence of most VUS in oncogenesis has yet to be estab-
lished. As DASE is a sensitive functional index for
pathogenic mutations, it can be applied for validating
these VUS at a genome-wide scale as well.

Conclusions
We have demonstrated for the first time that global
DASE analysis is a novel approach to identify breast can-
cer risk alleles. The results from our study are very
promising and we expect our strategy will help validate
the functional variants identified by the GWAS and
Cancer Genome Projects. Importantly, the research
strategy developed here could be easily applied to inves-
tigating susceptibility for many other types of cancers.
Methods
Primary human mammary epithelial cultures (HMECs)
For studies reported here, eight HMEC lines, tested
BRCA1/2 mutation negative, were utilized as starting
material for DASE analysis. Under an approved protocol
by the Institutional Review Board (IRB) at Fox Chase
Cancer Center, we routinely derived primary HMEC
lines from adjacent or contralateral normal mammary
tissue of breast cancer patients using an established
commercial protocol of EpiCultW-B human mammary
epithelial cell culture (Stemcell Technologies, BC,
Canada). Established primary HMEC lines were main-
tained in medium containing 1:1 DMEM/F12 (Life
Technologies, Carlsbad, CA), 2.438 g/L sodium bicar-
bonate, 5% chelated horse serum, 20 ng/ml EGF (BD
Biosciences, San Jose, CA), 100 ng/ml cholera toxin
(Sigma-Aldrich, St. Louis, MO), 10 mg/L insulin (Sigma-
Aldrich, St. Louis, MO), 0.5 mg/L hydrocortisone
(Sigma-Aldrich, St. Louis, MO), Antibiotic-Antimycotic
(Life Technologies, Carsbad, CA), and 0.04 mM calcium
chloride (Sigma-Aldrich, St. Louis, MO).

Preparation of DNA, RNA and double-stranded cDNA
Genomic DNAs (gDNAs) were isolated from HMEC
lines by phenol-chloroform extraction as previously
described [47]. Total RNAs were isolated from HMEC
lines by cell lysis in guanidinium isotiocyanate buffer
supplemented with 2-mercaptoethanol (BME) followed
by phenol-chloroform extraction using a protocol as pre-
viously described [48]. After re-dissolving, RNAs were
treated with DNase (TURBO DNA-free kit, Ambion,
Austin, TX) to remove possible genomic DNA contam-
ination. The concentrations of genomic DNA and RNA
stocks were measured using a ND-1000 spectrometer
(NanoDrop, Wilmington, DE). To perform the DASE
profiling, double stranded (ds)-cDNAs were synthesized
from total RNAs using the SuperScriptW Double-
Stranded cDNA Synthesis Kit (Life Technologies, Carlsbad,
CA) and random hexamers following manufacturer’s
instructions.

Genome-wide DASE profiling
DASE profiling was performed using Illumina’s
HumanOmni1-Quad BeadChip SNP array platform (Illu-
mina, San Diego, CA), which has more than one million
SNP loci, including more than 120,000 SNPs in tran-
scribed regions. For each HMEC, ds-cDNA (derived
from 20–50 μg total RNA) and 200 ng gDNA were
loaded to the BeadChip according to manufacturer’s
instructions. Samples of gDNA and ds-cDNA to be used
for the parallel genotyping and DASE profiling were
denatured, neutralized and then underwent PCR-free
whole-genome amplification followed by fragmentation
according to the Infinium HD Assay Super Protocol.



Gao et al. BMC Genomics 2012, 13:570 Page 10 of 13
http://www.biomedcentral.com/1471-2164/13/570
The ds-cDNA and gDNA pairs from each sample were
individually hybridized to BeadChips and processed fol-
lowing standard Infinium procedures. Raw data from the
assay was generated by scanning processed BeadChips
using an iScan Reader. The scanned images were pro-
cessed in the genotyping module (Ver. 3.3.7) of BeadStu-
dio software (Ver. 3.1.3.0) to export a tab delimited file
consisting of the SNP locus, the genotypes and quanti-
fied fluorescent signal intensities (Xraw, Yraw). This
genome-wide map illustrating the global DASE distribu-
tion was drawn using a visualization tool, Circos [49].

Data filtering and statistical analysis
Raw data were filtered before DASE calculation. Firstly,
data from CNV (copy number variation) markers, Y
chromosomal markers and markers that are not located
in transcribed regions were discarded. Secondly, to avoid
possible false positives from background noise, a cut-off
bar of combined signal intensities from the ds-cDNA
sample (Xraw + Yraw ≥ 500) was imposed to filter out
non-expressed SNPs. In addition, readings from SNP
sites with ambiguous genotyping results were removed.
For each sample, raw signal intensities corresponding to
ds-cDNA and gDNA for each allele at each SNP site
were background corrected. After these pre-processing
steps, specific ds-cDNA allele intensities were normal-
ized to their corresponding gDNA allele intensities to
eliminate probe specific effects and potential variations
occurring during BeadChip scanning. The DASE value
between two alleles X and Y in a sample of a given SNP
was then calculated as the absolute value of the normal-
ized log2-ratio given by DASE = ABS(log2 [(DXraw/
GXraw) / (DYraw/GYraw)]), which was also used by other
groups [50]. Using the absolute DASE value (log2 ratio)
for the computation enables us to quantify DASE based
only on magnitude of change without regard to direction
of change, as direction of change cannot be incorporated
due to the lack of a standard reference allele. Without
using the absolute DASE value, the averaged DASE
would likely be neutralized in the gene-based approach
described below. The distribution of DASE was deter-
mined to be gamma distributed using maximum likeli-
hood methods and quantile-quantile plots. For each
SNP, p-value is then calculated based on the fitted
gamma distribution for DASE by testing the null hy-
pothesis that mean DASE is zero against the two-sided
alternative.
In our filtered dataset, we focused only on heterozy-

gous individuals in assessing allelic imbalances. To as-
sign DASE value to transcribed loci, we used two
approaches in parallel. In the first approach, we
extracted SNPs for which at least 3 out of the 8 HMECs
were heterozygous. For each of these SNPs, their DASE
values in heterozygous individuals were calculated
separately and the average value was recorded. In the
second approach, we extracted all the transcribed-region
SNPs with heterozygous genotypes for each gene. The
average DASE value was calculated for each correspond-
ing gene, and only those genes with DASE values in at
least 3 out of the 8 HMECs were included in final ana-
lysis. For each sample, DASE was determined to have a
heavy right-tailed skewed distribution based on SNP-
level data as well as gene-level data. The top panels of
Additional file 5: Figure S3 displays the density of DASE
for a typical sample determined using kernel density
methods. Using maximum likelihood methods and
quantile-quantile (QQ) plots, the distribution of DASE
was determined to be approximately gamma distributed.
The bottom panels of Additional file 5: Figure S3 display
the QQ plot for a typical sample. A generalized linear
model approach (based on gamma regression) was used
to identify SNPs with mean DASE significantly different
from zero. A p-value cut-off of 0.01 and a false discovery
rate (FDR) cut-off of 0.05 were utilized to determine
statistical significance of each SNP. FDR was calculated
using the Benjamini-Hochberg step-up method to ac-
count for multiple testing [51]. Biological significance of
each SNP was determined based on a mean DASE value
of at least 2. A plot of p-value or FDR versus mean
DASE enabled visualization of the relationship between
statistical and biological significance. SNPs identified
based on statistical significance as well as biological sig-
nificance were interrogated for molecular pathways and
biological function in bioinformatics analyses. This ana-
lysis was repeated on gene-level data obtained as out-
lined above. All computations were performed using the
R statistical language and environment [52].

Ingenuity pathway analysis (IPA)
Biological and interaction networks of candidate DASE
loci were generated using IPA (IngenuityW Systems). IPA
explores the set of input genes to identify networks by
using Ingenuity Pathways Knowledge Base for interac-
tions between identified ‘Focus Genes’. For each net-
work, IPA computes a score according to the fit of the
user's set of significant genes. The score suggests the
likelihood of the Focus Genes in a network from Ingenu-
ity’s knowledge base being found together due to ran-
dom chance. A score of 3 was used as the cutoff for
identifying gene networks, which predicts that there is
only a 1/1000 chance that the focus genes shown in a
network are due to random chance. Therefore, a score
of 3 or higher indicates a 99.9% confidence level to ex-
clude random chance. In this study, the candidate gene
list was uploaded into the application for biological func-
tion enrichment analysis, and networks of Network Eli-
gible Molecules were then algorithmically generated
based on their connectivity.
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DASE validation
Genomic and mRNA sequences flanking selected SNPs
were retrieved from NCBI and primers were designed
accordingly using the web-based Primer3 software
(http://frodo.wi.mit.edu/primer3/). The sequences of pri-
mers are available upon request. PCR amplification was
performed using GoTaqW Green Master Mix (Promega)
and relevant gDNA and cDNA samples on a thermal
cycler (Applied Biosystems, Model 2720) using the fol-
lowing program: 94°C 3 minutes for initial denaturing,
followed by 10 cycles touchdown PCR (94°C 30 seconds,
65°C −55°C <−1°C / cycle> 30 seconds, 72°C 30 seconds)
and 35 cycles regular PCR (94°C 30 seconds, 60°C 30
seconds, 72°C 30 seconds), final extension for 5 minutes
at 72°C and then hold at 4°C. PCR product purification
and Sanger sequencing were performed by Beckman
Coulter Genomic Services (Danvers, MA). Sequencing
trace files were analyzed using Sequencher software
(v4.1.4., Gene Codes, MI). The DASE value between two
alleles X and Y in a sample of a given SNP was then cal-
culated using the peak height of each allele in the chro-
mograms originated from cDNA samples, justified by
that originated from genomic DNA samples. A positive
DASE event by sequencing is defined when the height of
the peak representing one allele is less than half of the
peak height of the other allele. The fact that we chose a
different threshold (DASE=1) for DASE validation by
Sanger sequencing is justified by the different data dy-
namic ranges between these two platforms. The SNP
array gives numeric results with a dynamic range of 216.
On the other hand, Sanger sequencing gives graphic
trace files, and the usable peak-heights for quantification
are usually within a few dozen pixels. Based on this dis-
similarity, we chose different thresholds for DASE call-
ing for each method.

DMBT1 50 RLM-RACE
The amplification of 50 UTR region of DMBT1 was per-
formed using the FirstChoice RLM-RACE kit (Life Tech-
nologies) following the manufacture’s manual. In brief, a
5 μg RNA sample isolated from each HMEC was treated
with calf intestine alkaline phosphatase (CIP) to remove
50-phosphates from fragmented RNA ribosomal RNA
and tRNA, followed by tobacco acid pyrophosphatase
(TAP) treatment to remove the cap structure of intact
mRNA. A 50RACE RNA adapter was ligated to CIP/TAP
treated RNA by T4 RNA ligase, and then reverse tran-
scription was performed using random decamers. The
resulting cDNAs were used as a template for PCR with a
50 RACE Outer Primer (50 GCTGATGGCGATGAAT
GAACACTG 30, binds to 50RACE adapter), and a gene
specific primer DMBT1-5Ro (50 CTCAGGGCCAAAC
CAGAA 30) complementary to the region (+288, +308)
of the DMBT1 cDNA. A nested PCR was performed
with a 50 RACE Inner Primer (50 CGCGGATCCGAA
CACTGCGTTTGCTGGCTTTGATG 30, binds the
50RACE adapter) and a DMBT1-5Ri (50 GGTTGACTC
CAAGGAAATCG 30) primer, complementary to the re-
gion (+194, +213) of the DMBT1 cDNA. The PCR pro-
ducts were purified and sequenced using DMBT1-5Ri.
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