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Abstract

Background: Several methods have recently been developed to identify regions of the genome that have been
exposed to strong selection. However, recent theoretical and empirical work suggests that polygenic models are
required to identify the genomic regions that are more moderately responding to ongoing selection on complex
traits. We examine the effects of multi-trait selection on the genome of a population of US registered Angus beef
cattle born over a 50-year period representing approximately 10 generations of selection. We present results from
the application of a quantitative genetic model, called Birth Date Selection Mapping, to identify signatures of recent
ongoing selection.

Results: We show that US Angus cattle have been systematically selected to alter their mean additive genetic merit
for most of the 16 production traits routinely recorded by breeders. Using Birth Date Selection Mapping, we
estimate the time-dependency of allele frequency for 44,817 SNP loci using genomic best linear unbiased
prediction, generalized least squares, and BayesCπ analyses. Finally, we reconstruct the primary phenotypes that
have historically been exposed to selection from a genome-wide analysis of the 16 production traits and gene
ontology enrichment analysis.

Conclusions: We demonstrate that Birth Date Selection Mapping utilizing mixed models corrects for
time-dependent pedigree sampling effects that lead to spurious SNP associations and reveals genomic signatures
of ongoing selection on complex traits. Because multiple traits have historically been selected in concert and most
quantitative trait loci have small effects, selection has incrementally altered allele frequencies throughout the
genome. Two quantitative trait loci of large effect were not the most strongly selected of the loci due to their
antagonistic pleiotropic effects on strongly selected phenotypes. Birth Date Selection Mapping may readily be
extended to temporally-stratified human or model organism populations.
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Background
Several statistical tests have been developed to identify
the genomic regions that have been subjected to strong
recurrent selection. Most have been based on extreme
population differentiation [1-3], the enrichment of rare
mutations in the site frequency spectrum [4,5], or patterns
of extended haplotype homozygosity [6-8] (See [9,10] for
further review). These tests have now been used to detect
molecular signatures of selection in cattle [11-16]. However,
recently, there has been a call to employ polygenic models
to simultaneously identify loci responding to selection but
that do not fit the typical “hard sweep” paradigm [17,18].
Concurrent with the development of new approaches

for the detection of selective sweeps, the statistical
models employed for genome-wide association studies
have been improved. Some of the refinements deal with
the effects of population structure and kinship between
sampled individuals, since not accounting for these
effects can significantly increase the number of false
positive associations (See [19] for review). It has been
shown that fitting a genomic relationship matrix (also
known as a kinship matrix) effectively prevents false
positives due to population structure and kinship
[19,20]. Furthermore, there has also been a shift toward
the application of polygenic models for the identification
of genetic risk factors and variants associated with complex
phenotypes [21,22].
In this study, we merge the search for loci responding

to selection with advanced genome-wide association
models to quantify the genome-wide response to selec-
tion in US registered Angus cattle. We introduce a novel
method, Birth Date Selection Mapping, for identifying
loci that are responding to ongoing selection.
Selection induces changes in allele frequency for the

selected mutation, as well as for neighbouring loci that
hitchhike along with the selected locus due to the presence
of linkage disequilibrium between the loci. Accordingly,
individual allele counts (0, 1, or 2 for AA, AB, and BB
genotypes) could be regressed on birth date using a Poisson
model to identify loci that have rapidly changed in
frequency over time. However, in the presence of any sam-
pling bias (non-random ascertainment of family members
in time, population structure, or kinship), this approach suf-
fers from a very high false-positive rate of detection of loci
subject to selection (Additional file 1: Figures S1 and S2).
The bias results from a pedigree-based stratification in the
depth of sampling of DNA on individuals within different
families and differences in allele frequencies between
families such that the differences in allele frequencies
between families are partially confounded with differences
in allele frequencies in time. In other words, this approach
is confounded by pedigree relationships and the non-
random sampling of individuals from families at different
time points. The use of a mixed linear model with allele
counts or frequencies fit as the dependent variable and a
random animal term fit using a numerator or genomic
relationship matrix does not solve the problem because any
time-dependent trend in allele frequency is now incorpo-
rated into the solutions for animal effects (data not shown).
In our approach, rather than regressing allele frequencies

(dependent variable) on birth date (explanatory variable),
we invert the relationship and fit birth date as the
dependent variable and identify SNPs that are strongly
associated or predictive of birth date. If a neutral DNA
variant is drifting through a population, changes in allele
frequency will be stochastic and small provided the effect-
ive population size (Ne) is large. For these variants, the
probability of a specific genotype will be approximately
constant in time and knowledge of an individual’s genotype
will not be strongly predictive of that individual’s birth date.
On the other hand, if a variant is under strong directional
selection, changes in allele frequency will be consistent in
direction and may become large over several generations.
For these variants, genotype will be predictive of birth date.
For example, if the A allele is increasing in frequency in
time, AA individuals are much more likely to be born
recently than in the distant past. We utilize mixed model
methods to account for the pedigree-based structure in
our sample through the use of the genomic relationship
matrix [19-21]. With the analysis framed from this
perspective, we identify the SNPs that are changing in
frequency due to selection while accounting for kinship
within the sample. By so doing, we are the first to apply
polygenic models for the detection of genomic imprints of
selection.

Results
Evidence of selection
Deregressed estimated breeding values (EBVs) [23] for
16 production traits (see Supplementary Information for
definitions and acronyms) were regressed on birth date
(measured as a continuous variable with month and day
converted to a decimal fraction of a year) for 3,570 regis-
tered Angus animals (Additional file 1: Table S1, Figure 1
and Additional file 1: Figures S3-S16). For traits that can
easily be appraised and for which expected progeny
differences (EPDs, an EPD is one half of the EBV) were
implemented earlier in the development of the breed (e.g.,
growth and stature), selection has significantly changed
the breed additive genetic mean over time. For traits for
which increased production has consistently been sought
by producers, such as weaning weight, yearling weight,
and milk, additive genetic means have increased linearly
(Additional file 1: Table S1; Figure 1b, Additional file 1:
Figure S4, and S10). However, additive genetic means for
birth weight, yearling height, mature weight, and mature
height increased until the mid-1980s when breeders
recognized the detrimental effects of large birth weights
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Figure 1 Deregressed estimated breeding values for birth and
weaning weight plotted against birth date. Deregressed
estimated breeding values plotted against birth date for 3,570
Angus animals. The blue lines represent fitted linear and red lines
represent fitted quadratic regressions. a. Deregressed birth weight
EBV, and b. Deregressed weaning weight EBV.

Decker et al. BMC Genomics 2012, 13:606 Page 3 of 14
http://www.biomedcentral.com/1471-2164/13/606
on calving difficulty and large mature size on cow main-
tenance requirements and fertility, and these traits were
subsequently selected to decrease (Figures 1a, Additional
file 1: Figures S5, S11, and S12). For these traits, the
quadratic regression models have a much smaller Akaike
Information Criterion (AIC), larger adjusted R2 values,
and smaller p-values (Additional file 1: Table S1). Traits
with recently developed EPDs, such as docility and heifer
pregnancy rate, show little change in additive genetic
mean over time (Additional file 1: Figures S7 and S8).
Docility and heifer pregnancy rate had among the smallest
R2 values of all the fitted linear and quadratic regression
models. Additive genetic means for growth traits
(WW, YW, and CW) and for the incidence of unassisted
births (CED and CEM) have increased annually. Weaning
weight has increased, on average, by 2.81 pounds per year
and the rate of unassisted births (CED) has increased by
0.56% per year—remarkable achievements by Angus
breeders considering the 50-year span of these data.
Birth Date Selection Mapping
We applied our Birth Date Selection Mapping method
to this data set using three mixed models. We first
estimated allele substitution effects (ASEs) for birth date
for 45,073 SNPs using genomic best linear unbiased
prediction (GBLUP) [21,24,25] applied to 3,570 regis-
tered Angus cattle, but we do not report results for the
256 SNPs that map to unassigned contigs in the
UMD3.1 reference assembly [26]. The GBLUP analysis
simultaneously fits all SNPs as random effects and does
not estimate p-values for tests of significance of individual
SNPs. Rather, ASEs were converted to estimates of
additive genetic variance associated with each SNP and
plotted (Figure 2).
We next used EMMAX [20] to individually estimate

SNP ASEs as fixed effects and q-values representing the
expected proportion of false positives among all SNP
effects as extreme as observed for the current SNP [27].
Compared to the Poisson regression of allele counts on
birth date (Additional file 1: Figure S2), the significance
values were not inflated for this analysis (Additional file 1:
Figure S17), demonstrating this analysis appropriately
models kinship relationships. Additional file 1: Figure S17
further demonstrates that we have sufficient power to
identify significant associations. This approach is quite
conservative and indicates that strong selection has caused
large changes in allele frequency at only a small number
of loci on chromosomes 1, 2, 3, 6, 20, 21, 22, 23, 24, and
29 (Figure 3). The two peaks on chromosome 23 contain
the major histocompatibility complex (MHC) and nume-
rous olfactory receptors.
Finally, we used GenSel [28] to fit a non-linear

BayesCπ model [29] in which the parameter π estimates
the proportion of SNPs that are not associated with the
dependent variable. We estimated π to be 0.979, and
thus 2.11% (948) of the SNPs were estimated to be
predictive of birth date and therefore putatively exposed
to strong selection. BayesCπ employs a MCMC approach
in which 1-π of the SNPs are sampled for inclusion in the
model in each chain and the jointly estimated SNP ASEs
are finally shrunk according to the proportion of times
each SNP is retained in the selected model. Thus, SNPs
that are rarely retained in the model have their ASEs
strongly shrunk towards zero. This analysis found strongly
selected loci on all chromosomes (Figure 4).
The SNP ASEs estimated with GBLUP and EMMAX had

a Spearman correlation of 0.92 and a Pearson correlation of
0.78. The difference in ASE magnitude identified by the
Pearson correlation essentially reflects the difference in esti-
mates achieved due to fitting SNPs as uncorrelated random
or fixed effects. The SNP ASEs estimated by GBLUP and
BayesCπ had a Spearman correlation of 0.85, but had a
Pearson correlation of only 0.56 due to the strong shrinkage
of large effect SNPs in GBLUP (due to the assumption that



Figure 2 Manhattan plot of additive genetic variances explained by each SNP estimated from the GBLUP analysis of birth date. For each
SNP 2pi(1-pi)αi2is plotted where pi is allele frequency and αi is the ASE for birth date for the ith SNP. Red line corresponds to the top 948 SNPs.
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all SNPs are drawn from a distribution with a common
variance) and the strong shrinkage of small effect SNPs in
BayesCπ. The EMMAX and BayesCπ ASEs had a
Spearman correlation of 0.83 and Pearson correlation
of 0.46. In the GBLUP and EMMAX analyses, the
multilocus genotypes explained 0.534 and 0.531 of the
variance in birth date (i.e., the “heritability” of birth date),
respectively, as estimated using restricted maximum likeli-
hood (REML) estimation of variance components. In the
BayesCπ analysis, genotypes explained 0.717 of the variance
in birth date.

Effective population size and drift
To ascertain whether drift is a significant force influencing
allele frequency changes within the artificially selected
US Angus breed, we estimated the inbreeding effective
Figure 3 Manhattan plot of –log10(q-values) for SNP effects on birth d
proportion of false positives among all SNP effects that are at least as extre
FDR of 0.10, and the blue line corresponds to a FDR of 0.25.
population size, under the neutral model, and modelled
the effects of drift on neutral loci. Using a pedigree of up
to 63 generations and which comprised 91,001 Angus
animals including the 3,570 genotyped animals and all
known ancestors, we estimated the generation interval
for US Angus cattle to be 4.99 years, which was the aver-
age age of animals born between 1941 and 1990 at the
birth of their male and female registered progeny. From
this pedigree, we also estimated inbreeding coefficients
(denoted as F) for all animals from which we estimated
effective population size from the regression of F on
generation number. From a principal component analysis
of the SNP genotypes, we identified two distinct sub-
groups within our sample. In Additional file 1: Figure S18,
we identified the Wye Angus herd [30] which was formed
from an importation of bulls from the British Isles and
ate estimated in the EMMAX analysis. Each q-value is the expected
me as that observed for the current SNP. Red line corresponds to a



Figure 4 Manhattan plot of additive genetic variances explained by each SNP estimated from the BayesCπ analysis of birth date. Red
line corresponds to the top 948 SNPs.
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then closed to new germplasm in 1958 as a group that
was distinct from the remaining US registered Angus
cattle. The inbreeding effective population size for the
Wye herd was estimated to be 36.41 ± 0.03, whereas the
estimate for the remaining North American Angus was
267.59 ± 0.02 using animals born after 1930 and 116.15 ±
0.04 using animals born after 1980 (Figure 5a and
Table 1). For each of the 44,817 SNPs, we constructed a
test (see Methods) to determine whether the observed
change in allele frequency could be explained by drift or
alternatively must be due to selection. From this analysis,
we found that the observed allele frequency changes
exceeded the likely changes due to drift for 84.60% of the
44,817 SNPs.
We also compared genomic with pedigree estimates of F.

The realized genomic F have a larger variance (s2 = 0.0023)
than do the pedigree F (s2 = 0.0014), and the two measures
of F had a Pearson correlation of 0.65 (Figure 5b), which is
consistent with the underestimation of pedigree F due to
the assumption that F is zero for all individuals in the base
generation, pedigree errors, and incomplete pedigree
information. We regressed pedigree F on genomic F, and
found the slope of the regression to be 0.49 ± 0.01. Separate
regressions for the Wye and North American Angus
revealed pedigree and genomic F coefficients to be more
similar for the Wye herd than for the remaining North
American Angus cattle (see Figure 5b and Table 2). When
genomic F was regressed on pedigree F, the slope of the
regression was 0.85 ± 0.02 with an adjusted R2 of 0.42.
Because estimates of genomic F coefficients are based

on fewer assumptions than are pedigree estimates (which
require neutrality), we also estimated Ne using the genomic
F coefficients for North American Angus animals born
after 1980. This resulted in an Ne of 94.18 ± 0.10 (Table 1).
Using this Ne in our drift test, we estimated that allele
frequency changes exceeded those likely due to drift for
82.41% of the 44,817 SNPs.

Applying Birth Date Selection Mapping to smaller sample
sizes
We appreciate that not all species will have the large sam-
ples that are available for agriculturally important species
for Birth Date Selection Mapping. To assess the effects of
sample size and birth date range, we created four subsam-
ples from our data set that were analysed using EMMAX.
The first subsample contained 1,237 animals from pedigree
generations 58, 59, and 60 (mean birth date 2004.84 ±
3.03; range 1993.16 to 2008.66). The second contained 60
animals, consisting of 20 animals randomly sampled from
each of pedigree generations 58, 59, and 60 (mean birth
date 2005.16 ± 2.20; range 1999.14 to 2008.01). The third
consisted of 1,237 animals randomly sampled from the en-
tire data set (mean birth date 1999.10 ± 9.00; range
1955.99 to 2008.64). The final sample included 60 animals
randomly sampled from the entire data set (mean birth
date 1998.77 ± 8.56; range 1974.34 to 2008.10). Additional
file 1: Figures S19 and S20 show that only the third data
set had sufficient power to identify loci under selection
with genome-wide significance. Comparing Additional file
1: Figures S20A and S20D suggests that increasing the time
period over which individuals are sampled improves power
more than does increasing sample sizes using contempor-
ary individuals. Selection would likely have to be extremely
strong and focussed on monogenic traits to identify
selected loci using small samples of contemporaries
(Additional file 1: Figures S19B and S20B).

Connecting selected phenotype to selected genotype
We analysed deregressed EBVs in a weighted analysis [23]
for 16 production traits (Supplementary Information) using
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Figure 5 Analysis of inbreeding coefficients. a. Plot of average
pedigree F by birth date for 91,001 animals in the pedigree of the
3,570 genotyped animals. Averages for the Wye herd animals and
their ancestors are in red; averages for the remaining North
American Angus and their ancestors are in black. The red line
represents the regression of pedigree F on birth date for Wye
pedigree animals born after 1950. The green line is the regression of
pedigree F on birth date for animals in the North American pedigree
born after 1930. The blue line is the regression of pedigree F on
birth date for animals in the North American pedigree born after
1980. See Table 1 for regression parameter estimates. b. Plot of
pedigree against genomic F coefficients. Wye herd animals are
plotted in red; all other North American animals are plotted in black.
The red line represents the regression of pedigree F on genomic F for
Wye herd animals and the black line is for the remaining North
American animals. See Table 2 for regression parameter estimates.
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data provided by the American Angus Association (AAA)
under an animal model that incorporated a genomic
relationship matrix and from which we estimated the pro-
portion of additive genetic variance explained by the SNP
markers (Table 3). With the exception of two QTLs on
chromosomes 7 and 20, most genes influencing variation in
growth traits in Angus cattle are of small effect (Figures 6,
Additional file 1: Figures S21-S35). The most likely location
of the pleiotropic QTL on chromosome 7 was found to be
at 93.22 Mbp in the GBLUP analyses, and the SNP at this
location, rs110059753, was among the most strongly
associated of all SNPs with CED, BW, WW, YW, HP, CEM,
MILK, MW, MH, CW, MARB, RE, and FAT (Figures 6,
Additional file 1: Figures S21, S22, S23, S27, S28, S29, S30,
S31, S32, S33, S34, S35). However, the strongest selection
signal found on this chromosome was found at 99.02 Mbp
(Figure 2) by GBLUP, at 100.02 Mbp by BayesCπ (Figure 4),
and a small, but not significant, birth date selection signal
was found at 99.02 Mbp in the EMMAX results (Figure 3).
The birth date effect for rs110059753 was ranked 11,224
out of the 44,817 SNP effects (75th ASE percentile). The
most likely location of the pleiotropic QTL on chromosome
20 was estimated to be at the position of SNP rs43711332
at 4.62 Mbp (affecting CED, BW, WW, YW, YH, CEM,
MW, MH, and CW; Figures 6, Additional file 1: Figures
S21, S22, S23, S24, S28, S30, S31, and S32). Selection
signals were detected at 5.1 Mbp in the GBLUP and at 5.9
Mbp in the EMMAX analyses of birth date. The birth date
effect for SNP rs43711332 was ranked 5,168 out of the
44,817 SNP effects (88th ASE percentile).
To assess the identity of the trait or combination of

traits that have historically been under selection in
Angus cattle and that produced the molecular signals of
selection, we individually regressed the SNP ASEs for
birth date on standardized SNP ASEs (see Methods) for
all 16 production traits for which the AAA routinely
produces EPDs (Additional file 1: Table S2) using generalized
least squares accounting for the pair-wise LD among
SNPs. We fit this model for the 948 SNPs (935 SNPs
after LD pruning) with the largest birth date variances
corresponding to the 1- π̂ = 0.0211 proportion of SNPs
detected to be under strong selection in the BayesCπ
analysis of birth date. Growth traits (WW, YW, and
CWT), milk, marbling and calving ease (CED and CEM)
had the largest adjusted coefficients of determination and
relative selection intensities (Additional file 1: Table S2).
However, the models for birth weight, docility, and
yearling height were not significant (Bonferroni corrected
α = 0.003125 = 0.05/16). A multiple regression with all 16
traits fit jointly produced an adjusted R2 of 0.6625,
which is only slightly (0.0457) larger than the R2 for the
weaning weight model. Individual terms from the mul-
tiple regression are not reported due to multicollinearity
between several traits.



Table 1 Estimates of inbreeding effective population size for registered Angus cattle

Data set Intercept ΔF/generation Ne

Wye pedigree, pedigree F −0.0059 0.0137 ± 0.0005 36.4184 ± 0.0338

North American pedigree born after 1930, pedigree F 0.0072 0.0019 ± 3.5115e-05 267.5948 ± 0.0188

North American pedigree born after 1980, pedigree F −0.0269 0.0043 ± 0.0002 116.1495 ± 0.0353

North American pedigree born after 1980, genomic F 0.0529 0.0052 ± 0.0005 94.1815 ± 0.0955

Birth year generations were calculated by subtracting 1950 from each animal’s birth year and dividing by the generation interval of 5 years. Birth year generation = (birth
year – 1950)/5.
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Finally, to elucidate the biological processes associated
with the genes located in the genomic regions detected
to be under selection, we analysed the gene ontology
term enrichment for the annotated genes within these
regions (See Additional file 2 and Additional file 3).
From the GBLUP results, we queried 2,074 genes within
100 Kbp of the top ranked 948 SNPs for their birth date
ASEs, and from the BayesCπ results, we queried 1,996
genes within 100 Kbp of the top 948 SNPs. There were
1,059 genes shared between the two lists, and this list of
genes was also queried using the DAVID Bioinformatics
tools. Various biological processes appear to be under
selection based on the intersection of the GBLUP and
GenSel results—notably cellular metabolic process, biosyn-
thetic process, translation, protein folding, regionalization,
ectoderm development, leukocyte mediated immunity, and
striated muscle cell proliferation (Additional file 4 contains
the complete list). The intersection of the GBLUP and
GenSel results also found olfactory transduction, antigen
processing and presentation, and the adipocytokine
signalling pathway to be enriched KEGG pathways. In
addition to these terms, cell proliferation, spermatogenesis,
and organ growth were enriched gene ontology terms
from the GBLUP results (Additional file 2 contains the
complete list). Developmental process, anatomical
structure development, cellular response to stress, response
to oxidative stress, positive regulation of lymphocyte
activation, and limb morphogenesis were additional
enriched gene ontology terms from the GenSel results
(Additional file 3 contains the complete list).

Discussion
Artificial selection has increased the weights at which
cattle are marketed either at weaning or yearling ages
Table 2 Regression of pedigree F on genomic F

Sample Adjusted R2 Model p-value Pa

All 0.4178 < 2.2e-16 In

Sl

Wye 0.7077 < 2.2e-16 In

Sl

North American 0.2829 < 2.2e-16 In

Sl
(Figures 1, Additional file 1: Figures S4, and S13) while
simultaneously decreasing the incidence of assisted
births (Additional file 1: Figures S3 and S9), and the
trends observed in our data set are very similar to those
reported for the entire Angus breed [31]. Larger birth
weights and yearling heights are both strongly associated
with increased calving difficulty and genetic trend
increased both traits until about the mid-1980s, after
which both began to decrease (Figures 1 and Additional
file 1: Figures S5). Breeders did not directly select to
increase birth weight, but it increased as a correlated
response to selection for increased weaning and yearling
weights. Some breeders selected for increased yearling
height to produce Angus cattle more comparable in
frame size to the Continental European breeds, which
were imported into the US during the 1970s [32]. However,
once breeders appreciated the undesirable correlated
response in calving ease, selection was practised to increase
weaning and yearling weights while maintaining birth
weight and yearling height constant.
Using EMMAX, only eleven loci were found to be

significantly associated with birth date and thus under
strong selection, but all loci simultaneously explained
53% of the variation in birth date. On the other hand,
BayesCπ estimated that 2.11% of the SNPs were strongly
associated with birth date, but all SNPs explained 72% of
the variance in birth date. The difference in the heritability
estimates between the GBLUP or EMMAX analyses com-
pared to the BayesCπ analysis reflects the different model
assumptions underlying these analyses. Whereas GBLUP
and EMMAX assume the infinitesimal model under which
all SNP ASEs are drawn from a distribution with constant
variance [33,34], BayesCπ begins with a distribution with
constant variance but shrinks the variance for small effect
rameter Estimate T-value p-value

t −0.0145 ± 0.0012 −12.46 < 2e-16

ope 0.4912 ± 0.0097 50.61 < 2e-16

t −0.0354 ± 0.0060 −5.93 1.18e-8

ope 0.6813 ± 0.0296 23.00 < 2e-16

t −0.0070 ± 0.0013 −5.53 3.48e-8

ope 0.4100 ± 0.0113 36.36 < 2e-16



Table 3 Summary statistics for deregressed estimated breeding values (EBVs) and accuracies (r2) produced by the
American Angus Association for the 3,570 genotyped animals

Trait1 Units Heritability2 N4 Mean EBV ± SD5 Mean Accuracy ± SD Cmax
6 C7 Vgenetic

8

Birth Weight lb 0.42 3241 4.03 ± 5.95 0.78 ± 0.24 0.7962 0.7703 23.42

Weaning Weight lb 0.20 3229 86.69 ± 45.98 0.68 ± 0.32 0.8221 0.7038 690.86

Maternal Milk lb 0.14 2067 33.79 ± 30.01 0.70 ± 0.27 0.8619 0.7086 373.15

Yearling Weight lb 0.49 2776 154.03 ± 78.15 0.69 ± 0.29 0.8268 0.7804 1961.63

Yearling Height in 0.45 2250 0.74 ± 1.22 0.70 ± 0.25 0.7962 0.7962 0.6165

Carcass Weight lb 0.40 2457 30.93 ± 84.08 0.41 ± 028 0.9141 0.6274 1438.86

Marbling units 0.45 3237 0.64 ± 1.14 0.43 ± 0.25 0.9127 0.9127 0.3542

Ribeye Muscle Area in2 0.51 3269 0.16 ± 1.04 0.47 ± 0.23 0.9141 0.9141 0.3775

Fat Thickness in 0.34 3189 0.027 ± 0.162 0.40 ± 0.23 0.9141 0.9141 0.0072

Mature Weight lb 0.55 1321 67.28 ± 135.26 0.64 ± 0.25 0.8485 0.5586 5818.80

Mature Height in 0.82 1291 1.08 ± 2.25 0.64 ± 0.25 0.8429 0.5602 1.504

Scrotal Circumference in 0.43 2479 0.55 ± 1.83 0.69 ± 0.25 0.8176 0.6977 1.641

Calving Ease Direct % 0.18 3217 8.30 ± 19.77 0.62 ± 0.26 0.8681 0.7055 154.70

Calving Ease Maternal % 0.12 1966 12.14 ± 23.77 0.59 ± 0.27 0.9026 0.4211 146.00

Docility % 0.37 698 15.52 ± 21.44 0.48 ± 0.27 0.9267 0.3430 126.94

Heifer Pregnancy % 0.13 1366 15.81 ± 47.64 0.50 ± 0.27 0.9049 0.7117 711.45

Birth Date yr 0.533 3570 1998.93 ± 8.98 1.00 ± 0.00 N/A N/A 25.83
1See Supplementary Information for trait definitions.
2Narrow sense heritability used by the American Angus Association to compute estimates of additive genetic merit.
3Estimated from genomic BLUP analysis.
4Number of breeding values that could successfully be deregressed or birth dates.
5Deregressed estimated breeding values or birth dates.
6Largest possible value of C imposed by the constraint (1+Fi)/ri

2>C×Gii, which ensures that weights for all animals’ deregressed EBV are strictly positive. Fi is the
pedigree inbreeding coefficient, ri

2 is the accuracy of the deregressed breeding value, and Gii is the diagonal of the genomic relationship coefficient matrix for the
ith animal. See [23] for further explanation.
7Proportion of additive genetic variation explained by 45,073 SNPs computed as Vmarkers/Vgenetic. See [23] for further explanation.
8Estimated additive genetic variance from the analysis of deregressed breeding values or birthdates.
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SNPs that are rarely fit in the model. As a consequence,
GBLUP and EMMAX regress all SNP ASEs equally
towards the mean of zero, while BayesCπ more aggressively
regresses small effect SNPs and less aggressively regresses
Figure 6 Manhattan plot of additive genetic variances explained by e
weaning weight EBVs. For each SNP 2pi(1-pi)αi2is plotted where pi is allele
large effect SNPs, leading to a better model fit—as was
found here—when there are loci under very strong selec-
tion. In the absence of selection, genotype frequency should
be independent of time provided that the effects of drift are
ach SNP estimated from the GBLUP analysis of deregressed
frequency and αi is the ASE for weaning weight for the ith SNP.
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negligible and the heritability estimates should be close to
zero. However, this was not the case for US registered
Angus cattle and we conclude that a significant number of
loci are rapidly responding to selection (our results suggest
2.11%) and that most of the genome (82.4% from the
drift analysis) is responding more slowly to selection.
Furthermore, in our nonlinear BayesCπ model, 72% of
the variation in birth date could be explained by simul-
taneously using all SNP genotypes, suggesting that there
are loci under very strong selection (large effect loci)
that are not appropriately fit by the infinitesimal model.
The SNP ASEs for the 16 analysed traits indicate that,

with the exception of the two large effect QTLs on BTA 7
and 20, the vast majority of QTLs underlying quantitative
traits in beef cattle are of small effect. Of considerable
interest, neither of these QTLs was found to be under very
strong selection and this seems to be because of their large
antagonistic pleiotropic effects on growth and calving
difficulty. We postulate that when multiple traits are
simultaneously selected, the genetic architecture of the
population defined by pleiotropy and the chromosomal
organization of QTL alleles (phase effects) constrains both
the phenotypic and genotypic response to selection.
For selection to be effective, the selection intensity and

effective population size must be sufficiently large to
overcome the effects of genetic drift. We demonstrate
that US registered Angus cattle have a sufficiently large
effective population size to enable successful artificial
selection, but more importantly, that large intergenera-
tional changes in allele frequency are unlikely to occur
due to drift alone. Furthermore, we found a considerable
disparity between pedigree and genomic estimates of
inbreeding coefficients. While others have argued that
genomic relationship matrices should be adjusted to
more closely resemble pedigree relationship matrices
[35], we assert that genomic relationship matrices
provide a more accurate representation of the realized
relationships among individuals that result from the
Mendelian sampling of parental gametes and selection.
The use of genomic relationship matrices in place of
pedigree relationship matrices avoids the assumption of
neutrality of loci both in the estimation of inbreeding
coefficients and for the mean value of gametes inherited
by progeny—both of which are assumed for the compu-
tation of the numerator relationship matrix [36]. The
disagreement between genomic and pedigree estimates
of F coefficients is likely to be due to the assumption
that base animals are not inbred, errors in the pedigrees,
and missing pedigree information likely due to the large-
scale importation of Canadian Angus cattle in the 1940s
and 1950s that were not carriers of dwarfism alleles,
which had been driven to high frequency due to selec-
tion at the time [37]. This is supported by the closer
agreement between pedigree and genomic F coefficients
for the Wye herd that was largely derived from British
stock with more complete pedigree records than the
remaining US registered Angus cattle (Table 2 and
Figure 5b).
We attempted to identify the relative selection inten-

sities placed on each selected trait via the imprints that
multi-trait selection had left on the Angus genome.
Although this analysis assumed no change in relative
selection intensities in time, an assumption that is
clearly violated in view of the genetic trends in birth
weight and yearling height, we were able to confirm that
growth traits have historically been the most strongly
selected in US registered Angus cattle. Because Angus is
considered to be a maternal breed (i.e., motherly, used
as dams in commercial beef production), it is logical that
loci that influence calving ease, growth to weaning, and
milking ability should have been found to be under
selection. Angus breeders have successfully selected to
increase calving ease and body weight by selecting for
body shapes that allow a calf ’s easy passage through the
dam’s pelvis. This is supported by the finding of an
enrichment of gene ontology terms related to limb
morphogenesis and anatomical structure development
within regions of the genome detected as responding to
selection. It has previously been shown that calving ease
is negatively correlated with several body measures, such
as head circumference, head width, hip width, hip height,
chest girth, and cannon bone circumference [38-40].
Likely due to the Certified Angus Beef ’s emphasis on
quality grade [41], Angus breeders have more recently
selected to increase marbling. Conversely, traits such as
fat thickness, docility, and heifer pregnancy rate have not
been as intensely selected as growth traits, due to the
differing breeding objectives of beef producers, genetic
antagonisms constraining selection response, and the
historic difficulty in collecting field data to allow the devel-
opment of EPDs for these traits.
There is also evidence that natural selection has occurred

in this population. The gene ontology enrichment results
indicate that genes affecting immune response, such as the
MHC, NOD2, C3, and DBH, have strongly responded
to selection (Additional file 2, Additional file 3, and
Additional file 4), presumably due to the exposure of
Angus cattle to novel pathogens following their intro-
duction into the US in 1873 [42] and the continuous
co-evolutionary “arms race” between bovine and pathogen
genomes [43,44]. The Bovine HapMap Consortium [12]
found that the MHC had some of the lowest Fst values in
the entire genome when compared between breeds. Our
analyses have identified the MHC as being under strong
selection. Taken together, these results suggest that the
MHC or certain of the numerous olfactory receptors
which occupy the same region on chromosome 23 are
under strong convergent selection.
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Furthermore, natural selection may also be attempting
to buffer the cellular environment against the deleterious
effects of inbreeding. We found that spermatogenesis
was an enriched ontology term describing the function
of genes within the strongly selected regions of the
genome (Additional file 3). Seminal plasma proteins
have been associated with bull fertility [45], and selection
may be increasing fertility to counter act the inbreeding
depression of reproduction (alternatively, the use of AI
may be selecting for increased fertility). Genes involved in
response to oxidative stress were also identified; response
to oxidative stress has been tied to mitigating inbreeding
depression [46]. We also inferred that at least 6 heat shock
proteins are under selection in Angus and that protein fold-
ing was an enriched biological process (Additional file 4).
It has been hypothesized that heat shock proteins assist the
organism to cope with protein instability and misfolding
caused by homozygous nonsynonymous mutations that are
elevated in frequency by inbreeding [46-50].
One of the greatest difficulties encountered in identifying

genomic signatures of selection is in distinguishing changes
that have occurred due to demographic as opposed to
selective forces [9]. Our Birth Date Selection Mapping
approach utilizing mixed models specifically accounts for
pedigree relationships and explicitly deconvolutes their
confounding effects on time-dependent allele frequency
changes, which are due to the fact that not all pedigrees
are sampled equally deeply in terms of the numbers of
genotyped individuals. Rather than fit generations as the
dependent variable [51], which are poorly estimated when
pedigrees are incomplete, fitting birth date allows unknown
or complex pedigrees with overlapping generations to be
analysed. Furthermore, the genomic relationship matrix
accounts for pedigree relationships between samples,
allowing closely related samples to be analysed. However,
one of the limitations of Birth Date Selection Mapping is
the requirement of a temporally stratified sample of geno-
typed individuals. The results for the analyses of the
reduced data subsets suggest that sampling over extended
time periods or large sample sizes—but not necessarily
both—will be necessary to identify strongly selected loci.
This will currently limit the utility of the approach in
human populations due to a lack of preserved DNA
samples across multiple generations. However, this limita-
tion may be alleviated as it becomes more practical to ex-
tract quality DNA from formalin-fixed, paraffin-embedded
tissue section samples and ancient remains. Nevertheless,
Birth Date Selection Mapping is clearly most easily applied
to organisms with temporally stratified DNA samples and
genome-wide genotypes.
Using the estimated birth date ASEs as informative

priors in the development of genomic selection programs
[52] is another interesting application of our method. Loci
with small birth date ASEs are either of small effect on the
selection objective or represent genes of large effect that
have undesirable pleiotropic effects (or closely linked loci
with antagonistic phase relationships). Loci that have large
birth date ASEs must have large effects on the selection
objective that are less constrained by antagonistic
pleiotropic effects allowing them to more rapidly respond
to selection.

Conclusions
When temporally stratified DNA samples are available,
Birth Date Selection Mapping is an effective method for
the identification of strongly selected loci. We demon-
strate that selection on polygenic traits leaves detectable
signatures of selection throughout the genome at which
small changes in allele frequencies per generation have
occurred. If genes with large antagonistic pleiotropic
effects exist, they respond to multi-trait selection as if
they were of small effect on the breeding objective as
predicted by quantitative genetic theory. By relating the
detected signatures of selection to phenotype, we infer
that artificial selection in US registered Angus cattle has
historically focussed primarily on growth and maternal
traits including calving ease, weaning weight, and
milking ability. This result was directly confirmed by the
response to selection that has occurred in these traits
that we directly estimated from EPDs provided by the
AAA. Finally, our results suggest that natural selection
has also acted in this domesticated population to
increase immunity and possibly to buffer the organism
against the effects of inbreeding depression.

Methods
DNA extraction and SNP genotyping
Cryopreserved semen was obtained from semen distribu-
tors, the National Animal Germplasm Program, and
individual Angus breeders including the University of
Maryland Foundation which owns the Wye herd. DNA was
extracted using a proteinase K digestion, Phenol: Chloro-
form alcohol extraction, and ethanol precipitation [53].
Single nucleotide polymorphisms were assayed using the
Illumina BovineSNP50 BeadChip [54] and genotyped using
the Illumina GenomeStudio software. Genotypes were
filtered using a SNP call rate threshold of 90%, animal call
rate threshold of 95%, and minor allele frequency threshold
of 0.01. Autosomal and pseudoautosomal SNPs that had a
Hardy-Weinberg Chi-square statistic with 1 degree of
freedom greater than 300 were also filtered—primarily to
remove polymorphisms detected in copy number variants
rather than remove loci that were under selection [25].
Filtered data were processed through FastPHASE version
1.4.0 [55] to impute the 0.49% of missing genotypes. Param-
eter values were set at T=10, K=20, with -eo flags set. The
resulting dataset consisted of genotypes for 45,073 SNPs
scored in 3,570 animals with no missing values.
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Response to selection
Expected progeny differences for 16 production traits
along with their accuracies were provided by the AAA
for 103,816 animals including the 3,570 genotyped
animals and all identified ancestors in their pedigrees.
These values were doubled to obtain estimated breeding
values that were deregressed for the 3,570 animals as
previously described [23]. The deregression of estimated
breeding values removes parent average information and
converts the information available on the individual back
to the scale of the underlying phenotype—that is, it
removes the “shrinkage” that was applied to convert
phenotypes into estimated breeding values. In the statis-
tical package R [56], trait breeding values were plotted
against birth date. Linear and quadratic regressions were
fit for each trait.

Principal component analysis of Angus genotypes
We used the smartpca program, part of EIGENSOFT [57],
for principal component analysis of the Angus genotypes.
We plotted principal component 1 by principal component
2 to visualize the largest elements of population substruc-
ture. Figure S18 revealed that the primary substructure
detected in the population was the largest families—the
linearly related members of the Wye herd and the ancestors
and sons of N Bar Emulation EXT, a popular bull within
the breed that generated numerous sons also used in
artificial insemination.

Estimation of effective population size
Pedigree inbreeding coefficients (F) were estimated as a
by-product of using the rapid algorithm for producing
the inverse of a numerator relationship matrix [36].
Genomic F were estimated by subtracting 1 from the
diagonals of the genomic relationship matrix, which was
estimated according to [24] with base generation allele
frequencies at each SNP estimated using the 59 animals
born between 1955 and 1974, excluding all animals from
the Wye herd.
The inbreeding effective population size Ne was

estimated from the regression of inbreeding coefficients
on pedigree generation number using individual animal
data. This requires inverting the relationship ΔF =
1/2Ne, in which ΔF is the increase in mean inbreeding
coefficient between adjacent generations [58] and is
estimated as the slope of the regression across all genera-
tions if Ne is assumed constant in time. A Taylor series
expansion leads to an estimate of the standard error of Ne

as SE(Ne) ≈ 2NeSE(ΔF), in which SE(ΔF) is the standard
error of the estimated slope of the regression. Because the
depth of available pedigree information varied substantially
for the 3,570 sampled Angus animals (animals within the
pedigree that were assigned to generation 0 varied in birth
year from 1838 to 1954) we considered the estimates of
pedigree generation to be unreliable from the perspective
of estimating Ne. Accordingly, we estimated generation
number for each of the 3,570 genotyped animals by
subtracting 1950 from their birth year and dividing by the
generation interval of 5 years. Because of the closed nature
of the Wye herd and complete pedigree information back
to foundation animals, we fit separate models for the Wye
and remaining North American Angus animals. For the
North American Angus subset, we fit two models using
generation number estimated from birth year for animals
born after 1930 and for animals born after 1980 where
there appeared to be an inflection in the rate of increase in
inbreeding. This corresponds to the point in time when
the increased use of artificial insemination became signifi-
cant within the breed.
For each of the 44,817 SNPs, we directly estimated the

change in allele frequency that occurred between the
460 individuals assigned to pedigree generation 58 and
the 450 individuals assigned to pedigree generation 59
using PLINK [59,60]. These pedigree generations were
chosen because they had the largest sample sizes, repre-
sent the individuals with the deepest pedigrees for which
their generation assignment would not be significantly
influenced by missing pedigree information, and were
among the most recent of the generations suggesting
they were likely to represent all of the families present
within the sample. Furthermore, the sample sizes for
these generations were sufficiently large to obtain
precise estimates of allele frequencies. We compared the
observed allele frequency changes between generations
58 and 59 to the boundaries of the 99.999999% (−log10
(p-value) = 8) confidence interval for the change in allele
frequency due to drift (estimated under the assumption
of normality assuming a mean of 0 and the drift variance
for the ith SNP to be pi(1-pi)/2Ne, for pi the frequency of
the Ai allele in generation 58 and Ne = 116.15 [58]). For
SNPs on the X chromosome, the drift variance for the
ith SNP was pi(1-pi)/1.5Ne. Loci for which the allele
frequency change exceeded the boundaries of the confi-
dence interval were concluded to be changing in frequency
due to selection rather than drift.

GBLUP of phenotypic traits
In a weighted analysis using deregressed EBVs as previ-
ously described [23], GBLUP [24] was used to estimate
ASEs for 16 different traits using 45,073 SNPs genotyped
in 3,570 animals. Allele substitution effects were
converted to additive genetic variances by squaring the
ASE and multiplying by 2piqi, in which pi and qi = 1 - pi
are the base generation allele frequencies at the ith SNP
[24]. Base generation allele frequencies at each SNP were
estimated using the 59 animals born between 1955 and
1974, excluding all animals from the Wye herd. Results
are presented only for the 44,817 SNPs that mapped
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to autosomes or the X chromosome in the UMD3.1
bovine assembly.

Signatures of selection analysis
SNPs with the greatest changes in allele frequency over
time will have the largest ASEs for birth date. The ASE
reflects the amount of response to selection realized by
the genomic region tagged by a SNP. Genome-wide
associations with birth date were analysed by GBLUP
using custom developed software described in [21], by
EMMAX [20], and by BayesCπ [29] as implemented in
GenSel [28]. A genomic relationship matrix [24], com-
puted as previously described, was incorporated in the
GBLUP analysis and a Balding-Nichols matrix [61] was
used as the kinship matrix in the EMMAX analysis. Both
analyses estimated the amount of variation in birth date
explained by multilocus genotypes using REML [20].
Test statistic p-values for each SNP produced by
EMMAX were adjusted to q-values using the method of
Benjamini and Hochberg [62] as implemented by the
GenABEL package in R [63]. The additive genetic and
residual variance components estimated in the GBLUP
analysis were used as starting values for variance compo-
nents in the BayesCπ analysis. The starting value for π was
set to 0.9 and GenSel was run for 160,000 iterations, with
1,000 iterations used as burn-in. Manhattan plots were
created in R [56], with R source code from [64] which
was altered to allow 30 chromosomes on the X-axis and
for q-values or variances to be plotted on the Y-axis.
From Falconer and MacKay [58], the change in allele

frequency resulting from selection is Δq = −ipqa/σp,
where i is the selection intensity, a is one half the
phenotypic difference between homozygote mean
phenotypes, σp is the trait variance, and p and q are
allele frequencies. Assuming the dominance deviation is
zero, the ASE α is equal to the genotypic value a. Thus,
we use the ASE as a proxy for a which we then scaled as
pqASE/σASE to form the independent variables for each
of the 16 production traits which were individually
regressed on the birth date ASEs to provide estimates of
the relative selection intensity i for each trait (the sign is
included in the realized estimate). For each trait, σASE
represents the ASE standard deviation in the equation
above. Regressions were performed using generalized
least squares, with e ~ (0, Vσ) where V was the matrix
of correlations between alleles at pairs of SNPs estimated
using PLINK. When multiple, contiguous SNPs had r = ±1
(i.e., r2 = 1), only the first SNP was retained, resulting in the
removal of 13 SNPs. The model was fit to the 935 SNPs
with the largest birth date ASEs.

Functional annotation
Due to the extent of LD within the bovine genome
[12,65], we identified all genes within 100 Kbp of the
948 most strongly selected SNPs (top 2.11% of 44,817
SNPs, estimated by BayesCπ) identified by the GBLUP
and BayesCπ analyses. We used the DAVID bioinformatics
resources [66,67] to identify enriched GO terms in the lists
of 2,074 (GBLUP) and 1,996 (BayesCπ) genes, and the
1,059 genes in common between the lists. We used anno-
tations from Bos taurus, Homo sapiens, Mus musculus,
Rattus norvegicus, Canis lupus, Pan troglodytes, Macaca
mulatta, Equus caballus, Pongo abelii, Sus scrofa, Ovis aries,
and Oryctolagus cuniculus for GO enrichment analysis.
Additional files

Additional file 1: Supplementary Material. File includes
supplementary information, supplementary figures 1 through 35, and
supplementary Tables 1 and 2.

Additional file 2: Chart of enriched GO terms in Excel xlsx format.
We included charts for DAVID’s GOTERM_BP_FAT (lower levels of
biological process ontology), GOTERM_BP_ALL (all levels of biological
process ontology), GOTERM_BP_2 (2nd level of biological process
ontology), GOTERM_BP_3 (3rd level of biological process ontology),
GOTERM_BP_4 (4th level of biological process ontology), GOTERM_BP_5
(5th level of biological process ontology), GOTERM_CC_FAT (lower levels
of cellular component ontology), GOTERM_MF_FAT (lower levels of
molecular function ontology), and KEGG_PATHWAY with each as an
individual tab in the file. We supplied the DAVID resources with a list of
2,074 genes annotated in the UMD 3.1 assembly.

Additional file 3: Chart of enriched GO terms in Excel xlsx format.
We included charts for DAVID’s GOTERM_BP_FAT, GOTERM_BP_ALL,
GOTERM_BP_1, GOTERM_BP_2, GOTERM_BP_3, GOTERM_BP_4,
GOTERM_BP_5, GOTERM_CC_FAT, GOTERM_MF_FAT, and
KEGG_PATHWAY with each as an individual tab in the file. We supplied
the DAVID resources with a list of 1,996 genes annotated in the UMD 3.1
assembly.

Additional file 4: Chart of enriched GO terms in Excel xlsx format.
We included charts for DAVID’s GOTERM_BP_FAT, GOTERM_BP_ALL,
GOTERM_BP_1, GOTERM_BP_2, GOTERM_BP_3, GOTERM_BP_4,
GOTERM_BP_5, GOTERM_CC_FAT, GOTERM_MF_FAT, and
KEGG_PATHWAY with each as an individual tab in the file. We supplied
the DAVID resources with a list of 1,059 genes annotated in the UMD 3.1
assembly.
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