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Abstract

Background: Triple-negative breast cancers (BC) represent a heterogeneous subtype of BCs, generally associated
with an aggressive clinical course and where targeted therapies are currently limited. Target validation studies for all
BC subtypes have largely employed established BC cell lines, which have proven to be effective tools for drug
discovery.

Results: Given the lines of evidence suggesting that BC cell lines are effective tools for drug discovery, we assessed
the similarities between triple-negative BCs and cell lines, to identify in vitro representatives, modelling the diversity
within this BC subtype. 25 BC cell lines, enriched for those lacking ER, PR and HER2 expression, were subjected to
transcriptomic, genomic and epigenomic profiling analyses and comparisons were made to existing knowledge of
corresponding perturbations in triple-negative BCs. Transcriptional analysis segregated ER-negative BC cell lines into
three groups, displaying distinctive abundances for genes involved in epithelial-mesenchymal transition, apocrine
and high-grade carcinomas. DNA copy number aberrations of triple-negative BCs were well represented in cell lines
and genes with coordinately altered gene expression showed similar patterns in tumours and cell lines. Methylation
events in triple-negative BCs were mostly retained in epigenomes of cell lines. Combined methylation and gene
expression analyses revealed a subset of genes characteristic of the Claudin-low BC subtype, exhibiting
epigenetic-regulated gene expression in BC cell lines and tumours, suggesting that methylation patterns are likely
to underpin subtype-specificity.

Conclusion: Here, we provide a comprehensive analysis of triple-negative BC features on several molecular levels in
BC cell lines, thereby creating an in-depth resource to access the suitability of individual lines as experimental
models for studying BC tumour biology, biomarkers and possible therapeutic targets in the context of preclinical
target validation.

Keywords: Microarray, Gene expression profiling, Comparative genomic hybridisation, Methylation arrays, Triple
negative, Breast cancer

Background
Oestrogen-receptor (ER) negative breast cancer (BC)
accounts for approximately 20% of all newly diagnosed
breast malignancies [1-3]. Clinically, however, this group
of BCs contains different subtypes and can be subdi-
vided into either HER2-positive or triple-negative BCs,
defined by very low or absent immunohistochemical
expression of ER and progesterone receptor (PR), and

low expression and lack of amplification of HER2 [4].
Triple-negative BCs account for 10-15% of all breast
tumours and are mostly of high grade, have a high inci-
dence of TP53 mutations, and show proliferative charac-
teristics with a higher propensity to spread to visceral
organs [4]. Sharing many of these phenotypic features
with triple-negative BCs are breast tumours of the ‘in-
trinsic’ basal-like subtype. These tumours generally lack
ER and HER2 expression and are molecularly charac-
terised by the expression of genes associated with both
basal epithelium and myoepithelium of the normal mam-
mary gland (e.g. KRT5/6, KRT14, VIM, CDH3, CRYAB,
CAV1 and CAV2, as well as EGFR) [2,5]. Approximately,
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80% of triple-negative BCs show features of basal-like BCs
[4,6,7]. While most triple-negative BCs show aggressive
clinical behaviour and have very limited targeted therapies,
they also encompass subgroups of cancers sensitive to
chemotherapy and having a good prognosis [4]. Hence,
continuous efforts to characterise this BC population have
already identified several subgroups. One of the proposed
groups comprise “Claudin-low” tumours, which are char-
acterised by gene expression profiles similar to those
found in the so-called breast ‘cancer stem cell’ populations
[8], while other subgroups were classified as having higher
expression of the interferon-related or apocrine genes
[9-12]. BC cell lines are essential tools in BC research
and have been widely used to elucidate BC biology and
new therapies [13,14]. Since cell lines are easily propa-
gated and genetically manipulated, extensive informa-
tion about their transcriptome, genome and to a lesser
extent epigenome has been produced [11,15-19]. Several
studies have compared and integrated gene expression
profiles and genomic alterations between primary breast
tumours and BC cell lines, demonstrating that the hetero-
geneity found in primary BCs is to a certain extent recapi-
tulated in the panel of commonly used BC cell lines
[15,16,18]. Given the increasing knowledge of the diversity
and complexity among BC subtypes it has also become
evident that no individual cell line will recapitulate all
aspects of the disease. Here we interrogated genome-wide
transcriptional profiles with genomic and epigenetic pro-
filing in a collection of 25 BC cell lines enriched for those
of triple-negative phenotype. We have focused on gene
signatures, underlying DNA copy number aberrations
(CNAs) and epigenetic events specifically associated with
triple-negative BCs. By cataloguing these perturbations on
a gene-centric basis we have extended the characterisation
of these BC cell lines and offer valuable insights on their
suitability in modelling certain features of this heteroge-
neous disease.

Results
BC cell lines segregate into three groups based on their
transcriptional profiles
To investigate the molecular heterogeneity of triple-negative
BC cell lines and their representativeness of triple-negative
breast cancers, we used Illumina HumanWG-6v2.0 to
survey the phenotypic and genotypic characteristics of
seven ER-negative mesenchymal BC cell lines (Hs578T,
BT549, MDAMD157, MDAMD231, MDAMD436 and
SUM159) and compared them with 13 ER-negative
epithelial-like BC cell lines (BT20, HCC38, HCC70,
HCC1143, HCC1937, MDAMD468, SUM149, SKBR3,
SUM190, SUM225). Five ER-positive BC cell lines
(T47D, BT474, ZR7530, BT483 and HCC1428) were
also included in our dataset, to evaluate ER-responsive
transcriptional signatures in ER-negative BC cell lines.

In addition, two ER-negative/ HER2-positive epithelial BC
cell lines were included (i.e. HCC1954 and HCC1569),
and were employed as comparators with other triple-
negative BC cell lines. Molecular pathological features of
all BC cell lines are provided in Additional file 1 Table S1.
Unsupervised hierarchical clustering of 5,693 highly
variable Ensembl genes separated ER-negative BC cell
lines into three groups (Figure 1). One group, desig-
nated “Cluster 1” (blue lines, Figure 1) included three
ER-negative/HER2-positive BC cell lines, namely SKBR3,
SUM190 and SUM225, which clustered with ER-positive/
HER2-negative (T47D, HCC1428 and BT483) and
ER-positive/HER2-positive (BT474, ZRF7530) cell lines.
“Cluster 2” was uniformly composed of ER-negative/
HER2-negative BC cell lines (orange lines, Figure 1) and
was in complete concordance with the Basal “B” BC cell
line subtype described in previous BC cell line studies
[16-18]. “Cluster 3” consisted of cell lines (red lines,
Figure 1) either having a triple-negative phenotype or
showing amplification and higher abundance of HER2
(HCC1954, HCC1569) and EGFR gene amplification
(BT20, MDAMB468). Investigating the expression levels
of known triple-negative BC-related genes demonstrated
subtle differences within these three groups. While
“Cluster 3” cell lines expressed genes commonly found
in the intrinsic gene list preferentially expressed in
basal-like primary BC (e.g. LCN, RARRES1, CLDN1,
KRT17; Figure 1B) [20], “Cluster 2” was characterised
by a higher abundance of CAV1, a marker for the basal-
like phenotype of sporadic and hereditary breast cancers
[21], and the lymphangiogenic factor VEGFC, a potential
therapeutic target for triple-negative BCs [22] (Figure 1C).
Other genes previously associated with triple-negative
BCs such as c-MET, CD44 and CAV2 [23,24] exhibited
higher expression in both groups in comparison to
“Cluster 1” cell lines (Figure 1D).

Representation of ER-negative breast tumour-related
gene signatures in BC cell lines
Given that the combined expression pattern of certain
genes can uniquely characterise different BC subtypes or
can be used as surrogate markers for pathway activation,
we selected a compendium of gene signatures representing
various features of triple-negative BCs. Firstly, we investi-
gated the representation of eleven gene signatures based
on a “relative similarity score” and ranked the BC cell lines
accordingly (Additional file 2 Table S2). Overall “Cluster
3” cell lines (red names, Figure 2) showed a good represen-
tation of gene signatures identified for “Apocrine”, G3.
TN.Tumour” and high-grade breast carcinomas, while
“Cluster 2” cell lines exhibited high similarities with the
“Stroma”, “Mammosphere” and “CD24.CD44” expres-
sion patterns (orange names, Figure 2). The resem-
blance to the remaining four gene signatures showed a
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Figure 1 Subtype-specific gene expression and molecular characteristics of breast cancer cell lines, using the Illumina HumanWG-6v2.0
microarray platform. (A) “Two-way” hierarchical clustering of 25 BC cell lines and 5,693 variably expressed genes segregate into three groups,
“Cluster 1, 2 and 3” indicated as blue, orange and red dendrogram branches. (B) Selected cluster commonalities in gene expression for ”Cluster
2”; (C) “Cluster 3”; and (D) both cell lines clusters are shown. Bar below dendrogram indicates phenotypic features of cell lines for ER, HER2 and
EGFR.
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less striking concordance with the gene expression
defined clusters, and identified SUM1315, HCC1569,
SUM149 and HCC1143 cell lines as the best represen-
tatives for the “MET”, “EGFR”, “IGF1” and “Interferon”
gene signatures, respectively. Secondly, we examined
the 5 different ER-negative BC subgroups associated
with a prognostic outcome [25] in the BC cell line tran-
scriptomes based on centroid correlation classification.
As shown in Figure 2B, “Cluster 3” cell lines had activation
of the “cell cycle and cell proliferation pathway/immune
response genes” and the “cell cycle and cell proliferation
pathway” groups (Figure 2B), both of which showed asso-
ciation to basal-like BCs in their study [25]. In contrast,
“Cluster 1” cell lines displayed highest correlation to
ER-negative tumours of the steroid response group,
supporting the outcome of our hierarchical clustering
in which these cell lines group with the ER-positive cell
lines (Figure 1). Lastly, to explore the representation of
the molecular basal-like BC subtype within this BC cell
line set, we performed nearest centroid classification
using the class centroids from Parker et al. [26], Sorlie
et al. [27], Hu et al. [28], Prat et al. [8] and Guedj
et al., [10] (referred to as PAM50, Sorlie500, Hu306,
Claudin.Low and CIT256 respectively, in Figure 2B). As

expected given the manner in which the “Claudin.Low”
gene signature was originally established [8], “Cluster 2” cell
lines (Hs578T, MDAMB157, MDAMB231, MDAMB436,
BT549, SUM159 and SUM1315) are representatives of the
described “Claudin.Low” subtype. The recently published
CIT classification [10] assigned all “Cluster 2” and “Cluster
3” cell lines to the basalL group (Figure 2B) with the excep-
tion of Hs578T which was assigned to the “LuminalA”
subtype. Interestingly, in “Cluster 1”, ER-negative/HER2-
positive cell lines SKBR3, SUM190 and SUM225 were
labelled as mApo (‘molecular Apocrine’) groups, in
agreement with ER-negative/HER2-positive breast car-
cinomas in this molecular subtype [9]. PAM50 classifi-
cation assigned all “Cluster 2 and 3” BC cell lines
except Hs578T and HCC1954 to the basal-like BC sub-
type. Assignments of cell lines into the basal-like sub-
type with class centroids obtained from Sorlie500 and
Hu306 were in good agreement with those obtained
with PAM50, however only 2 out 10 cell lines were
consistently classified as of luminal A, luminal B or
HER2 by all methods. To determine the agreement of
these three centroid classifications, we used the free-
marginal Kappa statistics of Brennan and Prediger [29]
and saw substantial agreement in the classification of
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Figure 2 Representation of gene signatures across BC cell lines. BC cell lines are ranked based on their gene expression clustering.
(A) Expression levels of eleven gene signatures previously associated with ER-negative BC. Similarities between gene signature and each BC cell
line transcriptome was established as described in Material and Methods, and used for ranking lines. Each coloured square represents the rank
(between 1 and 25) of the cell line to the specific gene signature, whereby blue indicates the highest rank (best resemblance to the gene
signature), while white being the lowest rank. Gene signatures used were: G3.TN.Tumour [43]; Apocrine.Basal [9]; Interferon [28]; IGF1 [39]; EGFR
[41]; c-MET [42]; Mammosphere [40]; CD24.CD44 [44]; HighGradeVLowGrade [47]; GGI [68]; Stroma [45]. (B) Classification of BC cell lines to BC
subtypes by nearest centroid correlation based on gene expression signatures: PAM50 [26]; Sorlie500 [27]; Hu306 [69]; Claudin.Low [8],
Teschendorff.ER.neg [25]; CIT256 [10]; both subtype assignment and Spearman correlation are presented.
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the basal-like (Kappa score = 0.78), luminal A (Kappa
score = 0.7) and HER2 subtypes (Kappa=0.63), in agree-
ment with the results of previous studies [7,30].

Copy number aberrations and associated gene expression
changes in BC cell lines represent those observed in
triple-negative BCs
To identify BC cell lines harbouring copy number aber-
rations specific for triple-negative BC, we performed
aCGH using a 32k tiling path array platform and sur-
veyed their genomic changes (individual aCGH-profiles
are provided as Additional file 3 Figure S1). By grouping
the BC cell lines based on the three expression clusters,
“Cluster 2” cell lines displayed significantly less high-
level amplifications and deletions compared with the
other two clusters (Additional file 4 Figure S2). Next, we
retrieved CNAs identified in our previous study on 56
triple-negative BCs [31], analysed on the same genomic
platform. Overall the frequency of gains and losses seen
in triple-negative BCs was more similar to “Cluster 3”
than to “Cluster 2” and “Cluster 1” cell lines (Figure 3A).
Recurrent amplification seen in primary triple-negative
BCs were recapitulated in at least one BC cell line
(Additional file 5 Table S3). The most highly recurrent
triple-negative BC-specific amplicons in BC cell lines were
on 5p15.33-p15.1 (HCC1143, HCC1937, HCC1954, HCC70,
MDAMB468 and BT20), followed by 9p24.3-22.3 and
7q11.1 found in 6 “Cluster 3” cell lines and 4 “Cluster
3” cell lines, respectively (Figure 3B). Given that these
regions are also characterised by common polymorphisms,
genes such as JAK2 (9p24) [32], NUNS2 (5p15) [33] or
LIMK1 (7q11) [34] previously associated with breast
cancers, and gained preferentially in basal-like breast
cancers [35] might validate that these regions contain
genes providing a selective advantage for triple-negative
BCs. A comprehensive integration of genes lost or
gained in the 2,000 breast cancer study is provided in
Additional file 6 Table S4. Amplifications on 3q24-
q25.1, 3q25.32-q25.33, 5p14.3-p14.1, 7p11.2 and 9p22.3
were observed only in ”Cluster 3” cell lines, and the
13q32.3-q33.3 amplicon only in “Cluster 2” cell lines,
illustrating a good representation of triple-negative BC-
specific CNAs in ER-negative cell lines, with some of
them having a higher prevalence in one than the other
expression defined group. We and others have previ-
ously demonstrated that the expression levels of certain
genes located in triple-negative BCs specific CNAs is
copy number dependent [31,36]. To investigate if these
dependencies are also recapitulated in BC cell lines, we
integrated expression data with cbs-smoothed aCGH
profiles of each BC cell lines. Using Pearson’s correl-
ation (fdr adjusted P_value <0.05), 4,571 genes showed
significantly correlation between their expression and
DNA copy number levels (Additional file 6 Table S4).

This set encompassed 1,158/2,064 triple-negative BC
copy-number dependent genes as determined by
Turner [31], and included genes such as transcriptional
regulators (n=98), kinases (n=47), phosphatases (n=24)
and transmembrane receptors (n=5), as well as biomar-
kers for diagnosis (n=42), prognosis (n=14), disease
progression (n=7) and known drug targets (n=20)
(Additional file 5 Table S4). Triple-negative BC–specific
amplicons, recurrently amplified in our BC cell lines (e.g.
5p15.33-p15.1 and 9p24.3-22.3) and harbouring genes
with DNA copy number-dependent expression levels
are shown in Figure 4. Among those were genes, such
as JAK2, NSUN2 and NFIB previously shown to have
pathogenic roles, but also novel potential drivers e.g.
PPAPDC or RANBP6, which could be selectively
required for the survival of cells harbouring those
amplification (Figure 4).

Epigenetic influence on sub-type specific genes in
ER-negative BC cell lines
The functional validity of the methylation pattern found
on CpG islands in cultured cancer cell lines has been
the matter of controversy [37]. To study epigenetic pat-
terns in BC cell lines, we produced genome-wide methy-
lation profiles on Illumina GoldenGate bead arrays.
Unsupervised hierarchical clustering using 1,223 CpG
probes, corresponding to 707 genes, revealed a different
grouping (Additional file 7 Figure S3) as it was observed
when their expression profiles were clustered (Figure 1).
To validate that the BC cell line specific methylation
pattern can be also found in triple-negative BC, we
retrieved methylation data of 189 fresh-frozen BCs per-
formed on the same microarray [38]. Due to the lack of
HER2 status information in their study, 43 basal-like
BCs were used as surrogates for triple-negative tumours
and 165 CpG islands with variable methylation levels
were observed. Of those 165, 128 CpG probes showed
also changes in their methylation status in our BC cell
lines (Additional file 6 Table S4). Investigating the
methylation state of these CpG islands in each BC cell
line individually, demonstrated an overall good represen-
tation of ≥70% of hypo- and hyper- basal-like BC-
specific methylation events specifically in ER-negative
BC cell lines (Additional file 8 Figure S4). Given that BC
subtype specific expression has been suggested to be
under epigenetic influence [38], we surveyed the methy-
lation effect on gene expression in BC cell lines. Integra-
tion of methylation and gene expression data resulted in
1,129 CpG gene pairs (corresponding to 652 genes) and
identified an inverse correlation between methylation and
gene expression levels for 93 pairs (correlation < 0.55;
adjusted P_value 0.05). Performing bootstrap analysis by
randomly sampling the BC cell lines, we showed that
the number of significant association between gene
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Figure 4 (See legend on next page.)
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expression and methylation was more than 90 fold
higher than expected. Using these 93 CpG gene pairs in
a multiclass SAM analysis revealed 73 with specific
methylation patterns over the three expression clusters,

particularly distinguishing “Cluster 2” cell lines from
the others (Figure 5). As described previously, “Cluster 2”
cell lines exhibited among others, expression patterns
similar to the “Claudin.low” gene signature [8]. Fifteen
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Figure 4 BC cell lines recapitulate recurrent triple-negative BC-specific amplicons and their possible drivers. Matched heatmaps of gene
expression and aCGH within regions of recurrent amplification in BC cell lines (A) and (B). Cell lines were split into those with amplification (AMP)
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genes of the “Claudin.low” gene signature had CpG sites
with varying methylation pattern over these BC cell lines
which was significantly higher than expected by chance
(hypergeometric testing P_values < 0.001), whereby genes
downregulated in “Claudin.low” cancers according to
“Claudin.low” signature were methylated and vice-versa,
such as “Claudin.low” signature genes such as PRSS8,
CLDN4 and VAMP8 were downregulated in “Cluster 2”
and their CpG islands were methylated, while genes like
SPARC or DDR2 had unmethylated CpG islands and
showed higher abundance in these BC cell lines. By
comparing those with epigenetic-regulated genes in breast
cancers [38], we identified 12 genes with the same
concordant pattern (asterisks, Figure 5). Taken together,
our analyses demonstrate that BC cell lines retain methy-
lation–dependent gene expression patterns observed in
basal-like BCs, and strengthen an epigenetic influence on
some BC phenotypes that are retained in their equivalent
model systems.

Discussion
Triple-negative BCs represent a heterogeneous group
with diverse deregulation of biological pathways. Here,
we extended the molecular characterisation of ER-negative
BC cell lines based on their genetic, epigenetic and
transcriptional profiles, and correlated these with a
comprehensive compendium of gene signatures reflect-
ing different features of ER-negative BCs [8,9,28,39-45].
Initial cluster analysis of BC cell lines’ expression pro-
files resulted in three groups, two clusters encompass-
ing purely ER-negative BC cell lines (“Cluster 3” and
“Cluster 2”), while one consisted of three ER-negative
and all ER-positive BC cell lines. The first two cell line
clusters were in good agreement with recent BC cell line
studies [6,11,15-18,31,46]. While “Cluster 2” encompassed
cell lines that were all represented in the Basal “B” cluster
of Neve et al. [18] and were assigned to the triple-negative
mesenchymal phenotype by Lehmann et al. [11], most of
the “Cluster 3” cell lines were part of Neve’s Basal “A”
cluster [18] and part of the basal-like subtype according to
Lehmann et al., [11]. Our “Cluster 3” cell lines exhibited
expression patterns found in transcriptional profiles of
microdissected grade 3 triple-negative breast tumours [43]
as well as grade 3 versus grade 1 breast carcinomas [9,47].
HCC1143, an ER-negative/HER2-negative cell line, was
the top in vitro representative “Cluster 3” cell line for
the triple-negative phenotype of microdissected grade 3
triple-negative breast tumours [43]. The transcriptional
profile of HCC1143 also seemed very suitable in model-
ling the Interferon, IGF1 and MET signalling pathways.
BC cell lines with expression patterns most closely
associated with the Apocrine.Basal subtype [9] were not
defined to one or the other cluster and HCC1954, an
ER-negative/HER2-positive cell line of “Cluster 3”

displayed the highest representation. These BCs were
originally defined on the basis of their androgen recep-
tor level and many of them harboured ERBB2 amplifi-
cations [9]. This is in agreement with our findings,
whereby using a recently published BC classifier, named
CIT, three ER-negative/HER2-positive cell lines SKBR3,
SUM190 and SUM225 were classified to the mApo
(molecular Apocrine) breast cancer subtype [10]. In a
study, MDAMB453, SUM185, CAL148 and MFM223
showed expression patterns associated with androgen
receptor signalling and were more sensitive to andro-
gen receptor antagonist bicalutamide and an Hsp90 in-
hibitor [11]. While none of those cell lines were part of
our study, BT549 and HCC1937, BC cell lines used in
our study and good representatives of the Apocrine.
Basal subtype showed high sensitivity to Hsp90 inhibi-
tors in Lehmann’s work [11]. The Claudin-low subtype
has been described as BC entity [8,48], which is enriched
for ER-negative invasive ductal carcinomas, while display-
ing low levels of luminal differentiation markers and acti-
vation of pathways involved in epithelial-to-mesenchymal
transition, stem cell-like features and the immune
response [8]. Integration of gene expression with methyla-
tion data over BC cell lines revealed a group of CpG
islands corresponding to genes within the Claudin-low
signature, showing an inverse correlation between their
methylation and the genes expression in BC cell lines and
BCs [38]. Our findings are in agreement with those from a
recent report that led to the identification of a set of genes
whose expression was epigenetically regulated and when
used as a gene signature identified mesenchymal features
in Claudin-Low breast tumours [19]. Furthermore, they
postulated that a deviant methylation might reflect cell
lineage commitment in agreement with our hypothesis of
a contribution of an epigenetic regulation to the Claudin-
Low subtype. Aberrant DNA methylation events have
initially been thought to accumulate in a random fashion
within cells in pre-malignant tissues, however, lately it has
also been shown that de novo methylation has a predict-
able pattern, creating plasticity followed by commitment
to alternative cell lineages [49]. Holm and colleagues pro-
posed that BC subtypes might be driven by different
epigenetic events and could reflect their different cellular
origins [38]. Nevertheless, an alternative hypothesis might
also be that the methylation patterns are a result from
mutations in genes controlling the epigenetic landscape in
breast cancer [50]; thus further investigation is warranted
to determine whether these distinctive methylation pat-
terns are results of genetic aberration in epigenetic
regulator genes and/or contribute to delineation of the
differentiation hierarchy of Claudin-Low and other BC
subtypes.
We and others have recently shown that basal-like

BCs are most likely derived from luminal progenitor
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cells [51,52]. Identifying in vitro models would enhance
our understanding of these cell populations. Interestingly,
our cluster and gene signature analysis revealed ER-
responsive features for SKBR3, SUM190 and SUM225,
three ER-negative/HER2-positive cell lines. SKBR3 cells
are well known to have luminal BC characteristics [53]. In
contrast, the classification of SUM190 and SUM225 is
controversial. While some BC cell line studies assigned
them to basal-like cell lines [15,18], others supported our
finding of SUM190 within the ER-positive cluster [16].
SUM225, although not included in this study, was classi-
fied as of luminal phenotype in other studies [54]. Com-
mon to both is the expression of luminal cytokeratins
8, 18 and 19 [55] as well as genes found in luminal pro-
genitor cell population (data not shown) [51], more con-
sistent with a luminal classification. Although SUM225
was found to highly express ALDH1, a marker for the
so-called BC stem cells [56], further investigations are
necessary to ascertain whether SUM190 and SUM225
represent appropriate in vitro models for luminal inter-
mediate progenitor populations.
High-level amplifications are less likely to represent

random aberrations and often encompass genes driving
the development or maintenance of tumour growth.
Three-quarters of triple-negative BCs harbour at least
one amplicon [31], however, their recurrence rates are
lower than those of high-level CNAs found in ER-positive/
HER2-negative and HER2-positive BC subtypes (e.g. ERBB2-
amplicon in HER2, and CCND1 and FGFR1 in luminal
breast tumours [57]). Here, we demonstrated that triple-
negative BC-specific amplicons are recapitulated in
ER-negative BC cell lines and that some of them are
associated with higher frequencies either to ”Cluster 2”
or “Cluster 3” expression clusters. For example, the region
on 5p15.33-p15.1 was found to be recurrently amplified in
5/56 and 10/28 triple-negative BCs [31,36], was present
in six ”Cluster 3” but only in one ”Cluster 2” cell lines.
Notably, these genomic sites map to regions of com-
mon germline copy number polymorphism and the
functional consequences of their increased DNA levels
require further validation. Nevertheless, several genes
located within these amplified regions were found
gained with a higher frequency in basal-like BCs in a
recent study investigating 2,000 breast tumours [35]
and expression levels significantly correlated with their
DNA copy number in triple-negative BC cell lines and
tumours for several of these genes [31]. A recent study
investigated genes on 5p15.33-p15.1 in more detail and
showed that silencing of the overexpressed and ampli-
fied NUNS2, a MYC target gene, reduced cell number
in some BC cell lines [33]. NUNS2 expression has been
found significantly increased in malignant tissues
whereas it could only be found in testis in normal
tissues, furthermore its role in stabilising the mitotic

spindle and phosphorylation by Aurora-B make it an
interesting target for cancer diagnostics and molecular
therapeutics.

Conclusion
Taken together, transcriptional, genomic and epigenetic
profiles of 25 BC cell lines, enriched for those represent-
ing triple-negative features, help to define cell lines that
most closely capture individual examples of the hetero-
geneous characteristics within triple-negative BCs. By
cross-referencing different high-resolution datasets, we
provide useful resources to further study transcriptional,
as well as genetic and epigenetic modulation and inform
the best selection of available in vitro models for the
identification and validation of potential novel thera-
peutic targets relevant to triple-negative BCs.

Methods
BC cell lines
BT20, BT474, BT483, BT549, Hs578T, MDAMB157,
MDAMB231, MDAMB436, MDAMB468, T47D, SKBR3,
ZR75-30, HCC1937, HCC70, HCC1428, HCC1143,
HCC38, HCC1187, HCC1569, HCC1954 were obtained
from ATCC (Manassas, VA, USA). SUM159, SUM149,
SUM1315, SUM225, SUM190 were purchased from Aster-
and plc (Detroit, MI, USA) (Additional file 1 Table S1). All
lines were grown according to the supplier’s recommenda-
tion and authenticated by means of Short Tandem Repeat
(STR) analysis (PowerPlexW 1.2 System, Promega, WI, US)
as previously described [58]. STR profiles were matched
to the German Collection of Microorganisms and Cell
Cultures (DSMZ)–database (www.dsmz.com). BC cell lines
were stratified into mesenchymal and epithelial-like mor-
phological groups based on previous studies [11,16,18].

RNA and DNA isolation
Cells were grown to ~70% confluence before harvesting
nucleic acids. DNA was prepared using the Qiagen
DNeasy tissue kit (Qiagen, Valencia, CA) and RNA was
isolated using Trizol (Invitrogen, Carlsbad, CA) according
to the manufacturers’ protocol. DNA concentration was
measured with Picogreen (Invitrogen, Paisley, UK). Integ-
rity of RNA was quantified using the Agilent 2100 Bioana-
lyser with RNA Nano LabChip Kits (Agilent Biosystems,
Foster City, CA).

Microarray analyses
Analyses of microarray data were performed in the R
environment 2.12.0 (http://www.r-project.org/) making
use of several Bioconductor packages (www.bioconductor.
org/). All Microarray probes and external gene signatures
were mapped to the Ensembl 55 (human genome build
37) to ensure uniform annotation. Microarray data have
been deposited in Array Express (E-TABM-928; http://
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www.ebi.ac.uk/arrayexpress/). A Sweave document describ-
ing the statistical analysis is provided as Supplemental
Methods (Addition file 9).

Gene expression profiling
Using the Illumina Totalprep RNA amplification kit
(Ambion, UK), 200ng total BC cell line RNA was ampli-
fied and hybridised to Illumina HumanWG-6v2.0 arrays
gene expression bead-chips at Genizon BioSiences Inc
(Quebec, CA). Raw data obtained from Illumina Bead-
Studio (Illumina, San Diego, CA) were preprocessed
using the “lumi” -Bioconductor package [59]. Microarray
probes absent in more than 80% of samples based on
an Illumina BeadStudio detection P_value >0.01 were
removed from further analysis. For unsupervised hier-
archical clustering of gene expression, 5,693 unique
Ensembl genes with a median absolute deviation (MAD)
of ≥0.4 across all BC cell lines were selected. Ward clus-
tering was applied to genes and arrays after median
centring using Pearson’s correlation as a distance meas-
urement and 10,000 bootstrap iterations were per-
formed to assess the significance of the observed the
stability of the clusters using the pvclust package for R
[60]. Resulting clusters were visualised with Java Tree-
View [61]. Two strategies were applied for gene expres-
sion signature analysis: (1) When centroids for specific
classes (e.g. BC subtypes or groups of ER-negative
breast tumours [25]) were publicly available, assign-
ment of BC cell lines to these classes was based on
their highest Spearman rank correlation. Classification
included class centroids defined by Sorlie [27], Hu [28],
Parker [26], Prat [8], CIT256 [10] and Teschendorff
[25]. (2) To monitor specific ER-related features, 11
gene signatures were retrieved from publication (see
Additional file 3 Table S2 for a detailed description).
For the “G3.TN.Tumour” signature, we used our previ-
ously published expression data of microdissected breast
tumours [43]. Significance Analysis of Microarrays (SAM)
[62] with 1,000 permutations and 0% fdr was used to iden-
tify significant genes for triple-negative BCs, using a two-
class comparisons between tumours belonging to the
triple-negative subtype and all other subtypes. For each
BC cell line, a weighted mean expression of genes present
in the respective signature was determined, and cell lines
were ranked based on their concordance.

Array-based comparative genomic hybridisation (aCGH)
Labelling, hybridisation, image and initial data analysis
of the 32k BAC tiling path aCGH platform, produced at
the Breakthrough Breast Cancer Research Centre, London,
UK [63] was carried out as previously described [43].
Breakpoint analysis was performed using the circular bin-
ary segmentation (cbs) algorithm [64] and rescaled such
that the genome MAD was the same in each sample.

Only segments of ≥ 3 BAC clones were used in further
analyses. Thresholds for cbs-smoothed data were esti-
mated as described previously [65]. Briefly, cbs-smoothed
aCGH Log2 values <−0.08 were classified as losses, >0.08
but ≤0.45 were categorised as gains, and >0.45 were re-
ferred to as high-level gains/ amplifications. To determine
genomic instability, the fraction of amplified, deleted or
total BACs over the whole data set was calculated and
presented as a proportion. Gene expression values were
compared with median cbs-smoothed aCGH data for all
BACs encompassing the genomic position using Pearson’s
correlation adjusted for multiple testing [66]. Matched
heatmaps between gene expression and genomic data
were created as described in [31] showing the minus log10
Pearson’s P_value of each gene-aCGH pair correlation.
The raw and cbs-smoothed aCGH data are deposited at
http://rock.icr.ac.uk/collaborations/GrigoriadisA/.

Methylation array analysis
Hybridisation and image analysis of the Illumina Golden-
Gate methylation beadarrays were performed at the
Genome Centre (Barts and the London School of Medi-
cine and Dentistry, London, UK). Methylation profiles
of the BC cell lines, obtained through the BeadStudio
Methylation Module (Illumina, San Diego, CA), was
normalised by dichotomising the un- /methylated CpG
islands separately before equalising their median accord-
ing to the “methylumi” package (www.bioconductor.org/).
CpG sites located on the X chromosomes were removed,
as well as constitutively un-/ methylated probes, resulting
in 1,223 CpG sites (data are available at http://rock.icr.ac.
uk/collaborations/GrigoriadisA/). The methylation state of
CpG islands given as a ß-value [67] was stratified into
three categories: ß-values ≤ 0.25, ≥ 0.75 and between
≥ 0.25 and ≤ 0.75; and interpreted as un-/, methylated
and partially methylated CpG sites, respectively. These
cut-offs are slightly more stringent than Holm et al.
has used them for the analysis of breast carcinomas
using the same methylation array platform [38] to increase
the chances of true-positive events. Initial analysis revealed
a similar methylation frequency in all BC cell lines, deter-
mined as the fraction of methylated CpG sites, affecting on
average 31% of all CpG islands. Using a total of 10,000 per-
mutations to obtain reasonable estimates of dependencies,
sample labels were permuted and correlation analyses be-
tween gene expression and methylation values were carried
out on the resampled data set.

Additional files

Additional file 1: Table S1. Clinicopathological features of breast cell
lines. Clinicopathological characteristics of BC cell lines.
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Additional file 2: Table S2. Gene signatures with relevance in ER-
negative breast tumours. Compendium of gene signatures, listing their
genes, their citation and their relevance for triple-negative BCs.

Additional file 3: Figure S1. aCGH profiles Of BCCLs.zip. Folder
provided aCGH-profiles for each BCCL individually. Gains are coloured in
green, while copy number loss is shown in red.

Additional file 4: Figure S2. Distribution of CNAs over 3 gene
expression clusters. Genomic instability varies between different BC cell
lines expression clusters. For each BC cell line the genomic instability was
determined, defined as the fraction of altered genome, and compared
between the three expression clusters. Total genomic aberrations,
amplifications and deletions were investigated separately. P_values
(Welch t-test) for pairwise comparison are shown in red.

Additional file 5: Table S3. Recurrent amplicons of 56 Grade 3 TNBC in
BCCLs. Recurrent amplicons of TNBC found in BC cell lines of “Cluster 1, 2
and 3”.

Additional file 6: Table S4. Gene centric analysis in 25 BCCL. Gene
centric table of BC cell lines, showing the copy number state of each
gene in each BC cell line, their un/adjusted Pearson’s correlation between
gene expression and copy number; their correlation between gene
expression and copy number in triple-negative BCs (both taken from
Turner [31] their methylation states in BC cell lines, their Pearson’s
correlation between methylated state and their gene expression in BC
cell lines and basal-like BCs [38].

Additional file 7: Figure S3. Hierarchical clustering of BCCL
methylation data. Unsupervised hierarchical clustering of BC cell lines
based CpG islands. BC cell lines of ”Cluster 1, 2, 3” are shown in blue,
orange and red, respectively.

Additional file 8: Figure S4. Distribution of methylated and
unmethylated CpG islands in each BCCL. representation of BC specific
un/methylated CpG sites in BC cell lines. Methylation marks for triple-
negative BC were retrieved from Holm’s methylation profiling analysis
[38]. Barplots represent the number of un/methylated CpG islands in
each BC cell lines as identified of being un/methylated in BCs. BC cell
lines of ”Cluster 1, 2, 3” are shown in blue, orange and red, respectively.
The order of the BC cell lines is based on their gene expression
clustering.

Additional file 9: Sweave Documentation. Sweave documentation of
analysis.
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